• 中国出版政府奖提名奖

    中国百强科技报刊

    湖北出版政府奖

    中国高校百佳科技期刊

    中国最美期刊

    留言板

    尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

    姓名
    邮箱
    手机号码
    标题
    留言内容
    验证码

    Fe-Mg同位素在蛇绿岩中铬铁矿床成因研究中的应用潜力

    苏本勋 肖燕 陈晨 白洋 刘霞 梁子 彭青山

    苏本勋, 肖燕, 陈晨, 白洋, 刘霞, 梁子, 彭青山, 2018. Fe-Mg同位素在蛇绿岩中铬铁矿床成因研究中的应用潜力. 地球科学, 43(4): 1011-1024. doi: 10.3799/dqkx.2018.705
    引用本文: 苏本勋, 肖燕, 陈晨, 白洋, 刘霞, 梁子, 彭青山, 2018. Fe-Mg同位素在蛇绿岩中铬铁矿床成因研究中的应用潜力. 地球科学, 43(4): 1011-1024. doi: 10.3799/dqkx.2018.705
    Su Benxun, Xiao Yan, Chen Chen, Bai Yang, Liu Xia, Liang Zi, Peng Qingshan, 2018. Potential Applications of Fe and Mg Isotopes in Genesis of Chromite Deposits in Ophiolites. Earth Science, 43(4): 1011-1024. doi: 10.3799/dqkx.2018.705
    Citation: Su Benxun, Xiao Yan, Chen Chen, Bai Yang, Liu Xia, Liang Zi, Peng Qingshan, 2018. Potential Applications of Fe and Mg Isotopes in Genesis of Chromite Deposits in Ophiolites. Earth Science, 43(4): 1011-1024. doi: 10.3799/dqkx.2018.705

    Fe-Mg同位素在蛇绿岩中铬铁矿床成因研究中的应用潜力

    doi: 10.3799/dqkx.2018.705
    基金项目: 

    国家自然科学基金项目 41772055

    国家自然科学基金项目 91755205

    中国科学院地质与地球物理研究所岩石圈演化国家重点实验室项目 201701

    详细信息
      作者简介:

      苏本勋(1982-), 男, 研究员, 研究方向为镁铁-超镁铁岩成岩成矿作用

    • 中图分类号: P581

    Potential Applications of Fe and Mg Isotopes in Genesis of Chromite Deposits in Ophiolites

    • 摘要: 蛇绿岩中铬铁矿床成因一直存在较大争议,其主要原因可归结为:寄主蛇绿岩存在成因争议、产出状态不清、矿石及围岩矿物组合单一以及主要矿物成分简单但矿物包裹体复杂多样.针对这些研究瓶颈,率先对西藏普兰和罗布莎、土耳其Kızıldaǧ和Kop蛇绿岩中的地幔橄榄岩和铬铁岩进行了全岩和单矿物Fe-Mg同位素的探索性研究工作.结果表明:(1)蛇绿岩中的地幔橄榄岩具有较均一的Fe-Mg同位素组成,与世界上其他地区的地幔橄榄岩相似;(2)铬铁岩中铬铁矿和橄榄石之间存在明显的Fe-Mg同位素分馏,铬铁矿多具有比共存橄榄石轻的Fe同位素组成,与地幔橄榄岩中的尖晶石和橄榄石相反,Mg同位素变化较大;(3)铬铁矿和橄榄石的Fe-Mg同位素主要受控于结晶分异和Fe-Mg交换,且这两个过程造成的同位素变化趋势明显不同.因此,Fe-Mg同位素在揭示铬铁矿母岩浆来源、性质及成矿过程方面具有较大的应用潜力.

       

    • 图  1  蛇绿岩剖面图中的铬铁矿产出状态

      Paktunc(1990)修改

      Fig.  1.  Occurrence of chromite in ophiolite

      图  2  罗布莎蛇绿岩中方辉橄榄岩、纯橄岩和铬铁岩与典型玻安岩的铬铁矿(a)和橄榄石(b)成分相关性

      罗布莎数据引自Xiong et al., 2015; Su et al., 2016; Xiao et al., 2016; 玻安岩数据引自GEOROC(http://georoc.mpch-mainz.gwdg.de/georoc/Start.asp)

      Fig.  2.  Correlation of compositions of chromite (a) and olivine (b) in harzburgite, dunite and chromitite from the Luobusa ophiolite with comparisons of those in typical boninite

      图  3  铬铁矿和橄榄石的结构

      Fig.  3.  Crystal structures of spinel (chromite) and olivine

      图  4  洋中脊玄武岩、洋岛玄武岩、玻安岩、岛弧玄武岩、深海橄榄岩、地幔橄榄岩捕掳体和蛇绿岩的Fe-Mg同位素组成

      数据据Su et al.(2015)

      Fig.  4.  Fe and Mg isotope frequency distributions of boninites, island arc basalts, mid-ocean ridge basalts, oceanic island basalts, peridotite xenoliths, abyssal peridotites, and ophiolites

      图  5  普兰蛇绿岩岩石的Fe-Mg同位素组成的相关性

      Su et al.(2015)

