Chronology, Geochemistry and Tectonic Significance of Daba Ophiolites in Western Segment of Yarlung Zangbo Suture Zone, Tibet
-
摘要: 达巴蛇绿岩位于雅鲁藏布江蛇绿岩带西段南亚带,主要由地幔橄榄岩、基性岩脉和硅质岩组成,其形成时代和构造背景尚不清楚.首次报道了达巴蛇绿岩中基性岩脉的岩石学、锆石U-Pb年代学、全岩地球化学数据.达巴辉长岩和辉绿岩具有高的Al和Mg、低Ti、K和P,为低钾钙碱性玄武质岩石.岩石具有与N-MORB一致的稀土配分模式,但是N-MORB标准化蛛网图中显示Nb负异常,显示了受到俯冲板片流体的影响.辉绿岩的锆石U-Pb年龄为120.0±1.7 Ma,为早白垩世晚期,地球化学特征显示源自于低程度的尖晶石相地幔源区的部分熔融.结合前人研究成果,认为达巴蛇绿岩形成于与初始俯冲有关的弧前扩张中心,是受到俯冲板片流体交代的上覆地幔楔部分熔融的产物.Abstract: The Daba ophiolite is located in the southern sub-belt of the western segment of the Yarlung Zangbo suture zone (YZSZ) and mainly composed of mantle peridotite, mafic dikes and siliceous rocks. Its formation time and tectonic setting are not clear. This is the first report of zircon U-Pb age, petrologic and whole-rock geochemical data from the Daba ophiolite. The major elements of Daba gabbro and dolerite are characterized by high contents in Al, Mg and low contents in Ti, K and P, which belong to subalkaline basalt. The REE distribution patterns are very similar to those of the normal mid-ocean ridge basalt (N-MORB). However, the normalized spider diagram shows significant depletion of Nb, suggesting the influence of fluids from downgoing slab.The dolerites yielded zircon U-Pb ages of 120.0±1.7 Ma, and geochemical features show partial melting from the low degree spinel-bearing mantle source. Combining with previous studies, it is suggested that the intrusion of the mafic rocks into the Daba peridotites may be interpreted as a result of mixing process between MORB-like melts and arc-derived fluids, which may have occurred during the stage of subduction initiation in an extending forearc region.
-
Key words:
- Yarlung Zangbo suture zone /
- Daba ophiolite /
- geochemistry /
- zircon U-Pb age /
- tectonic setting
-
图 1 研究区区域地质简图
a.雅鲁藏布江缝合带和班公湖-怒江缝合带蛇绿岩分布简图;b.达巴蛇绿岩区域地质简图.据张双增等(2005)编1:25万日新-札达县-姜叶马幅区域地质调查报告及地质图;Yin and Harrison(2000); Zhang et al.(2012, 2014)修改
Fig. 1. Geological sketch map of the research region
图 6 达巴蛇绿岩中基性岩Zr/TiO2×10-4-Nb/Y(a)和P2O5-Zr(b)图解
图a据Winchester and Floyd(1977);图b据Winchester and Floyd(1976).Rhyolite+Dacite.流纹岩+英安岩;Alkali Rhyolite.碱性流纹岩;Phonolite.响岩;Trachyte.粗面岩;And/BasAnd.安山岩/玄武安山岩;Trachy/And.粗面安山岩;Tephri-Phonolite.碱玄岩+响岩;Subalkaline Basalt.亚碱性玄武岩;Alkaline basalt=Alk-Bas.碱性玄武岩;Foidite.副长岩;Tholeiitic basalt.拉斑玄武岩
Fig. 6. Zr/TiO2×10-4-Nb/Y (a) and P2O5-Zr (b) diagrams from mafic rocks in the Daba ophiolites
图 7 达巴基性岩稀土(a)和微量元素(b)特征曲线
标准化值据Sun and McDonough(1989);Barren岛弧玄武岩数据来源于Luhr and Haldar(2006);IBM弧前玄武岩源于Reagan et al.(2010);日喀则弧前玄武岩源于Dai et al.(2013)
Fig. 7. Chondrite-normalized REE (a) and N-MORB-normalized trace element (b) diagrams for the mafic rocks in Daba ophiolites
图 8 达巴辉绿岩的La-La/Sm (a)和La/Sm-Sm/Yb (b)图解
Fig. 8. The La-La/Sm (a) and La/Sm-Sm/Yb (b) diagrams for dolerites in Daba ophiolites
图 9 达巴辉绿岩的Th/Yb vs. Nb/Yb (a) and TiO2/Yb vs. Nb/Yb (b)图解
据Pearce(2008)修改
Fig. 9. The Th/Yb vs. Nb/Y (a) and TiO2/Yb vs. Nb/Yb (b) diagrams for dolerites in Daba ophiolites
图 10 达巴辉绿岩的Th/Nb vs. U/Th和Th/Nb vs. Th/Ce图解
Fig. 10. The Th/Nb vs. U/Th and Th/Nb vs. Th/Ce diagrams for dolerites in Daba ophiolites
图 11 达巴辉绿岩构造环境判别图解
a.Nb×2-Zr/4-Y图解,据Meschede(1986);b.Ti/1000-V图解,据Shervais(1982);c.Y/15-La/10-Nb/8图解,据Cabanis and Lecolle(1989);d.NbN-ThN图解,据Saccani(2015).IBM弧前玄武岩数据源自Reagan et al.(2010);日喀则弧前玄武岩源自Dai et al.(2013).N-MORB.正常大洋中脊玄武岩;E-MORB.富集大洋中脊玄武岩;OIB.洋岛玄武岩;IAT.岛弧拉斑玄武岩;BABB.弧后盆地玄武岩;FAB.弧前玄武岩;WPB.板内玄武岩;VAB.火山弧玄武岩;AB.碱性洋岛玄武岩
Fig. 11. Discrimination diagrams for the dolerites in Daba ophiolites
表 1 达巴辉绿岩锆石U-Pb同位素分析结果
