Dongbo MORB-Type Isotropic Gabbro Emplaced as an Oceanic Core Complex in Western Yarlung Zangbo Suture Zone, Tibet
-
摘要: 为解决雅鲁藏布江缝合带西段南带中数个大型超镁铁岩体的成因问题,对南带西段约400 km2的东波蛇绿岩开展区域地质填图,研究蛇绿岩岩石组合和构造性质及西北缘均质辉长岩年代学和成因.研究表明,东波蛇绿岩以地幔橄榄岩、薄层洋壳和周缘出露大面积晚侏罗世-早白垩世残余海山为特征,地幔橄榄岩中发育大量拆离、韧性剪切和正断层及糜棱岩和糜棱岩化蛇纹岩和蛇绿角砾岩;均质辉长岩的锆石普遍受到流体交代,锆石U-Pb年龄为129.0±1.8 Ma,地球化学具有低Si、K、P、Fe和Ti,高Ca和Mg,N-MORB型的稀土配分特征及明显的Th、Nb、Sr和Pb负异常.认为均质辉长岩形成于慢速-超慢速大洋扩张阶段,在大洋核杂岩沿拆离断层侵位过程中形成.Abstract: The tectonic setting and genesis of the ophiolites in the southern belt (SB) of the western Yarlung Zangbo ophiolitic belt are still controversial.They occur much larger peridotite massifs in contrast with those in the northern belt that are made discontinuously of lensoidal ophiolitic bodies in serpentinite matrix mélanges. The Dongbo ophiolite in the SB has been investigated and mapped, especially a 1 002.06 m dominant peridotite core has been drilled in the northwestern margin in 2015. Geochemical and geochronological (U-Pb zircon age) data from isotropic gabbros are presented in this paper. Dongbo ophiolite consists dominantly of harzburgite, minor dunite and mafic intrusions, associated with thin oceanic crust.Dismembered Late Juarassic to Early Cretaceous volcanic-sedimentary sequences of seamounts overlie the peridotites in the margins.Detachment and ductile shear faults, mylonite and mylonitic serpentinite and ophiolitic breccia are found in the mantle peridotites. In-situ LA-ICP-MS analysis of zircon grains from isotropic gabbros yields 129.0±1.8 Ma.The geochemical data of these gabbros are characterized by low Si, K, P, Fe, Ti and high Ca, Mg, showing N-MORB-like chondrite-normalized REE patterns and remarkable Th, Nb, Sr and Pb negative anomalies in N-MORB normalized spider diagrams. It is proposed that part of Dongbo peridotite and isotropic gabbro formed in a slow-spreading mid-ocean ridge which exhumed along detachment faults as an oceanic core complex.
-
Key words:
- Tibet /
- Yarlung Zangbo suture zone /
- Dongbo ophiolite /
- zircon U-Pb age /
- geochemistry /
- oceanic core complex
-
图 1 西藏雅鲁藏布江缝合带(YZSZ)在东特提斯-喜马拉雅-缅马造山带中的位置(a)和西藏南部区域地质简图和YZSZ蛇绿岩分布(b)
图a据Jagoutz et al.(2015)修改;图b据Xu et al.(2015)修改.GCT.大反冲逆冲断裂;GT.冈底斯逆冲断层;KKF.喀喇昆仑断裂;MBT.主边界逆冲断裂;MCT.主中央逆冲断裂;MFT.主前缘逆冲断裂;NB.南迦巴瓦构造结;NP.南迦帕尔特构造结;STD.藏南拆离系
Fig. 1. Location of the Yarlung Zangbo suture zone (YZSZ), Tibet in the eastern Mediteranian-Ximalaya-Myanma orogenic belt (a), and simplified geological map of southern Tibet showing the locations of all the ophiolitic massifs in the YZSZ (b)
图 3 雅鲁藏布江缝合带西段南带东波蛇绿岩地质简图
样品L190(辉长岩,坐标N31°04′26.50″,E80°11′14.40″)和L178(辉石岩,N31°02′16.30″,E80°17′44.60″)熊发挥等(2011);样品GCT329(粗粒辉长岩,N31°02′16.69″,E80°17′44.59″)引自Chan et al.(2015).白色五角星为文献样品,黄色五角星为本文样品