      Fig.  5.  Correlation of δ56Fe and δ26Mg of the rocks from the Purang ophiolite

      图  6  Kızıldaǧ和罗布莎蛇绿岩中方辉橄榄岩、纯橄岩和铬铁岩单矿物的Fe和Mg同位素组成

      数据引自Chen et al.(2015),部分未发表;Xiao et al.(2016)

      Fig.  6.  Fe and Mg isotopic compositions of olivine, orthopyroxene and chromite in harzburgite, dunite and chromitite from Kızıldaǧ and Lubusa ophiolites

      图  7  铬铁矿和橄榄石之间的Fe-Mg交换方式及模拟计算结果

      修改自Xiao et al.(2016)

      Fig.  7.  Modelling results of the effect by Fe-Mg exchange between chromite and olivine

      图  8  Kızıldaǧ、罗布莎和Kop蛇绿岩中铬铁岩的铬铁矿δ56Fe与MgO相关性

      数据引自Chen et al.(2015); Xiao et al.(2016); Zhang et al.(2017b)

      Fig.  8.  Correlation of δ56Fe with MgO of chromite in chromitite from Kızıldaǧ, Luobusa and Kop ophiolites

    • [1] Arai, S., 1992.Chemistry of Chromian Spinel in Volcanic Rocks as a Potential Guide to Magma Chemistry.Mineralogical Magazine, 56(383):173-184. https://doi.org/10.1180/minmag.1992.056.383.04
      [2] Arai, S., Miura, M., 2016.Formation and Modification of Chromitites in the Mantle.Lithos, 264:277-295. https://doi.org/10.1016/j.lithos.2016.08.039
      [3] Arai, S., Yurimoto, H., 1994.Podiform Chromitites of the Tari-Misaka Ultramafic Complex, Southwestern Japan, as Mantle-Melt Interaction Products.Economic Geology, 89(6):1279-1288. https://doi.org/10.2113/gsecongeo.89.6.1279
      [4] Augé, T., 1987.Chromite Deposits in the Northern Oman Ophiolite:Mineralogical Constraints.Mineralium Deposita, 22(1):1-10.https://doi.org/10.1007/bf00204235 doi: 10.1007%2FBF00204235
      [5] Bai, Y., Su, B.X., Chen, C., et al., 2017.Base Metal Mineral Segregation and Fe-Mg Exchange Inducing Extreme Compositions of Olivine and Chromite from the Xiadong Alaskan-Type Complex in the Southern Part of the Central Asian Orogenic Belt.Ore Geology Reviews, 90:184-192. https://doi.org/10.1016/j.oregeorev.2017.01.023
      [6] Bao, P.S., 2009.Further Discussion on the Genesis of Podiform Chromite Deposits in the Ophiolites-Questioning about the Rock/Melt Interaction Metallogeny.Geological Bulletin of China, 28(12):1741-1761 (in Chinese with English abstract). https://www.researchgate.net/publication/285981984_Further_discussion_on_the_genesis_of_the_podiform_chromite_deposits_in_the_ophiolites-questioning_about_the_rock_melt_interaction_metallogeny
      [7] Borisova, A.Y., Ceuleneer, G., Kamenetsky, V.S., et al., 2012.A New View on the Petrogenesis of the Oman Ophiolite Chromitites from Microanalyses of Chromite-Hosted Inclusions.Journal of Petrology, 53(12):2411-2440. https://doi.org/10.1093/petrology/egs054
      [8] Brown, G.E., Prewitt, C.T., 1973.High Temperature Crystal Chemistry of Hortonolite.American Mineralogist, 58(7-8):577-587. http://rruff.info/uploads/AM58_577.pdf
      [9] Cao, H.H., Zhao, X.M., Zhang, H.F., 2016.Iron Isotope System and Its Applications in Mantle Geochemistry.Bulletin of Mineralogy, Petrology and Geochemistry, 35(5):1053-1064 (in Chinese with English abstract). http://lib.gig.ac.cn/local/science/320,1600.PDF
      [10] Chen, C., Su, B.X., Uysal, I., et al., 2015.Iron Isotopic Constraints on the Origin of Peridotite and Chromitite in the Kızıldaǧ Ophiolite, Southern Turkey.Chemical Geology, 417:115-124. https://doi.org/10.1016/j.chemgeo.2015.10.001
      [11] Colás, V., González-Jiménez, J.M., Griffin, W.L., et al., 2014.Fingerprints of Metamorphism in Chromite:New Insights from Minor and Trace Elements.Chemical Geology, 389:137-152. https://doi.org/10.1016/j.chemgeo.2014.10.001
      [12] Dauphas, N., Craddock, P.R., Asimow, P.D., et al., 2009.Iron Isotopes May Reveal the Redox Conditions of Mantle Melting from Archean to Present.Earth and Planetary Science Letters, 288(1-2):255-267. https://doi.org/10.1016/j.epsl.2009.09.029
      [13] Dauphas, N., John, S.G., Rouxel, O., 2017.Iron Isotope Systematics.Reviews in Mineralogy and Geochemistry, 82(1):415-510. https://doi.org/10.2138/rmg.2017.82.11