Table 1. Analytical results of zircon U-Pb isotopes from Daba dolerite
测试点 元素(10-6) Th/ U 同位素比值 年龄(Ma) Th U 207Pb/206Pb 1σ 207Pb/235U 1σ 206Pb/238U 1σ 207Pb/235U 1σ 206Pb/238U 1σ DBN-23(达巴辉绿岩) DBN23-1 72 150 0.48 0.048 77 0.004 60 0.125 71 0.011 09 0.018 80 0.000 38 120.2 10.0 120.1 2.4 DBN23-2 225 254 0.89 0.046 74 0.005 11 0.115 74 0.012 19 0.017 87 0.000 39 111.2 11.1 114.2 2.5 DBN23-3 306 551 0.56 0.052 94 0.003 44 0.131 73 0.008 15 0.017 95 0.000 30 125.7 7.3 114.7 1.9 DBN23-4 45 102 0.44 0.052 12 0.007 21 0.126 46 0.016 83 0.018 85 0.000 59 120.9 15.2 120.4 3.7 DBN23-5 180 144 1.25 0.051 30 0.007 73 0.125 46 0.017 72 0.017 97 0.000 45 120.0 16.0 114.8 2.9 DBN23-6 83 130 0.64 0.051 80 0.005 48 0.133 71 0.012 03 0.019 68 0.000 42 127.4 10.8 125.6 2.6 DBN23-7 101 152 0.66 0.048 46 0.005 38 0.124 44 0.012 98 0.019 13 0.000 43 119.1 11.7 122.2 2.8 DBN23-8 131 300 0.44 0.047 96 0.003 71 0.125 46 0.008 61 0.019 40 0.000 35 120.0 7.8 123.8 2.2 DBN23-9 285 424 0.67 0.049 68 0.003 83 0.129 64 0.009 51 0.018 90 0.000 30 123.8 8.5 120.7 1.9 DBN23-10 208 362 0.58 0.048 62 0.003 44 0.128 32 0.009 00 0.019 06 0.000 28 122.6 8.1 121.7 1.8 DBN23-11 84 189 0.44 0.048 95 0.004 35 0.123 07 0.009 72 0.018 69 0.000 37 117.9 8.8 119.3 2.3 DBN23-12 123 258 0.47 0.049 03 0.004 80 0.124 93 0.010 91 0.018 81 0.000 37 119.5 9.8 120.1 2.3 DBN23-13 128 191 0.67 0.048 81 0.005 78 0.124 28 0.012 64 0.019 21 0.000 45 118.9 11.4 122.7 2.8 DBN23-14 87 137 0.64 0.050 06 0.008 03 0.117 20 0.012 61 0.019 25 0.000 54 112.5 11.5 122.9 3.4 DBN23-15 104 140 0.74 0.051 16 0.007 11 0.125 18 0.015 62 0.019 13 0.000 54 119.8 14.1 122.1 3.4 DBN23-16 122 272 0.45 0.049 22 0.003 88 0.129 99 0.010 32 0.018 55 0.000 41 124.1 9.3 118.5 2.6 DBN23-17 120 270 0.44 0.048 60 0.003 54 0.130 11 0.009 43 0.018 81 0.000 36 124.2 8.5 120.2 2.3 SRM 610 458.5 461.9 421.9 0.902 46 0.032 00 26.866 57 0.906 81 0.213 77 0.002 49 3 378.6 33.1 1 248.9 13.3 SRM 610 455.9 461.1 430.4 0.899 29 0.029 61 26.703 17 0.835 53 0.213 27 0.002 42 3 372.6 30.7 1 246.2 12.9 Temorastd 166.9 424.1 0.0 0.056 43 0.002 81 0.526 66 0.025 59 0.066 79 0.001 03 429.6 17.0 416.8 6.2 Temorastd 32.1 62.8 0.0 0.053 97 0.004 80 0.488 94 0.041 69 0.066 81 0.001 54 404.2 28.4 416.9 9.3 QINGHU 463.5 856.6 0.0 0.049 84 0.002 41 0.169 11 0.008 27 0.024 54 0.000 39 158.6 7.2 156.3 2.5 Temorastd 83.9 187.4 0.0 0.054 29 0.003 03 0.501 61 0.028 49 0.066 80 0.001 03 412.8 19.3 416.9 6.2 Temorastd 36.3 92.2 1.2 0.056 11 0.003 99 0.513 99 0.036 03 0.066 80 0.001 28 421.1 24.2 416.8 7.8 QINGHU 234.8 503.8 0.1 0.047 08 0.002 54 0.179 58 0.009 66 0.027 25 0.000 41 167.7 8.3 173.3 2.6 Temorastd 42.0 75.9 1.4 0.054 67 0.004 45 0.501 40 0.037 80 0.066 86 0.001 14 412.7 25.6 417.2 6.9 Temorastd 145.1 284.5 0.3 0.055 73 0.002 91 0.514 20 0.025 35 0.066 74 0.000 98 421.3 17.0 416.5 6.0 SRM 610 459.8 464.8 434.6 0.868 60 0.031 03 25.548 86 0.846 46 0.211 11 0.002 13 3 329.4 32.5 1 234.8 11.3 SRM 610 454.6 458.2 417.7 0.872 83 0.027 76 25.784 05 0.772 54 0.211 93 0.002 00 3 338.4 29.4 1 239.1 10.6 QINGHU 409.2 909.5 0.9 0.046 05 0.002 01 0.151 09 0.006 87 0.023 65 0.000 36 142.9 6.1 150.7 2.2 Temorastd 47.7 178.6 0.9 0.056 23 0.002 86 0.520 53 0.026 77 0.066 75 0.001 03 425.5 17.9 416.6 6.2 Temorastd 102.7 200.1 0.0 0.054 17 0.002 78 0.495 07 0.025 60 0.066 85 0.001 09 408.4 17.4 417.1 6.6 QINGHU 335.4 651.3 0.7 0.050 24 0.002 49 0.175 55 0.008 59 0.025 24 0.000 42 164.2 7.4 160.7 2.6 Temorastd 41.1 81.3 0.0 0.056 45 0.004 01 0.517 17 0.033 92 0.066 78 0.001 33 423.3 22.7 416.7 8.1 Temorastd 64.0 233.7 1.0 0.053 95 0.003 40 0.498 43 0.031 26 0.066 82 0.001 11 410.6 21.2 417.0 6.7 表 2 达巴辉长岩、辉绿岩主量元素(%)和微量元素(10-6)含量