Fig. 3. Geological map of the Dongbo ophiolite in the southern belt of the western Yarlung Zangbo suture zone
图 7 东波均质辉长岩全岩化学成分谐变图解
辉长岩脉熊发挥等(2011);西南印度洋Seg 27玄武岩和高铝玄武岩引自Yang et al.(2017)
Fig. 7. Selected chemical variation diagrams of isotropic gabbro samples from the Dongbo ophiolite
图 8 东波蛇绿岩中基性岩脉球粒陨石和N-MORB标准化图解
东波辉石岩脉和辉长岩脉,据熊发挥等(2011);YZSZ西段北带错布扎蛇绿岩中辉绿岩脉,据刘飞等(2015b);BAB.全球弧后玄武岩平均值;MORB.全球洋中脊玄武岩平均值(包括MORB, N-MORB, MORB+BAB三条线),据Gale et al.(2013);Mariana FAB-D.马里亚纳弧前玄武质岩脉,据Reagan et al.(2010);Lau-IAT.Lau洋脊岛弧拉斑玄武岩, 据Hergt and Woodhead(2007);西南印度洋洋脊Seg 27玄武岩和高铝玄武岩,据Yang et al.(2017);西南印度洋洋脊龙骨玄武岩,据Gao et al.(2016);N-MORB和球粒陨石,据Sun and McDonough(1989)
Fig. 8. Chondrite-normalized REE patterns and N-MORB normalized spider diagrams for the Dongbo gabbros
图 10 球粒陨石标准化的Ce/Yb-Dy/Yb图解(a)和La/Sm-Sm/Yb图解(b)
图a据Saccani(2015);图b中曲线和数字分别为非模式熔融模拟曲线和熔融程度(%),据Aldanmaz et al.(2000).N-MORB.正常洋中脊玄武岩;G-MORB.源自石榴石相的洋中脊玄武岩;E-MORB.富集洋中脊玄武岩;DMM.亏损MORB地幔;EM.西安那托利亚富集地幔;PM.初始地幔.N代表球粒陨石标准化,据Sun and McDonough(1989);东波辉长岩脉数据熊发挥等(2011)
Fig. 10. Isotropic gabbro samples on the chondrite-normalized (Dy/Yb) versus (Ce/Yb) diagram used for discriminating between G-MORB and N-MORB (a) and La/Sm-Sm/Yb diagram (b)
图 11 东波均质辉长岩的构造判别图解
图a据Pearce(2003);图b据引自Pearce(2014);图c和图d引自Saccani(2015).辉石岩脉和辉长岩脉熊发挥等(2011).AB.碱性玄武岩;BBAB.弧后盆地玄武岩;D/N/G-MORB.亏损/正常/石榴石相-洋中脊玄武岩;WPB.板内玄武岩
Fig. 11. Tectonic discrimination diagrams for the Dongbo isotropic gabbros
表 1 东波蛇绿岩中均质辉长岩主量元素(%)和微量元素(10-6)含量
Table 1. Major (%) and trace element (10-6) compositions of isotropic gabbros from the Dongbo ophiolite in the western YZSZ, Tibet
样品号 均质辉长岩 辉石岩脉 辉长岩脉 13YL45-1 13YL45-2 13YL45-3 13YL45-4 13YL45-5 13YL45-7 13YL45-8 13YL45-9 L-178-3* L-190-2* SiO2 45.62 45.72 45.59 45.59 45.94 46.18 45.04 45.81 53.65 49.54 TiO2 1.08 1.07 0.91 1.00 0.98 0.91 1.03 1.05 0.10 0.94 Al2O3 13.72 13.53 13.59 12.98 14.07 14.02 14.70 13.46 3.03 15.66 Fe2O3 1.61 0.99 1.36 1.51 1.21 1.02 1.42 1.58 7.94 2.10 FeO 6.53 6.91 5.71 6.28 6.18 6.00 6.29 6.26 6.80 6.80 MnO 0.16 0.17 0.16 0.18 0.15 0.16 0.15 0.17 0.15 0.15 MgO 8.48 8.47 9.81 9.50 7.48 7.87 7.97 8.67 25.37 7.35 CaO 18.55 18.62 18.26 18.16 19.63 19.62 19.03 18.51 7.63 10.9 Na2O 0.32 0.33 0.32 0.34 0.32 0.29 0.28 0.34 0.09 3.29 K2O 0.07 0.08 0.07 0.07 0.07 0.08 0.07 0.09 0.02 0.09 P2O5 0.09 0.09 0.08 0.08 0.08 0.07 0.09 0.09 0.05 0.07 CO2 0.15 0.13 0.13 0.19 0.16 0.28 0.14 0.19 H2O+ 3.76 3.91 4.03 3.90 3.56 3.54 4.11 3.86 LOI 3.17 3.09 3.52 3.26 3.00 3.27 3.59 3.29 0.10 1.98 Total 100.14 100.02 100.02 99.79 99.84 100.04 100.32 100.07 98.36 98.68 FeOT 7.98 7.80 6.93 7.64 7.27 