      [14] de Launay, L.L., 1913.Traité de Métallogénie:Gîtes Minéraux et Métallifères.Béranger, Paris, 1:257. http://www.worldcat.org/title/traite-de-metallogenie-gites-mineraux-et-metalliferes-gisements-recherche-production-et-commerce-des-mineraux-utiles-et-minerais-description-des-principales-mines/oclc/2056702
      [15] Dick, H.J.B., Bullen, T., 1984.Chromian Spinel as a Petrogenetic Indicator in Abyssal and Alpine-Type Peridotites and Spatially Associated Lavas.Contributions to Mineralogy and Petrology, 86(1):54-76.https://doi.org/10.1007/bf00373711 doi: 10.1007/BF00373711
      [16] Dingwell, D.B., Virgo, D., 1988.Viscosities of Melts in the Na2O-FeO-Fe2O3-SiO2 System and Factors Controlling Relative Viscosities of Fully Polymerized Silicate Melts.Geochimica et Cosmochimica Acta, 52(2):395-403. https://doi.org/10.1016/0016-7037(88)90095-6
      [17] Duke, J.M., 1982.Ore Deposit Model 7-Magma Segregation Deposits of Chromite.Geochimica et Cosmochimica Acta, 39:1061-1074. https://pubs.er.usgs.gov/publication/ofr20101232
      [18] Fisher, L.W., 1929.Origin of Chromite Deposits.Economic Geology, 24(7):691-721. https://doi.org/10.2113/gsecongeo.24.7.691
      [19] González-Jiménez, J.M., Griffin, W.L., Proenza, J.A., et al., 2014.Chromitites in Ophiolites:How, Where, When, Why? Part Ⅱ.The Crystallization of Chromitites.Lithos, 189(3):140-158.https://doi.org/10.1016/j.lithos.2013.09.008 https://www.sciencedirect.com/science/article/pii/S002449371300296X
      [20] Hagen, A., Mikkelsen, L., 2005.XANES Study of the Oxidation State and Coordination Environment of Manganese, Chromium and Cobalt in Spinel Type Materials.Solid State Electrochemistry, Proceedings, 197-202. http://repositorio.lneg.pt/bitstream/10400.9/1698/1/34954.pdf
      [21] He, Y.S., Hu, D.P., Zhu, C.W., 2015.Progress of Iron Isotope Geochemistry in Geoscience.Earth Science Frontiers, 22(5):54-71 (in Chinese with English abstract). https://www.researchgate.net/publication/282988768_Progress_of_iron_isotope_geochemistry_in_geoscience
      [22] Hu, Y., Teng, F.Z., Zhang, H.F., et al., 2016.Metasomatism-Induced Mantle Magnesium Isotopic Heterogeneity:Evidence from Pyroxenites.Geochimica et Cosmochimica Acta, 185:88-111. https://doi.org/10.1016/j.gca.2015.11.001
      [23] Huang, F., 2011.Non-Traditional Stable Isotope Fractionation at High Temperatures.Acta Petrologica Sinica, 27(2):365-382 (in Chinese with English abstract). https://www.researchgate.net/publication/305533880_Non-traditional_stable_isotope_fractionation_at_high_temperatures
      [24] Huang, F., Zhang, Z.F., Lundstrom, C.C., et al., 2011.Iron and Magnesium Isotopic Compositions of Peridotite Xenoliths from Eastern China.Geochimica et Cosmochimica Acta, 75(12):3318-3334. https://doi.org/10.1016/j.gca.2011.03.036
      [25] Huang, M.X., Yang, J.J., Powell, R., et al., 2014.High-Pressure Metamorphism of Serpentinized Chromitite at Luobusha (Southern Tibet).American Journal of Science, 314(1):400-433. https://doi.org/10.2475/01.2014.11
      [26] Irvine, T.N., 1977.Chromite Crystallization in the Join Mg2SiO4-CaMgSi2O6-CaAl2Si2O8-MgCr2O4-SiO2.Carnegie Institution of Washington, Yearbook, Washington, D.C., 76:465-472. http://www.academia.edu/8752174/Parental_magma_composition_of_the_syn-tectonic_Dawros_Peridotite_chromitites_NW_Connemara_Ireland
      [27] Johan, Z., Dunlop, H., LeBel, L., et al., 1983.Origin of Chromite Deposits in Ophiolitic Complexes-Evidence for a Volatile-Rich and Sodium-Rich Reducing Fluid Phase.Fortschritte der Mineralogie, 61:105-107.
      [28] Kamenetsky, V.S., Crawford, A.J., Meffre, S., 2001.Factors Controlling Chemistry of Magmatic Spinel:An Empirical Study of Associated Olivine, Cr-Spinel and Melt Inclusions from Primitive Rocks.Journal of Petrology, 42(4):655-671. https://doi.org/10.1093/petrology/42.4.655