Table 2. Major (%) and trace element (10-6) contents for gabbro and dolerite from the Daba ophiolites
样品 DBN-1
辉长岩DBN-4
辉长岩DBN-5
辉长岩DBN-23
辉绿岩13DBN24
辉绿岩DBN-25
辉绿岩DBN-26
辉绿岩DBN-27
辉绿岩DBN-38
异剥钙榴岩化辉绿岩SiO2 47.30 45.27 45.91 47.12 46.83 45.88 46.17 49.77 29.70 TiO2 0.37 0.59 0.85 0.57 0.53 0.53 0.72 0.95 1.20 Al2O3 12.91 14.43 15.82 13.04 13.38 14.56 13.78 14.52 12.77 Fe2O3T 6.05 8.02 4.58 7.20 6.45 8.01 7.42 7.87 10.83 MnO 0.12 0.13 0.08 0.14 0.14 0.14 0.17 0.14 0.20 MgO 10.03 8.76 6.38 9.94 8.92 9.15 9.32 5.75 11.25 CaO 18.83 17.75 21.90 18.40 19.66 17.80 17.85 15.35 23.94 Na2O 0.19 0.19 0.14 0.28 0.21 0.20 0.18 2.20 0.01 K2O 0.02 0.03 0.01 0.03 0.04 0.03 0.01 0.03 0.01 P2O5 0.02 0.03 0.10 0.04 0.03 0.04 0.06 0.08 0.11 LOI 4.12 4.47 3.86 3.76 3.94 4.16 4.19 2.83 9.55 Total 99.98 99.71 99.67 100.60 100.15 100.54 99.92 99.53 99.60 Mg# 79.44 71.80 76.45 76.29 76.32 72.69 74.54 63.00 70.80 Ti 2218 3536 5095 3417 3177 3177 4316 5694 7193 V 191 269 216 167 233 197 180 211 294 Cr 195 249 90 350 276 170 190 50 140 Ga 9.36 10.60 16.00 9.40 10.60 9.60 13.90 14.30 4.20 Rb 0.75 0.76 0.30 0.30 0.47 0.20 0.20 0.50 0.09 Sr 22.6 24.2 26.3 23.6 27.5 20.8 45.0 52.2 20.9 Y 10.4 12.8 23.9 13.5 13.4 12.7 16.9 19.6 27.1 Zr 20 32 69 35 32 30 52 64 84 Nb 0.50 1.04 1.00 0.40 2.40 0.40 0.60 0.90 1.30 Cs 0.05 0.11 0.02 0.03 0.05 0.06 0.01 0.05 0.01 Ba 9.41 11.20 9.30 11.30 20.70 6.00 22.40 11.00 49.00 La 0.93 0.98 2.30 1.20 1.03 0.90 1.70 2.00 2.92 Ce 2.67 3.30 7.50 3.80 3.39 3.10 5.80 6.30 10.10 Pr 0.38 0.44 1.21 0.62 0.51 0.51 0.95 0.97 1.48 Nd 2.02 2.54 6.70 3.60 2.88 3.20 5.10 5.60 7.64 Sm 0.74 0.98 2.30 1.38 1.06 1.18 1.64 1.86 2.58 Eu 0.32 0.35 0.80 0.54 0.41 0.37 0.61 0.66 0.93 Gd 1.11 1.44 3.34 1.96 1.41 1.65 2.36 2.82 2.85 Tb 0.20 0.28 0.60 0.33 0.27 0.31 0.45 0.50 0.59 Dy 1.40 1.77 4.04 2.36 1.90 2.26 3.03 3.38 3.99 Ho 0.31 0.40 0.91 0.54 0.40 0.47 0.66 0.78 0.95 Er 0.93 1.15 2.72 1.60 1.17 1.47 2.01 2.29 2.55 Tm 0.13 0.18 0.40 0.24 0.17 0.23 0.29 0.34 0.42 Yb 0.92 1.19 2.73 1.46 1.13 1.50 1.82 2.20 2.38 Lu 0.13 0.18 0.39 0.22 0.18 0.24 0.28 0.35 0.39 Hf 0.54 0.87 1.90 0.90 0.72 0.90 1.50 1.80 1.77 Ta 0.09 1.28 0.10 0.10 6.14 0.10 0.10 0.10 0.12 Th 0.17 0.20 0.16 0.10 0.10 0.08 0.12 0.24 0.08 U 0.30 0.21 0.07 0.05 0.22 0.05 0.05 0.10 0.86 ∑REE 12.19 15.18 35.94 19.85 15.91 17.39 26.70 30.05 39.76 ∑LREE 7.06 8.59 20.81 11.14 9.28 9.26 15.80 17.39 25.65 ∑HREE 5.13 6.58 15.13 8.71 6.63 8.13 10.90 12.66 14.11 δEu 1.08 0.90 0.88 1.00 1.03 0.81 0.95 0.88 1.05 表 3 雅鲁藏布江缝合带西段蛇绿岩同位素年龄
Table 3. Summary of ages and tectonic settings of the Yarlung Zangbo ophiolite
地点 年龄(Ma) 测年手段 对象岩性 形成环境 文献来源 达巴 120.0 ±1.7(MSWD=1.8) 锆石LA-ICP-MS U-Pb 辉绿岩 SSZ(fore-arc) 本文 东波 130±0.5(MSWD=1.6) 锆石LA-ICP-MS U-Pb 辉石岩 形成于M0R,经历了SSZ 熊发挥等, 2011 128±1.1(MSWD=1.3) 辉长岩 120.9±1.5(MSWD=3.7) 锆石LA-ICP-MS U-Pb 辉长岩 SSZ 夏斌,未发表 120.2±2.3(MSWD=0.71) 锆石SHRIMP U-Pb 辉绿岩 无描述 李建峰等, 2008 130.0±3.0(MSWD=1.06) 锆石LA-ICP-MS U-Pb 辉长岩 M0R 刘钊等, 2011 拉昂错 118.8 ± 1.8(MSWD=1.12) 锆石SHRIMP 辉绿岩 成熟的弧后盆地(洋内俯冲体系) 夏斌等, 2008 120.5±1.9(MSWD=0.73) 锆石SHRIMP U-Pb 辉绿岩 125.1±2.0(MSWD=1.6) 锆石LA-ICP-MS U-Pb 辉绿岩 SSZ 夏斌, 未发表 125.6±2.4(MSWD=1.5) 锆石LA-ICP-MS U-Pb 辉绿岩 (洋内弧前) Zheng et al., 2017 巴尔 126.3±2.4(MSWD=0.95) 128.1±2.1(MSWD=0.2) 锆石SHRIMP U-Pb 角闪辉长岩 SSZ(洋内弧前) 刘飞等,2015a 错不扎 127.0 ± 0.5(MSWD=0.78) 锆石LA-ICP-MS U-Pb 辉绿岩 SSZ(洋内俯冲体系) 刘飞等, 2015b 加纳崩 125.8±2.6(MSWD=0.78) 锆石LA-ICP-MS U-Pb 辉长岩 SSZ(洋内俯冲体系) 刘飞等,2015b 萨嘎 127.8±2.6(MSWD=3.6) 角闪石40Ar/39Ar 角闪岩(原岩亚碱性基性岩) 变质冷却年龄,二次洋内俯冲 Guilmette et al., 2012 127.9±2.5(MSWD=0.57) 123.5±1.0(MSWD=1.5) 石梢石一单斜辉石角闪岩(原岩亚碱性基性岩) 128.9 ± 1.3(MSWD=0-55) -