6.92 7.57 7.68 13.94 8.69 Mg# 65.67 66.15 71.80 69.12 64.94 67.19 65.47 67.01 76.61 60.36 M 70.04 68.81 75.56 73.14 68.54 70.25 69.52 71.37 87.04 66.05 Sc 35.10 33.50 30.80 33.60 31.60 31.20 32.60 33.40 Ti 6 806.00 6 353.00 5 547.00 6 201.00 6 149.00 5 740.00 6 276.00 6 672.00 Cr 154.00 150.00 185.00 184.00 155.00 177.00 167.00 154.00 V 226.00 215.00 189.00 211.00 205.00 193.00 208.00 232.00 305.00 210.00 Ni 59.90 58.00 61.50 61.70 58.10 61.20 58.90 56.30 Co 38.40 35.60 34.20 35.30 36.00 34.50 36.10 36.90 Cu 55.40 60.50 43.30 44.40 40.20 20.50 53.10 40.40 Zn 66.60 60.80 55.60 62.20 60.40 50.80 58.00 59.30 Ga 13.30 11.90 12.00 11.60 13.90 14.60 11.60 12.80 Mn 1 197.00 1 201.00 1 166.00 1 271.00 1 164.00 1 187.00 1 045.00 1 291.00 Mo 0.26 0.14 0.15 0.25 0.17 0.26 0.10 0.17 Pb 0.16 0.22 0.14 0.32 0.29 0.18 0.20 0.19 Rb 0.45 0.44 1.66 0.95 0.87 0.88 0.70 0.77 0.20 0.90 Sr 48.40 45.30 45.10 42.10 47.80 40.20 52.10 47.70 160.00 121.00 Y 25.00 23.40 19.70 21.40 21.10 19.60 21.20 22.80 23.20 19.60 Zr 71.20 74.50 63.10 66.10 68.30 59.80 69.70 71.90 Nb 0.92 0.87 0.83 0.81 0.90 0.84 0.86 0.96 0.50 0.70 Ba 17.40 13.30 21.60 11.60 6.15 10.40 11.70 10.60 1.70 7.50 La 2.13 2.00 1.94 1.87 1.98 1.89 2.06 2.16 1.00 1.80 Ce 6.81 6.95 6.16 6.44 6.49 6.08 6.85 6.95 3.90 5.70 Pr 1.24 1.27 1.10 1.18 1.18 1.09 1.24 1.31 0.87 1.04 Nd 7.58 7.43 6.62 6.79 7.25 6.39 7.32 7.08 5.40 5.80 Sm 2.43 2.41 2.17 2.35 2.31 2.07 2.40 2.41 2.37 2.03 Eu 1.02 0.95 0.88 0.88 0.92 0.86 0.94 1.03 0.85 0.92 Gd 3.37 3.32 2.77 3.15 2.90 2.97 3.25 3.19 3.20 2.86 Tb 0.56 0.58 0.47 0.53 0.51 0.47 0.54 0.56 0.66 0.56 Dy 3.96 3.92 3.37 3.70 3.52 3.35 3.85 3.91 4.29 3.77 Ho 0.82 0.87 0.71 0.77 0.77 0.72 0.83 0.82 0.95 0.81 Er 2.49 2.42 2.12 2.32 2.32 2.05 2.41 2.41 2.84 2.42 Tm 0.36 0.38 0.32 0.35 0.32 0.32 0.34 0.36 0.40 0.34 Yb 2.40 2.41 2.01 2.15 2.17 1.98 2.33 2.38 2.52 2.22 Lu 0.34 0.37 0.31 0.34 0.33 0.31 0.35 0.36 0.39 0.33 Hf 2.15 2.20 1.82 2.00 2.04 1.69 2.05 2.14 1.10 1.70 Ta 0.16 0.17 0.15 0.13 0.17 0.18 0.15 0.16 0.09 0.09 Th 0.09 0.08 0.11 0.09 0.09 0.09 0.10 0.10 0.05 0.07 注:*熊发挥等(2011). 表 2 东波蛇绿岩中均质辉长岩(样品13YL45-13)LA-ICP-MS锆石U-Pb定年结果
Table 2. LA-ICP-MS zircon U-Pb isotopic data for an isotropic gabbro (sample 13YL45-13) from the Dongbo ophiolite
测试点 普通206Pb*(10-6) 放射性206Pb(10-6) 元素(10-6) Th/U 同位素比值 年龄结果(Ma) U Th 207Pb/206Pb ±1σ 207Pb/235U ±1σ 206Pb/238U ±1σ 206Pb/238U* ±1σ 13YL-45-13-1 11.02 21.55 536.45 1 062.71 1.98 0.165 07 0.013 01 0.474 68 0.044 34 0.020 86 0.000 60 133.0 4.0 13YL-45-13-4 6.57 10.74 321.14 527.06 1.64 0.078 49 0.009 65 0.227 78 0.029 97 0.021 05 0.000 61 134.0 4.0 13YL-45-13-5 9.99 19.75 524.28 1 632.49 3.11 0.048 13 0.003 63 