      [29] Kapsiotis, A., Rassios, A.E., Antonelou, A., et al., 2016.Genesis and Multi-Episodic Alteration of Zircon-Bearing Chromitites from the Ayios Stefanos Mine, Othris Massif, Greece:Assessment of an Unconventional Hypothesis on the Origin of Zircon in Ophiolitic Chromitites.Minerals, 6(4):124. https://doi.org/10.3390/min6040124
      [30] Kelemen, P.B., Dick, H.J.B., Quick, J.E., 1992.Formation of Harzburgite by Pervasive Melt/Rock Reaction in the Upper Mantle.Nature, 358(6388):635-641. https://doi.org/10.1038/358635a0
      [31] Lago, B.L., Rabinowicz, M., Nicolas, A., 1982.Podiform Chromite Ore Bodies:A Genetic Model.Journal of Petrology, 23(1):103-125. https://doi.org/10.1093/petrology/23.1.103
      [32] Leblanc, M., Nicolas, A., 1992.Ophiolitic Chromitites.International Geology Review, 34(7):653-686. https://doi.org/10.1080/00206819209465629
      [33] Lenaz, D., Adetunji, J., Rollinson, H., 2014.Determination of Fe3+/∑Fe Ratios in Chrome Spinels Using a Combined Mössbauer and Single-Crystal X-Ray Approach:Application to Chromitites from the Mantle Section of the Oman Ophiolite.Contributions to Mineralogy and Petrology, 167(1):958. doi: 10.1007/s00410-013-0958-2
      [34] Li, S.G., 2015.Tracing Deep Carbon Recycling by Mg Isotopes.Earth Science Frontiers, 22(5):143-159 (in Chinese with English abstract). https://www.researchgate.net/publication/283018948_Tracing_deep_carbon_recycling_by_Mg_isotopes
      [35] Li, X.P., Chen, H.K., Wang, Z.L., et al., 2015.Spinel Peridotite, Olivine Websterite and the Textural Evolution of the Purang Ophiolite Complex, Western Tibet.Journal of Asian Earth Sciences, 110:55-71. https://doi.org/10.1016/j.jseaes.2014.06.023
      [36] Li, Y.B., Kimura, J.I., Machida, S., et al., 2013.High-Mg Adakite and Low-Ca Boninite from a Bonin Fore-Arc Seamount:Implications for the Reaction between Slab Melts and Depleted Mantle.Journal of Petrology, 54(6):1149-1175. https://doi.org/10.1093/petrology/egt008
      [37] Liu, C.Z., Zhang, C., Yang, L.Y., et al., 2014.Formation of Gabbronorites in the Purang Ophiolites (SW Tibet) through Melting of Hydrothermally Altered Mantle along a Detachment Fault.Lithos, 205(10):127-141.
      [38] Liu, F., Yang, J.S., Dilek, Y., et al., 2015.Geochronology and Geochemistry of Basaltic Lavas in the Dongbo and Purang Ophiolites of the Yarlung-Zangbo Suture Zone:Plume-Influenced Continental Margin-Type Oceanic Lithosphere in Southern Tibet.Gondwana Research, 27(2):701-718. https://doi.org/10.1016/j.gr.2014.08.002
      [39] Liu, P.P., Teng, F.Z., Dick, H.J.B., et al., 2017.Magnesium Isotopic Composition of the Oceanic Mantle and Oceanic Mg Cycling.Geochimica et Cosmochimica Acta, 206:151-165. https://doi.org/10.1016/j.gca.2017.02.016
      [40] Liu, S.A., Teng, F.Z., Yang, W., et al., 2011.High-Temperature Inter-Mineral Magnesium Isotope Fractionation in Mantle Xenoliths from the North China Craton.Earth and Planetary Science Letters, 308(1-2):131-140. https://doi.org/10.1016/j.epsl.2011.05.047
      [41] Liu, X., Su, B.X., Bai, Y., et al., 2018.Ca-Enrichment Characteristics of Parental Magmas of Chromitite in Ophiolite:Inference from Mineral Inclusions.Earth Science, 43(4):1038-1050 (in Chinese with English abstract).
      [42] Lorand, J.P., Ceuleneer, G., 1989.Silicate and Base-Metal Sulfide Inclusions in Chromites from the Maqsad Area (Oman Ophiolite, Gulf of Oman):A Model for Entrapment.Lithos, 22(3):173-190. https://doi.org/10.1016/0024-4937(89)90054-6
      [43] Matveev, S., Ballhaus, C., 2002.Role of Water in the Origin of Podiform Chromitite Deposits.Earth and Planetary Science Letters, 203(1):235-243.https://doi.org/10.1016/s0012-821x(02)00860-9 doi: 10.1016/S0012-821X(02)00860-9