[1] Aldanmaz, E., Pearce, J.A., Thirlwall, M.F., et al., 2000.Petrogenetic Evolution of Late Cenozoic, Post-Collision Volcanism in Western Anatolia, Turkey.Journal of Volcanology and Geothermal Research, 102(1-2):67-95.https://doi.org/10.1016/s0377-0273(00)00182-7 doi: 10.1016/S0377-0273(00)00182-7 [2] Andersen, T., 2002.Correction of Common Pb in U-Pb Analyses That do not Report 204Pb.Chemical Geology, 192(1-2):59-79. https://doi.org/10.1016/S0009-2541(02)00195-X [3] Bezard, R., Hébert, R., Wang, C.S., et al., 2011.Petrology and Geochemistry of the Xiugugabu Ophiolitic Massif, Western Yarlung Zangbo Suture Zone, Tibet.Lithos, 125(1-2):347-367. https://doi.org/10.1016/j.lithos.2011.02.019 [4] Black, L.P., Kamo, S.L., Allen, C.M., et al., 2003.TEMORA 1:A New Zircon Standard for Phanerozoic U-Pb Geochronology.Chemical Geology, 200(1-2):155-170.https://doi.org/10.1016/s0009-2541(03)00165-7 doi: 10.1016/S0009-2541(03)00165-7 [5] Butler, J.P., Beaumont, C., 2017.Subduction Zone Decoupling/Retreat Modeling Explains South Tibet (Xigaze) and Other Supra-Subduction Zone Ophiolites and Their UHP Mineral Phases.Earth and Planetary Science Letters, 463:101-117. https://doi.org/10.1016/j.epsl.2017.01.025 [6] Cabanis, B., Lecolle, M., 1989.Le Diagramme La/10-Y/15-Nb/8:Un Outilpour La Discrimination des Séries Volcaniques et La Mise Enévidence Des Processus de Mélange et/ou de Contamination Crustale.Comptes Rendus de l'Académie des Sciences, Série Ⅱ, 309:2023-2029. [7] Coleman, R.G., 1977.Ophiolites:Ancient Oceanic Lithosphere.Springer-Verlag, Berlin. https://linkinghub.elsevier.com/retrieve/pii/0012825279901132 [8] Compston, W., Williams, I.S., Kirschvink, J.L., et al., 1992.Zircon U-Pb Ages for the Early Cambrian Time-Scale.Journal of the Geological Society, 149(2):171-184. https://doi.org/10.1144/gsjgs.149.2.0171 [9] Dai, J.G., Wang, C.S., Polat, A., et al., 2013.Rapid Forearc Spreading between 130 and 120 Ma:Evidence from Geochronology and Geochemistry of the Xigaze Ophiolite, Southern Tibet.Lithos, 172-173:1-16. https://doi.org/10.1016/j.lithos.2013.03.011 [10] Dai, J.G., Wang, C.S., Hébert, R., et al., 2011.Late Devonian OIB Alkaline Gabbro in the Yarlung Zangbo Suture Zone:Remnants of the Paleo-Tethys?Gondwana Research, 19(1):232-243. https://doi.org/10.1016/j.gr.2010.05.015 [11] Dilek, Y., Furnes, H., 2011.Ophiolite Genesis and Global Tectonics:Geochemical and Tectonic Fingerprinting of Ancient Oceanic Lithosphere.Geological Society of America Bulletin, 123(3-4):387-411.https://doi.org/10.1130/b30446.1 doi: 10.1130/B30446.1 [12] Dilek, Y., Furnes, H., 2014.Ophiolites and Their Origins.Elements, 10(2):93-100. https://doi.org/10.2113/gselements.10.2.93 [13] Furnes, H., Dilek, Y., 2017.Geochemical Characterization and Petrogenesis of Intermediate to Silicic Rocks in Ophiolites:A Global Synthesis.Earth-Science Reviews, 166:1-37. https://doi.org/10.1016/j.earscirev.2017.01.001 [14] Gribble, R.F., Stern, R.J., Newman, S., et al., 1998.Chemical and Isotopic Composition of Lavas from the Northern Mariana Trough:Implications for Magma Genesis in Back-Arc Basins.Journal of Petrology, 39(1):125-154. https://doi.org/10.1093/petroj/39.1.125 [15] Guilmette, C., Hébert, R., Dostal, J., et al., 2012.Discovery of a Dismembered Metamorphic Sole in the Saga Ophiolitic Mélange, South Tibet:Assessing an Early Cretaceous Disruption of the Neo-Tethyan Supra-Subduction Zone and Consequences on Basin Closing.Gondwana Research, 22(2):398-414. https://doi.org/10.1016/j.gr.2011.10.012 [16] Hébert, R., Bezard, R., Guilmette, C., et al., 2012.The Indus-Yarlung Zangbo Ophiolites from Nanga Parbat to Namche Barwa Syntaxes, Southern Tibet:First Synthesis of Petrology, Geochemistry, and Geochronology with Incidences on Geodynamic Reconstructions of Neo-Tethys.Gondwana Research, 22(2):377-397. https://doi.org/10.1016/j.gr.2011.10.013 [17] Hellebrand, E., 2002.Garnet-Field Melting and Late-Stage Refertilization in 'Residual' Abyssal Peridotites from the Central Indian Ridge.Journal of Petrology, 43(12):2305-2338. https://doi.org/10.1093/petrology/43.12.2305 [18] Huang, G.C., Xu, D.M., Lei, Y.J., et al., 2010.Characteristics and Geological Implications of Chert Associated with Ophiolite in Southwestern Tibet.Geology in China, 37(1):101-109 (in Chinese with English abstract). http://or.nsfc.gov.cn/bitstream/00001903-5/266436/1/1000014593461.pdf [19] Leng, Q.F., Tang, J.X., Zheng, W.B., et al., 2016.Geochronology, Geochemistry and Zircon Hf Isotopic Compositions of the Ore-Bearing Porphyry in the Lakang'e Porphyry Cu-Mo Deposit, Tibet.Earth Science, 41(6):999-1015 (in Chinese with English abstract). [20] Li, J.F., Xia, B., Liu, L.W., et al., 2008.SHRIMP U-Pb Zircon Dating of Diabase in the La'nga Co Ophiolite, Burang, Tibet, China, and Its Geological Significance.Geological Bulletin of China, 27(10):1739-1743 (in Chinese with English abstract). [21] Li, S.G., 1993.Ba-Nb-Th-La Diagrams Used to Identify Tectonic Environments of Ophiolite.Acta Petrologica Sinica, 9(2):146-157 (in Chinese with English abstract). http://www.ysxb.ac.cn/ysxb/ch/reader/view_abstract.aspx?pcid=3C5CA5E51F7D0F8A&jid=2013B5467E3054B1614CEC199353FCED&aid=77C0020DB5762141F511C9EAA2EFB584&yid=D418FDC97F7C2EBA&vid=9CF7A0430CBB2DFD&iid=0B39A22176CE99FB&eid=0B4F496D54044D86 [22] Liu, C.Z., Wu, F.Y., Wilde, S.A., et al., 2010.Anorthitic Plagioclase and Pargasitic Amphibole in Mantle Peridotites from the Yungbwa Ophiolite (Southwestern Tibetan Plateau) Formed by Hydrous Melt Metasomatism.Lithos, 114(3-4):413-422. https://doi.org/10.1016/j.lithos.2009.10.008 [23] Liu, F., Yang, J.S., Lian, D.Y., et al., 2015a.The Genesis and Tectonic Significance of Mafic Dikes in the Western Part of the Yarlung Zangbo Suture Zone, Tibet.Acta Geoscientica Sinica, 36(4):441-454 (in Chinese with English abstract). [24] Liu, F., Yang, J.S., Lian, D.Y., et al., 2015b.Genesis and Characteristics of the Western Part of the Yarlung Zangbo Ophiolites, Tibet.Acta Petrologica Sinica, 31(12):3609-3628 (in Chinese with English abstract). [25] Liu, Q., Deng, Y.B., Xiang, S.Y., et al., 2017.Early Ordovician Tectono-Thermal Event in Zhongba Terrane and Its Geological Significance.Earth Science, 42(6):881-890 (in Chinese with English abstract). doi: 10.1139/e11-076 [26] Liu, Z., Li, Y., Xiong, F.H., et al., 2011.Petrology and Geochronology of MOR Gabbro in the Purang Ophiolite of Western Tibet, China.Acta Petrologica Sinica, 27(11):3269-3279 (in Chinese with English abstract). [27] Ludwing, K.R., 2003.Isoplot:A Geochronological Toolkit for Microsoft Excel.Berkeley Geochronology Center, Special Publication, Berkeley. https://searchworks.stanford.edu/view/6739593 [28] Luhr, J.F., Haldar, D., 2006.Barren Island Volcano (NE Indian Ocean):Island-Arc High-Alumina Basalts Produced by Troctolite Contamination.Journal of Volcanology and Geothermal Research, 149(3-4):177-212. https://doi.org/10.1016/j.jvolgeores.2005.06.003 [29] Meschede, M., 1986.A Method of Discriminating between Different Types of Mid-Ocean Ridge Basalts and Continental Tholeiites with the Nb-Zr-Y