0.128 22 0.010 16 0.019 32 0.000 46 123.0 3.0 13YL-45-13-10 8.28 13.29 418.22 783.01 1.87 0.051 12 0.004 96 0.142 30 0.014 00 0.020 19 0.000 58 129.0 4.0 13YL-45-13-12 8.78 12.67 439.39 441.28 1.00 0.045 58 0.006 48 0.127 93 0.018 41 0.020 36 0.000 61 130.0 4.0 13YL-45-13-13 16.11 26.40 812.55 1 309.55 1.61 0.069 84 0.005 49 0.193 49 0.016 91 0.020 09 0.000 54 128.0 3.0 13YL-45-13-14 4.47 7.09 210.48 351.05 1.67 0.039 89 0.006 94 0.120 49 0.020 28 0.021 90 0.000 70 140.0 4.0 13YL-45-13-15 12.18 26.14 619.90 1 787.98 2.88 0.148 87 0.012 12 0.405 19 0.033 53 0.019 74 0.000 54 126.0 3.0 13YL-45-13-16 10.92 17.68 534.69 808.60 1.51 0.070 03 0.007 59 0.198 93 0.024 23 0.020 60 0.000 56 131.0 4.0 13YL-45-13-19 6.39 12.26 323.97 894.78 2.76 0.046 38 0.009 00 0.126 49 0.023 88 0.019 78 0.000 68 126.0 4.0 13YL-45-13-20 7.40 11.13 369.67 567.69 1.54 0.047 19 0.006 75 0.133 48 0.019 68 0.020 52 0.000 62 131.0 4.0 13YL-45-13-21 8.52 14.19 437.10 767.41 1.76 0.068 76 0.008 25 0.187 93 0.023 18 0.019 82 0.000 64 127.0 4.0 13YL-45-13-22 6.12 10.55 316.77 587.04 1.85 0.067 14 0.010 41 0.181 76 0.033 20 0.019 63 0.000 65 125.0 4.0 13YL-45-13-23 5.47 7.44 263.04 245.45 0.93 0.048 81 0.007 05 0.141 92 0.021 24 0.021 09 0.000 64 135.0 4.0 13YL-45-13-24 10.92 16.73 524.09 753.93 1.44 0.041 20 0.004 34 0.118 80 0.013 23 0.020 91 0.000 54 133.0 3.0 13YL-45-13-26 4.83 9.32 230.79 624.35 2.71 0.042 00 0.005 78 0.123 78 0.017 45 0.021 38 0.000 63 136.0 4.0 13YL-45-13-27 2.70 5.54 138.01 439.49 3.18 0.051 29 0.008 77 0.140 46 0.024 05 0.019 86 0.000 69 127.0 4.0 13YL-45-13-29 7.86 16.65 378.64 1 364.15 3.60 0.046 79 0.006 77 0.135 85 0.018 87 0.021 06 0.000 60 134.0 4.0 13YL-45-13-30 5.97 13.16 294.78 1 145.82 3.89 0.052 56 0.006 09 0.149 59 0.017 64 0.020 64 0.000 58 132.0 4.0 13YL-45-13-31 3.22 6.75 157.42 522.97 3.32 0.049 19 0.007 10 0.140 84 0.021 57 0.0207 6 0.000 64 132.0 4.0 13YL-45-13-32 6.22 12.75 317.55 1 024.59 3.23 0.051 26 0.006 48 0.139 63 0.018 06 0.01975 0.000 57 126.0 4.0 注:*由测定的204Pb计算. -
[1] Aldanmaz, E., Pearce, J.A., Thirlwall, M.F., et al., 2000.Petrogenetic Evolution of Late Cenozoic, Post-Collision Volcanism in Western Anatolia, Turkey.Journal of Volcanology and Geothermal Research, 102(1-2):67-95.https://doi.org/10.1016/s0377-0273(00)00182-7 doi: 10.1016/S0377-0273(00)00182-7 [2] Andersen, T., 2002.Correction of Common Lead in U-Pb Analyses That do not Report 204Pb.Chemical Geology, 192(1-2):59-79.https://doi.org/10.1016/s0009-2541(02)00195-x doi: 10.1016/S0009-2541(02)00195-X [3] Ao, S.J., Xiao, W.J., Yang, L., et al., 2017.The Typical Characteristics and Tectonic Implications of Fossil Oceanic Core Complex(OCC)in