      [44] Melcher, F., Grum, W., Simon, G., et al., 1997.Petrogenesis of the Ophiolitic Giant Chromite Deposits of Kempirsai, Kazakhstan:A Study of Solid and Fluid Inclusions in Chromite.Journal of Petrology, 38(10):1419-1458. https://doi.org/10.1093/petroj/38.10.1419
      [45] Miller, C., 2003.Geochemistry and Tectonomagmatic Affinity of the Yungbwa Ophiolite, SW Tibet.Lithos, 66(3-4):155-172.https://doi.org/10.1016/s0024-4937(02)00217-7 doi: 10.1016/S0024-4937(02)00217-7
      [46] Murck, B.W., Campbell, I.H., 1986.The Effects of Temperature, Oxygen Fugacity and Melt Composition on the Behaviour of Chromium in Basic and Ultrabasic Melts.Geochimica et Cosmochimica Acta, 50(9):1871-1887. https://doi.org/10.1016/0016-7037(86)90245-0
      [47] Nicolas, A., Prinzhofer, A., 1983.Cumulative or Residual Origin for the Transition Zone in Ophiolites:Structural Evidence.Journal of Petrology, 24(2):188-206. https://doi.org/10.1093/petrology/24.2.188
      [48] Pagé, P., Barnes, S.J., 2009.Using Trace Elements in Chromites to Constrain the Origin of Podiform Chromitites in the Thetford Mines Ophiolite, Québec, Canada.Economic Geology, 104(7):997-1018.https://doi.org/10.2113/gsecongeo.104.7.997 doi: 10.2113/econgeo.104.7.997
      [49] Paktunc, A.D., 1990.Origin of Podiform Chromite Deposits by Multistage Melting, Melt Segregation and Magma Mixing in the Upper Mantle.Ore Geology Reviews, 5(3):211-222.https://doi.org/10.1016/0169-1368(90)90011-b doi: 10.1016/0169-1368(90)90011-B
      [50] Papike, J.J., Karner, J.M., Shearer, C.K., 2005.Comparative Planetary Mineralogy:Valence State Partitioning of Cr, Fe, Ti, and V among Crystallographic Sites in Olivine, Pyroxene, and Spinel from Planetary Basalts.American Mineralogist, 90(2-3):277-290. doi: 10.2138/am.2005.1779
      [51] Polyakov, V.B., Mineev, S.D., 2000.The Use of Mössbauer Spectroscopy in Stable Isotope Geochemistry.Geochimica et Cosmochimica Acta, 64(5):849-865.https://doi.org/10.1016/s0016-7037(99)00329-4 doi: 10.1016/S0016-7037(99)00329-4
      [52] Princivalle, F., 1990.Influence of Temperature and Composition on Mg-Fe2+ Intracrystalline Distribution in Olivines.Mineralogy and Petrology, 43(2):121-129.https://doi.org/10.1007/bf01164305 doi: 10.1007/BF01164305
      [53] Proenza, J., Gervilla, F., Melgarejo, J.C., et al., 1999.Al-and Cr-Rich Chromitites from the Mayari-Baracoa Ophiolitic Belt (Eastern Cuba); Consequence of Interaction between Volatile-Rich Melts and Peridotites in Suprasubduction Mantle.Economic Geology, 94(4):547-566. https://doi.org/10.2113/gsecongeo.94.4.547
      [54] Roberts, S., Neary, C., 1993.Petrogenesis of Ophiolitic Chromitite.Geological Society, London, Special Publications, 76(1):257-272.https://doi.org/10.1144/gsl.sp.1993.076.01.12 doi: 10.1144/GSL.SP.1993.076.01.12
      [55] Robinson, P.T., Bai, W.J., Malpas, J., et al., 2004.Ultra-High Pressure Minerals in the Luobusa Ophiolite, Tibet and Their Tectonic Implications.Geological Society, London, Special Publications, 226(1):247-271. doi: 10.1144/GSL.SP.2004.226.01.14
      [56] Robinson, P.T., Trumbull, R.B., Schmitt, A., et al., 2015.The Origin and Significance of Crustal Minerals in Ophiolitic Chromitites and Peridotites.Gondwana Research, 27(2):486-506. https://doi.org/10.1016/j.gr.2014.06.003
      [57] Roeder, P.L., Reynolds, I., 1991.Crystallization of Chromite and Chromium Solubility in Basaltic Melts.Journal of Petrology, 32(5):909-934. https://doi.org/10.1093/petrology/32.5.909
      [58] Rollinson, H., Adetunji, J., 2015.The Geochemistry and Oxidation State of Podiform Chromitites from the Mantle Section of the Oman Ophiolite:A Review.Gondwana Research, 27(2):543-554. https://doi.org/10.1016/j.gr.2013.07.013
      [59] Saenger, C., Wang, Z.R., 2014.Magnesium Isotope Fractionation in Biogenic and Abiogenic Carbonates:Implications for Paleoenvironmental Proxies.Quaternary Science Reviews, 90:1-21. https://doi.org/10.1016/j.quascirev.2014.01.014