Diagram.Chemical Geology, 56(3-4):207-218. https://doi.org/10.1016/0009-2541(86)90004-5 [30] Moores, E.M., Kellogg, L.H., Dilek, Y., 2000.Tethyan Ophiolites, Mantle Convection, and Tectonic "Historical Contingency":A Resolution of the "Ophiolite Conundrum".In:Dilek, Y., Moores, E.M., Elthon, D., et al., Ophiolites and Oceanic Crust:New Insights from Field Studies and the Ocean Drilling Program.Geological Society of America Special Paper, 349:3-12. https://pubs.geoscienceworld.org/books/book/501/chapter/3800505/Tethyan-ophiolites-mantle-convection-and-tectonic [31] Nicolas, A., Girardeau, J., Marcoux, J., et al., 1981.The Xigaze Ophiolite (Tibet):A Peculiar Oceanic Lithosphere.Nature, 294(5840):414-417. https://doi.org/10.1038/294414a0 [32] Pan, G.T., Chen, Z.L., Li, X.Z., et al., 1997.Geological and Tectonic Evolution in the Eastern Tethys.Geological Publishing House, Beijing (in Chinese). doi: 10.1002/tect.20013 [33] Pearce, J.A., 2008.Geochemical Fingerprinting of Oceanic Basalts with Applications to Ophiolite Classification and the Search for Archean Oceanic Crust.Lithos, 100(1-4):14-48. https://doi.org/10.1016/j.lithos.2007.06.016 [34] Pearce, J.A., 2014.Immobile Element Fingerprinting of Ophiolites.Elements, 10(2):101-108. https://doi.org/10.2113/gselements.10.2.101 [35] Pearce, J.A., Cann, J.R., 1973.Tectonic Setting of Basic Volcanic Rocks Determined Using Trace Element Analyses.Earth and Planetary Science Letters, 19(2):290-300.https://doi.org/10.1016/0012-821x(73)90129-5 doi: 10.1016/0012-821X(73)90129-5 [36] Pearce, N.J.G., Perkins, W.T., Westgate, J.A., et al., 1997.A Compilation of New and Published Major and Trace Element Data for NIST SRM 610 and NIST SRM 612 Glass Reference Materials.Geostandards and Geoanalytical Research, 21(1):115-144.https://doi.org/10.1111/j.1751-908x.1997.tb00538.x doi: 10.1111/ggr.1997.21.issue-1 [37] Qi, L., Grégoire, D.C., 2000.Determination of Trace Elements in Twenty Six Chinese Geochemistry Reference Materials by Inductively Coupled Plasma-Mass Spectrometry.Geostandards and Geoanalytical Research, 24(1):51-63.https://doi.org/10.1111/j.1751-908x.2000.tb00586.x doi: 10.1111/ggr.2000.24.issue-1 [38] Reagan, M.K., Ishizuka, O., Stern, R.J., et al., 2010.Fore-Arc Basalts and Subduction Initiation in the Izu-Bonin-Mariana System.Geochemistry, Geophysics, Geosystems, 11(3):427-428.https://doi.org/10.1029/2009gc002871 doi: 10.1029/2009GC002871/references [39] Saccani, E., 2015.A New Method of Discriminating Different Types of Post-Archean Ophiolitic Basalts and Their Tectonic Significance Using Th-Nb and Ce-Dy-Yb Systematics.Geoscience Frontiers, 6(4):481-501. https://doi.org/10.1016/j.gsf.2014.03.006 [40] Saccani, E., Principi, G., Garfagnoli, F., et al., 2008.Corsica Ophiolites:Geochemistry and Petrogenesis of Basaltic and Metabasaltic Rocks.Ofioliti, 33:187-207. https://www.researchgate.net/profile/Emilio_Saccani/publication/282643330_Corsica_ophiolites_Geochemistry_and_petrogenesis_of_basaltic_and_metabasaltic_rocks/links/5615194208aed47facefab85.pdf?origin=publication_detail [41] Schilling, J.G., Zajac, M., Evans, R., et al., 1983.Petrologic and Geochemical Variations along the Mid-Atlantic Ridge from 29 Degrees N to 73 Degrees N.American Journal of Science, 283(6):510-586. https://doi.org/10.2475/ajs.283.6.510 [42] Shervais, J.W., 1982.Ti-V Plots and the Petrogenesis of Modern and Ophiolitic Lavas.Earth and Planetary Science Letters, 59(1):101-118.https://doi.org/10.1016/0012-821x(82)90120-0 doi: 10.1016/0012-821X(82)90120-0 [43] Simon, L.H., Nigel, M.K., 2007.Zircon:Tiny