Orogenic Belt.Scientia Sinica Terrae, 47(1):1-22 (in Chinese). doi: 10.1360/N072016-00213 [4] Baier, J., Audétat, A., Keppler, H., 2008.The Origin of the Negative Niobium Tantalum Anomaly in Subduction Zone Magmas.Earth and Planetary Science Letters, 267(S1-2):290-300.https://doi.org/10.1016/j.epsl.2007.11.032 https://www.sciencedirect.com/science/article/pii/S0012821X07007790 [5] Bao, P.S., Su, L., Wang, J., et al., 2013.Study on the Tectonic Setting for the Ophiolites in Xigaze, Tibet.Acta Geologica Sinica (English Edition), 87(2):395-425.https://doi.org/10.1111/1755-6724.12058 doi: 10.1111/acgs.2013.87.issue-2 [6] Bao, P.S., Su, L., Wang, J., et al., 2014.Origin of the Zedang and Luobusa Ophiolites, Tibet.Acta Geologica Sinica (English Edition), 88(2):669-698.https://doi.org/10.1111/1755-6724.12222 doi: 10.1111/acgs.2014.88.issue-2 [7] Bezard, R., Hébert, R., Wang, C.S., et al., 2011.Petrology and Geochemistry of the Xiugugabu Ophiolitic Massif, Western Yarlung Zangbo Suture Zone, Tibet.Lithos, 125(1-2):347-367. https://doi.org/10.1016/j.lithos.2011.02.019 [8] Bryant, C.J., Arculus, R.J., Eggins, S.M., 2013.The Geochemical Evolution of the Izu-Bonin Arc System:A Perspective from Tephras Recovered by Deep-Sea Drilling.Geochemistry, Geophysics, Geosystems, 4(11):1-37.https://doi.org/10.1029/2002gc000427 doi: 10.1029/2002GC000427 [9] Cai, F.L, Ding, L., Laskowski, A.K., et al., 2016.Late Triassic Paleogeographic Reconstruction along the Neo-Tethyan Ocean Margins, Southern Tibet.Earth and Planetary Science Letters, 435:105-114. https://doi.org/10.1016/j.epsl.2015.12.027 [10] Canales, J.P., 2010.Small-Scale Structure of the Kane Oceanic Core Complex, Mid-Atlantic Ridge 23°30'N, from Wave Form Tomography of Multichannel Seismic Data.Geophysical Research Letters, 37(21):1-6.https://doi.org/10.1029/2010gl044412 doi: 10.1029/2010GL044412 [11] Chan, G.H.N., Aitchison, J.C., Crowley, Q.G., et al., 2015.U-Pb Zircon Ages for Yarlung Tsangpo Suture Zone Ophiolites, Southwestern Tibet and Their Tectonic Implications.Gondwana Research, 27(2):719-732. https://doi.org/10.1016/j.gr.2013.06.016 [12] Condie, K.C., 2003.Incompatible Element Ratios in Oceanic Basalts and Komatiites:Tracking Deep Mantle Sources and Continental Growth Rates with Time.Geochemistry, Geophysics, Geosystems, 4(1):1-28.https://doi.org/10.1029/2002gc000333 doi: 10.1029/2002GC000333 [13] Dai, J.G., Wang, C.S., Hébert, R., et al., 2011.Petrology and Geochemistry of Peridotites in the Zhongba Ophiolite, Yarlung Zangbo Suture Zone:Implications for the Early Cretaceous Intra-Oceanic Subduction Zone within the Neo-Tethys.Chemical Geology, 