      [60] Schauble, E.A., 2011.First-Principles Estimates of Equilibrium Magnesium Isotope Fractionation in Silicate, Oxide, Carbonate and Hexaaquamagnesium (2+) Crystals.Geochimica et Cosmochimica Acta, 75(3):844-869. https://doi.org/10.1016/j.gca.2010.09.044
      [61] Schiano, P., Clocchiatti, R., Lorand, J.P., et al., 1997.Primitive Basaltic Melts Included in Podiform Chromites from the Oman Ophiolite.Earth and Planetary Science Letters, 146(3):489-497. https://linkinghub.elsevier.com/retrieve/pii/S0012821X96002543
      [62] Shi, R.D., Alard, O., Zhi, X.C., et al., 2007.Multiple Events in the Neo-Tethyan Oceanic Upper Mantle:Evidence from Ru-Os-Ir Alloys in the Luobusa and Dongqiao Ophiolitic Podiform Chromitites, Tibet.Earth and Planetary Science Letters, 261(1-2):33-48. https://doi.org/10.1016/j.epsl.2007.05.044
      [63] Sio, C.K.I., Dauphas, N., Teng, F.Z., et al., 2013.Discerning Crystal Growth from Diffusion Profiles in Zoned Olivine by In Situ Mg-Fe Isotopic Analyses.Geochimica et Cosmochimica Acta, 123(2):302-321.https://doi.org/10.1016/j.gca.2013.06.008 https://www.sciencedirect.com/science/article/pii/S0016703713003402
      [64] Smyth, J.R., Hazen, R.M., 1973.The Crystal Structure of Forsterite and Hortonolite at Several Temperatures up to 900℃.American Mineralogist, 58:588-593. http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.558.3318
      [65] Su, B.X., Teng, F.Z., Hu, Y., et al., 2015.Iron and Magnesium Isotope Fractionation in Oceanic Lithosphere and Sub-Arc Mantle:Perspectives from Ophiolites.Earth and Planetary Science Letters, 430:523-532. https://doi.org/10.1016/j.epsl.2015.08.020
      [66] Su, B.X., Zhou, M.F., Robinson, P.T., 2016.Extremely Large Fractionation of Li Isotopes in Chromitite-Bearing Mantle Sequence.Scientific Reports, 6:22370. doi: 10.1038/srep22370
      [67] Teng, F.Z., 2017.Magnesium Isotope Geochemistry.Reviews in Mineralogy and Geochemistry, 82(1):219-287. https://doi.org/10.2138/rmg.2017.82.7
      [68] Teng, F.Z., Dauphas, N., Helz, R.T., 2008.Iron Isotope Fractionation during Magmatic Differentiation in Kilauea Iki Lava Lake.Science, 320(5883):1620-1622. https://doi.org/10.1126/science.1157166
      [69] Teng, F.Z., Dauphas, N., Helz, R.T., et al., 2011.Diffusion-Driven Magnesium and Iron Isotope Fractionation in Hawaiian Olivine.Earth and Planetary Science Letters, 308(3-4):317-324. https://doi.org/10.1016/j.epsl.2011.06.003
      [70] Teng, F.Z., Li, W.Y., Ke, S., et al., 2010.Magnesium Isotopic Composition of the Earth and Chondrites.Geochimica et Cosmochimica Acta, 74(14):4150-4166. https://doi.org/10.1016/j.gca.2010.04.019
      [71] Trumbull, R.B., Yang, J.S., Robinson, P.T., et al., 2009.The Carbon Isotope Composition of Natural SiC (Moissanite) from the Earth's Mantle:New Discoveries from Ophiolites.Lithos, 113(3-4):612-620. https://doi.org/10.1016/j.lithos.2009.06.033
      [72] Uysal, I., Tarkian, M., Sadiklar, M.B., et al., 2009.Petrology of Al-and Cr-Rich Ophiolitic Chromitites from the Mula, SW Turkey:Implications from Composition of Chromite, Solid Inclusions of Platinum-Group Mineral, Silicate, and Base-Metal Mineral, and Os-Isotope Geochemistry.Contributions to Mineralogy and Petrology, 158(5):659-674. https://doi.org/10.1007/s00410-009-0402-9
      [73] von Groddeck, A., 1879. Die Lehre von den Lagerstätten der Erze: Ein zweig der Geologie. Metzger and Wittig., Leipzig.
      [74] Wang, H.S., Bai, W.J., Wang, B.X., et al., 1983.Chromite Deposits in China and Their Genesis.Science Press, Beijing, 32-59 (in Chinese). doi: 10.1111/j.1755-6724.1987.mp61002006.x
      [75] Wang, X.B., Bao, P.S., 1987.The Genesis of Podiform Chromite Deposits-A Case Study of the Luobusa Ophiolitic Chromite Deposit.Acta Geologica Sinica, 22(2):166-181+201-202 (in Chinese with English abstract). http://hub.hku.hk/handle/10722/150999