but Timely.Elements, 3(1):13-18. https://doi.org/10.2113/gselements.3.1.13 [44] Singer, B.S., Jicha, B.R., Harper, M.A., et al., 2008.Eruptive History, Geochronology, and Magmatic Evolution of the Puyehue-Cordon Caulle Volcanic Complex, Chile.Geological Society of America Bulletin, 120(5-6):599-618.https://doi.org/10.1130/b26276.1 doi: 10.1130/B26276.1 [45] Stern, R.J., Reagan, M., Ishizuka, O., et al., 2012.To Understand Subduction Initiation, Study Forearc Crust:To Understand Forearc Crust, Study Ophiolites.Lithosphere, 4(6):469-483.https://doi.org/10.1130/l183.1 doi: 10.1130/L183.1 [46] Sun, S.S., McDonough, W.F., 1989.Chemical and Isotopic Systematics of Oceanic Basalts:Implications for Mantle Composition and Processes.Geological Society, London, Special Publications, 42(1):313-345.https://doi.org/10.1144/gsl.sp.1989.042.01.19 doi: 10.1144/GSL.SP.1989.042.01.19 [47] Tian, L.Y., Castillo, P.R., Hawkins, J.W., et al., 2008.Major and Trace Element and Sr-Nd Isotope Signatures of Lavas from the Central Lau Basin:Implications for the Nature and Influence of Subduction Components in the Back-Arc Mantle.Journal of Volcanology and Geothermal Research, 178(4):657-670. https://doi.org/10.1016/j.jvolgeores.2008.06.039 [48] Wilkinson, J.F.G., 1982.The Genesis of Mid-Ocean Ridge Basalt.Earth-Science Reviews, 18(1):1-57. https://doi.org/10.1016/0012-8252(82)90002-2 [49] Winchester, J.A., Floyd, P.A., 1976.Geochemical Magma Type Discrimination:Application to Altered and Metamorphosed Basic Igneous Rocks.Earth and Planetary Science Letters, 28(3):459-469.https://doi.org/10.1016/0012-821x(76)90207-7 doi: 10.1016/0012-821X(76)90207-7 [50] Winchester, J.A., Floyd, P.A., 1977.Geochemical Discrimination of Different Magma Series and Their Differentiation Products Using Immobile Elements.Chemical Geology, 20:325-343. https://doi.org/10.1016/0009-2541(77)90057-2 [51] Wu, F.Y., Liu, C.Z., Zhang, L.L., et al., 2014.Yarlung Zangbo Ophiolite:A Critical Updated View.Acta Petrologica Sinica, 30(2):293-325 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-YSXB201402001.htm [52] Xia, B., Li, J.F., Liu, L.W., et al., 2008.SHRIMP U-Pb Dating for Diabase in Sangsang Ophiolite, Xizang, China:Geochronological Constraint for Development of Eastern Tethys Basin.Geochimica, 37(4):399-403 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-DZLP200602012.htm [53] Xiong, Q., Griffin, W.L., Zheng, J.P., et al., 2016.Southward Trench Migration at 130-120 Ma Caused Accretion of the Neo-Tethyan Forearc Lithosphere in Tibetan Ophiolites.Earth and Planetary Science Letters, 438:57-65. https://doi.org/10.1016/j.epsl.2016.01.014 [54] Xiong, F.H., Yang, J.S., Liang, F.H., et al., 2011.Zircon U-Pb Ages of the Dongbo Ophiolite in the Western Yarlung Zangbo Suture Zone and Their Geological Significance.Acta Petrologica Sinica, 27(11):3223-3238 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-YSXB201111006.htm [55] Xu, Z.Q., Yang, J.S., Hou, Z.Q., et al., 2016.The Progress in the Study of Continental Dynamics of the Tibetan Plateau.Geology in China, 43(1):1-42 (in Chinese with English abstract). [56] Yang, J.S., Dobrzhinetskaya, L., Bai, W.J., et al., 2007.Diamond-and Coesite-Bearing Chromitites from the Luobusa Ophiolite, Tibet.Geology, 35(10):875.https://doi.org/10.1130/g23766a.1 doi: 10.1130/G23766A.1 [57] Yin, A., Harrison, T.M., 2000.Geologic Evolution of the Himalayan-Tibetan Orogen.Annual Review of Earth and Planetary Sciences, 28(1):211-280. https://doi.org/10.1146/annurev.earth.28.1.211 [58] Yuan, H.L., Gao, S., Liu, X.M., et