288(3-4):133-148. https://doi.org/10.1016/j.chemgeo.2011.07.011 [14] Dai, J.G., Wang, C.S., Li Y.L., 2012.Relicts of the Early Cretaceous Seamounts in the Central-Western Yarlung Zangbo Suture Zone, Southern Tibet.Journal of Asian Earth Sciences, 53:25-37. https://doi.org/10.1016/j.jseaes.2011.12.024 [15] Dai, J.G., Wang, C.S., Polat, A., et al., 2013.Rapid Forearc Spreading between 130 and 120 Ma:Evidence from Geochronology and Geochemistry of the Xigaze Ophiolite, Southern Tibet.Lithos, 172-173(4):1-16.https://doi.org/10.1016/j.lithos.2013.03.011 [16] Deng, J.F., Liu, C., Feng, Y.F., et al., 2015.On the Correct Application in the Common Igneous Petrological Diagrams:Discussion and Suggestion.Geological Review, 61(4):717-734 (in Chinese with English abstract). doi: 10.1007/s00410-016-1292-2 [17] Dilek, Y., 2016.Compositions & Melt Evolution of Upper Mantle Peridotites in the Tethyan Ophiolites.Acta Geologica Sinica (English Edition), 90(Suppl.1):211.https://doi.org/10.1111/1755-6724.12981 doi: 10.1021/la501406w [18] Dilek, Y., Furnes, H., 2011.Ophiolite Genesis and Global Tectonics:Geochemical and Tectonic Fingerprinting of Ancient Oceanic Lithosphere.Geological Society of America Bulletin, 123(3-4):387-411.https://doi.org/10.1130/b30446.1 doi: 10.1130/B30446.1 [19] Dilek, Y., Furnes, H., 2014.Ophiolites and Their Origins.Elements, 10(2):93-100. https://doi.org/10.2113/gselements.10.2.93 [20] Dilek, Y., Shallo, M., Furnes, H., 2005.Rift-Drift, Seafloor Spreading, and Subduction Tectonics of Albanian Ophiolites.International Geology Review, 47(2):147-176. https://doi.org/10.2747/0020-6814.47.2.147 [21] Elliott, T., Plank, T., Zindler, A., et al., 1997.Element Transport from Slab to Volcanic Front at the Mariana Arc.Journal of Geophysical Research:Solid Earth, 102(B7):14991-15019.https://doi.org/10.1029/97jb00788 doi: 10.1029/97JB00788 [22] Escrig, S., Bézos, A., Goldstein, S.L., et al., 2009.Mantle Source Variations beneath the Eastern Lau Spreading Center and the Nature of Subduction Components in the Lau Basin-Tonga Arc System.Geochemistry, Geophysics, Geosystems, 10(4):1-33.https://doi.org/10.1029/2008gc002281 doi: 10.1029/2008GC002281?scrollTo=references [23] Festa, A., Pini, G.A., Dilek, Y., et al., 2010.Mélanges and Mélange-Forming Processes:A Historical Overview and New Concepts.International Geology Review, 52(10-12):1040-1105. https://doi.org/10.1080/00206810903557704 [24] Furnes, H., Dilek, Y., de Wit, M., 2015.Precambrian Greenstone Sequences Represent Different Ophiolite Types.Gondwana Research, 27(2):649-685. https://doi.org/10.1016/j.gr.2013.06.004 [25] Gale, A., Dalton, C.A., Langmuir, C.H., et al., 2013.The