      [76] Weyer, S., Ionov, D.A., 2007.Partial Melting and Melt Percolation in the Mantle:The Message from Fe Isotopes.Earth and Planetary Science Letters, 259(1):119-133.https://doi.org/10.1016/j.epsl.2007.04.033 http://adsabs.harvard.edu/abs/2007E&PSL.259..119W
      [77] Xiao, Y., Teng, F.Z., Su, B.X., et al., 2016.Iron and Magnesium Isotopic Constraints on the Origin of Chemical Heterogeneity in Podiform Chromitite from the Luobusa Ophiolite, Tibet.Geochemistry, Geophysics, Geosystems, 17(3):940-953.https://doi.org/10.1002/2015gc006223 doi: 10.1002/2015GC006223
      [78] Xiao, Y., Teng, F.Z., Zhang, H.F., et al., 2013.Large Magnesium Isotope Fractionation in Peridotite Xenoliths from Eastern North China Craton:Product of Melt-Rock Interaction.Geochimica et Cosmochimica Acta, 115(5):241-261.https://doi.org/10.1016/j.gca.2013.04.011 https://www.sciencedirect.com/science/article/pii/S0016703713002263
      [79] Xiao, Y.L., Sun, H., Gu, H.O., et al., 2015.Fluid/Melt in Continental Deep Subduction Zones:Compositions and Related Geochemical Fractionations.Science China:Earth Sciences, 45(8):1063-11087 (in Chinese).
      [80] Xiong, F.H., Yang, J.S., Robinson, P.T., et al., 2015.Origin of Podiform Chromitite, a New Model Based on the Luobusa Ophiolite, Tibet.Gondwana Research, 27(2):525-542. https://doi.org/10.1016/j.gr.2014.04.008
      [81] Xu, X.Z., Yang, J.S., Robinson, P.T., et al., 2015.Origin of Ultrahigh Pressure and Highly Reduced Minerals in Podiform Chromitites and Associated Mantle Peridotites of the Luobusa Ophiolite, Tibet.Gondwana Research, 27(2):686-700. https://doi.org/10.1016/j.gr.2014.05.010
      [82] Yamamoto, S., Komiya, T., Hirose, K., et al., 2009.Coesite and Clinopyroxene Exsolution Lamellae in Chromites:In-Situ Ultrahigh-Pressure Evidence from Podiform Chromitites in the Luobusa Ophiolite, Southern Tibet.Lithos, 109(3-4):314-322. https://doi.org/10.1016/j.lithos.2008.05.003
      [83] Yang, J.S., Ba, D.Z., Xu, X.Z., et al., 2010.A Restudy of Podiform Chromie Deposits and Their Ore-Prospecting Vista in China.Geology in China, 37(4):1141-1150 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-DIZI201004030.htm
      [84] Yang, J.S., Bai, W.J., Fang, Q.S., et al., 2008.Ultrahigh-Pressure Minerals and New Minerals from the Luobusa Ophiolitic Chromitites in Tibet:A Review.Acta Geoscientica Sinica, 29(3):263-274 (in Chinese with English abstract).
      [85] Yang, J.S., Dobrzhinetskaya, L., Bai, W.J., et al., 2007.Diamond-and Coesite-Bearing Chromitites from the Luobusa Ophiolite, Tibet.Geology, 35(10):875-878.https://doi.org/10.1130/g23766a.1 doi: 10.1130/G23766A.1
      [86] Yang, J.S., Robinson, P.T., Dilek, Y., 2014.Diamonds in Ophiolites.Elements, 10(2):127-130. https://doi.org/10.2113/gselements.10.2.127
      [87] Yang, J.S., Xu, X.Z., Rong, H., et al., 2013.Deep Minerals in Ophiolitic Mantle Peridotites:Discovery and Progress.Bulletin of Mineralogy, Petrology and Geochemistry, 32(2):159-170 (in Chinese with English abstract). http://www.pnas.org/content/104/22/9116.figures-only?related-urls=yesl104/22/9116
      [88] Young, E.D., Galy, A., 2004.The Isotope Geochemistry and Cosmochemistry of Magnesium.Reviews in Mineralogy and Geochemistry, 55(1):197-230. https://doi.org/10.2138/gsrmg.55.1.197
      [89] Zhang, H.L., Hirschmann, M.M., Cottrell, E., et al., 2017a.Effect of Pressure on Fe3+/∑Fe Ratio in a Mafic Magma and Consequences for Magma Ocean Redox Gradients.Geochimica et Cosmochimica Acta, 204:83-103. doi: 10.1016/j.gca.2017.01.023
      [90] Zhang, P.F., Zhou, M.F., Su, B.X., et al., 2017b.Iron Isotopic Fractionation and Origin of Chromitites in the Paleo-Moho Transition Zone of the Kop Ophiolite, NE Turkey.Lithos, 268-271:65-75. https://doi.org/10.1016/j.lithos.2016.10.019