al., 2004.Accurate U-Pb Age and Trace Element Determinations of Zircon by Laser Ablation-Inductively Coupled Plasma-Mass Spectrometry.Geostandards and Geoanalytical Research, 28(3):353-370.https://doi.org/10.1111/j.1751-908x.2004.tb00755.x doi: 10.1111/ggr.2004.28.issue-3 [59] Zhang, K.J., Xia, B., Zhang, Y.X., et al., 2014.Central Tibetan Meso-Tethyan Oceanic Plateau.Lithos, 210-211:278-288. https://doi.org/10.1016/j.lithos.2014.09.004 [60] Zhang, K.J., Zhang, Y.X., Tang, X.C., et al., 2012.Late Mesozoic Tectonic Evolution and Growth of the Tibetan Plateau Prior to the Indo-Asian Collision.Earth-Science Reviews, 114(3-4):236-249. https://doi.org/10.1016/j.earscirev.2012.06.001 [61] Zhang, Q., Zhou, G.Q., 2001.The Ophilite of China.Science Press, Beijing (in Chinese). [62] Zhang, Z., Song, J.L., Tang, J.X., et al., 2017.Petrogenesis, Diagenesis and Mineralization Ages of Galale Cu-Au Deposit, Tibet:Zircon U-Pb Age, Hf Isotopic Composition and Molybdenite Re-Os Dating.Earth Science, 42(6):862-880 (in Chinese with English abstract). [63] Zheng, H., Huang, Q.T., Kapsiotis, A., et al., 2017.Early Cretaceous Ophiolites of the Yarlung Zangbo Suture Zone:Insights from Dolerites and Peridotites from the Baer Upper Mantle Suite, SW Tibet (China).International Geology Review, 59(11):1471-1489. https://doi.org/10.1080/00206814.2016.1276867 [64] 黄圭成, 徐德明, 雷义均, 等, 2010.西藏西南部与蛇绿岩伴生的硅质岩特征及地质意义.中国地质, 37(1):101-109. http://kns.cnki.net/KCMS/detail/detail.aspx?filename=dizi201001014&dbname=CJFD&dbcode=CJFQ [65] 冷秋锋, 唐菊兴, 郑文宝, 等, 2016.西藏拉抗俄斑岩Cu-Mo矿床含矿斑岩地球化学、锆石U-Pb年代学及Hf同位素组成.地球科学, 41(6):999-1015. http://www.earth-science.net/WebPage/Article.aspx?id=3312 [66] 李建峰, 夏斌, 刘立文, 等, 2008.西藏普兰地区拉昂错蛇绿岩中辉绿岩的锆石SHRIMP U-Pb年龄及其地质意义.地质通报, 27(10):1739-1743. doi: 10.3969/j.issn.1671-2552.2008.10.016 [67] 李曙光, 1993.蛇绿岩生成构造环境的Ba-Th-Nb-La判别图.岩石学报, 9(2):146-157. http://www.ysxb.ac.cn/ysxb/ch/reader/view_abstract.aspx?pcid=3C5CA5E51F7D0F8A&jid=2013B5467E3054B1614CEC199353FCED&aid=77C0020DB5762141F511C9EAA2EFB584&yid=D418FDC97F7C2EBA&vid=9CF7A0430CBB2DFD&iid=0B39A22176CE99FB&eid=0B4F496D54044D86 [68] 刘飞, 杨经绥, 连东洋, 等, 2015a.雅鲁藏布江缝合带西段北亚带的基性岩成因和构造意义.地球学报, 36(4):441-454. http://www.cqvip.com/QK/98325X/201504/665698151.html [69] 刘飞, 杨经绥, 连东洋, 等, 2015b.西藏雅鲁藏布江缝合带西段南北亚带蛇绿岩的成因探讨.岩石学报, 31(12):3609-3628. http://kns.cnki.net/KCMS/detail/detail.aspx?filename=ysxb201512008&dbname=CJFD&dbcode=CJFQ [70] 刘强, 邓玉彪, 向树元, 等, 2017.藏南仲巴地体早奥陶世构造-热事件及其地质意义.地球科学, 42(6):881-890. http://www.earth-science.net/WebPage/Article.aspx?id=3585 [71] 刘钊, 李源, 熊发挥, 等, 2011.西藏西部普兰蛇绿岩中的MOR型辉长岩:岩石学和年代学.岩石学报, 27(11):3269-3279. http://kns.cnki.net/KCMS/detail/detail.aspx?filename=ysxb201111009&dbname=CJFD&dbcode=CJFQ [72] 潘桂棠, 陈智梁, 李兴振, 等, 1997.东特提斯地质构造形成演化.北京:地质出版社. [73] 吴福元, 刘传周, 张亮亮, 等, 2014.雅鲁藏布蛇绿岩—事实与臆想.岩石学报, 30(2):293-325. http://www.ysxb.ac.cn/ysxb/ch/reader/create_pdf.aspx?file_no=20140201&journal_id=ysxb&year_id=2014 [74] 夏斌, 李建峰, 刘立文, 等, 2008.西藏桑桑蛇绿岩辉绿岩SHRIMP锆石U-Pb年龄:对特提斯洋盆发育的年代学制约.地球化学, 37(4):399-403. http://kns.cnki.net/KCMS/detail/detail.aspx?filename=dqhx200804012&dbname=CJFD&dbcode=CJFQ [75] 熊发挥, 杨经绥, 梁凤华, 等, 2011.西藏雅鲁藏布江缝合带西段东波蛇绿岩中锆石U-Pb定年及地质意义.岩石学报, 27(11):3223-3238. http://kns.cnki.net/KCMS/detail/detail.aspx?filename=ysxb201111006&dbname=CJFD&dbcode=CJFQ [76] 许志琴, 杨经绥, 侯增谦, 等, 2016.青藏高原大陆动力学研究若干进展.中国地质, 43(1):1-42. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=zgdizhi201601001 [77] 张旗, 周国庆, 2001.中国蛇绿岩.北京:科学出版社. [78] 张志, 宋俊龙, 唐菊兴, 等, 2017.西藏嘎拉勒铜金矿床的成岩成矿时代与岩石成因:锆石U-Pb年龄、Hf同位素组成及辉钼矿Re-Os定年.地球科学, 42(6):862-880. http://www.earth-science.net/WebPage/Article.aspx?id=3584