      [91] Zhao, X.M., Zhang, H.F., Zhu, X.K., et al., 2010.Iron Isotope Variations in Spinel Peridotite Xenoliths from North China Craton:Implications for Mantle Metasomatism.Contributions to Mineralogy and Petrology, 160(1):1-14. https://doi.org/10.1007/s00410-009-0461-y
      [92] Zhao, X.M., Zhang, H.F., Zhu, X.K., et al., 2015.Effects of Melt Percolation on Iron Isotopic Variation in Peridotites from Yangyuan, North China Craton.Chemical Geology, 401:96-110. https://doi.org/10.1016/j.chemgeo.2015.02.031
      [93] Zhou, M.F., Robinson, P.T., Bai, W.J., 1994.Formation of Podiform Chromitites by Melt/Rock Interaction in the Upper Mantle.Mineralium Deposita, 29(1):98-101.https://doi.org/10.1007/bf03326400 doi: 10.1007/BF03326400
      [94] Zhou, M.F., Robinson, P.T., Malpas, J., et al., 1996.Podiform Chromitites in the Luobusa Ophiolite (Southern Tibet):Implications for Melt-Rock Interaction and Chromite Segregation in the Upper Mantle.Journal of Petrology, 37(1):3-21. https://doi.org/10.1093/petrology/37.1.3
      [95] Zhou, M.F., Robinson, P.T., Malpas, J., et al., 2005.REE and PGE Geochemical Constraints on the Formation of Dunites in the Luobusa Ophiolite, Southern Tibet.Journal of Petrology, 46(3):615-639.https://doi.org/10.1093/petrology/egh091
      [96] Zhou, M.F., Robinson, P.T., Su, B.X., et al., 2014.Compositions of Chromite, Associated Minerals, and Parental Magmas of Podiform Chromite Deposits:The Role of Slab Contamination of Asthenospheric Melts in Suprasubduction Zone Environments.Gondwana Research, 26(1):262-283. https://doi.org/10.1016/j.gr.2013.12.011
      [97] Zhou, M.F., Sun, M., Keays, R.R., et al., 1998.Controls on Platinum-Group Elemental Distributions of Podiform Chromitites:A Case Study of High-Cr and High-Al Chromitites from Chinese Orogenic Belts.Geochimica et Cosmochimica Acta, 62(4):677-688.https://doi.org/10.1016/s0016-7037(97)00382-7 doi: 10.1016/S0016-7037(97)00382-7
      [98] 鲍佩声, 2009.再论蛇绿岩中豆荚状铬铁矿的成因—质疑岩石/熔体反应成矿说.地质通报, 28(12):1741-1761. doi: 10.3969/j.issn.1671-2552.2009.12.008
      [99] 曹辉辉, 赵新苗, 张宏福, 2016.Fe同位素体系及其在地幔地球化学中的应用.矿物岩石地球化学通报, 35(5):1053-1064. http://kns.cnki.net/KCMS/detail/detail.aspx?filename=kydh201605039&dbname=CJFD&dbcode=CJFQ
      [100] 何永胜, 胡东平, 朱传卫, 2015.地球科学中铁同位素研究进展.地学前缘, 22(5):54-71. https://www.researchgate.net/profile/Yongsheng_He/publication/282988768_Progress_of_iron_isotope_geochemistry_in_geoscience/links/566f78eb08ae486986b70ec2.pdf
      [101] 黄方, 2011.高温下非传统稳定同位素分馏.岩石学报, 27(2):365-382. https://www.wenkuxiazai.com/doc/db853ca7524de518964b7da1.html
      [102] 李曙光, 2015.深部碳循环的Mg同位素示踪.地学前缘, 22(5):143-159. http://kns.cnki.net/KCMS/detail/detail.aspx?filename=dxqy201505015&dbname=CJFD&dbcode=CJFQ
      [103] 刘霞, 苏本勋, 白洋, 等, 2018.蛇绿岩中铬铁岩母岩浆的富Ca特征:矿物包裹体证据.地球科学, 43(4):1038-1050. http://www.earth-science.net/WebPage/Article.aspx?id=3785
      [104] 王恒升, 白文吉, 王炳熙, 等, 1983.中国铬铁矿床及成因.北京:科学出版社, 32-59.
      [105] 王希斌, 鲍佩声, 1987.豆荚状铬铁矿床的成因—以西藏自治区罗布莎铬铁矿床为例.地质科学, 22(2):166-181+201-202. https://www.wenkuxiazai.com/doc/796eaa00de80d4d8d15a4f45.html
      [106] 肖益林, 孙贺, 顾海欧, 等, 2015.大陆深俯冲过程中的熔/流体成分与地球化学分异.中国科学:地球科学, 45(8):1063-1087.
      [107] 杨经绥, 巴登珠, 徐向珍, 等, 2010.中国铬铁矿床的再研究及找矿前景.中国地质, 37(4):1141-1150. https://www.wenkuxiazai.com/doc/e1fea79ce87101f69f319553-4.html
      [108] 杨经绥, 白文吉, 方青松, 等, 2008.西藏罗布莎蛇绿岩铬铁矿中的超高压矿物和新矿物(综述).地球学报, 29(3):263-274. http://kns.cnki.net/KCMS/detail/detail.aspx?filename=dqxb200803003&dbname=CJFD&dbcode=CJFQ
      [109] 杨经绥, 徐向珍, 戎合, 等, 2013.蛇绿岩地幔橄榄岩中的深部矿物:发现与研究进展.矿物岩石地球化学通报, 32(2):159-170. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=kwysdqhxtb201302002
    • 加载中
    图(8)
    计量
    • 文章访问数:  2862
    • HTML全文浏览量:  1393
    • PDF下载量:  44
    • 被引次数: 0
    出版历程
    • 收稿日期:  2017-12-20
    • 刊出日期:  2018-04-15

    目录

      /

      返回文章
      返回