Mean Composition of Ocean Ridge Basalts.Geochemistry, Geophysics, Geosystems, 14(3):489-518.https://doi.org/10.1029/2012gc004334 doi: 10.1029/2012GC004334 [26] Gao, C.G., Dick, H.J.B., Liu, Y., et al., 2016.Melt Extraction and Mantle Source at a Southwest Indian Ridge Dragon Bone Amagmatic Segment on the Marion Rise.Lithos, 246-247(1):48-60.https://doi.org/10.1016/j.lithos.2015.12.007 https://www.sciencedirect.com/science/article/pii/S0024493715004570 [27] Gao, H.X., Song, Z.J., 1995.New Progress in the Study of the Zetang Ophiolitic Mélange in Tibet.Regional Geology of China, 14(4):316-322 (in Chinese with English abstract). [28] Girardeau, J., Mercier, J.C.C., 1988.Petrology and Texture of the Ultramafic Rocks of the Xigaze Ophiolite (Tibet):Constraints for Mantle Structure beneath Slow-Spreading Ridges.Tectonophysics, 147(1-2):33-58. https://doi.org/10.1016/0040-1951(88)90146-1 [29] Gong, X.H., Shi, R.D., Griffin, W.L., et al., 2016.Recycling of Ancient Subduction-Modified Mantle Domains in the Purang Ophiolite (Southwestern Tibet).Lithos, 262:11-26. https://doi.org/10.1016/j.lithos.2016.06.025 [30] Grimes, C.B., Ushikubo, T., Kozdon, R., et al., 2013.Perspectives on the Origin of Plagiogranite in Ophiolites from Oxygen Isotopes in Zircon.Lithos, 179(5):48-66.https://doi.org/10.1016/j.lithos.2013.07.026 https://www.sciencedirect.com/science/article/pii/S0024493713002430 [31] Guo, G.L., Yang, J.S., Liu, X.D., et al., 2015.Mid-Ocean Ridge (MOR) and Suprasubduction Zone (SSZ) Geological Events in the Yarlung Zangbo Suture Zone:Evidence from the Mineral Record of Mantle Peridotites.Journal of Asian Earth Sciences, 110:33-54. https://doi.org/10.1016/j.jseaes.2015.02.012 [32] He, J., Li, Y.L., Wang, C.S., et al., 2016.Plume-Proximal Mid-Ocean Ridge Origin of Zhongba Mafic Rocks in the Western Yarlung Zangbo Suture Zone, Southern Tibet.Journal of Asian Earth Sciences, 121:34-55. https://doi.org/10.1016/j.jseaes.2016.01.022 [33] Hébert, R., Bezard, R., Guilmette, C., et al., 2012.The Indus-Yarlung Zangbo Ophiolites from Nanga Parbat to Namche Barwa Syntaxes, Southern Tibet:First Synthesis of Petrology, Geochemistry, and Geochronology with Incidences on Geodynamic Reconstructions of Neo-Tethys.Gondwana Research, 22(2):377-397. https://doi.org/10.1016/j.gr.2011.10.013 [34] Hergt, J.M., Woodhead, J.D., 2007.A Critical Evaluation of Recent Models for Lau-Tonga Arc-Backarc Basin Magmatic Evolution.Chemical Geology, 245(1-2):9-44. https://doi.org/10.1016/j.chemgeo.2007.07.022 [35] Jagoutz, O., Royden, L., Holt, A.F., et al., 2015.Anomalously Fast Convergence of India and Eurasia Caused by Double Subduction.Nature Geoscience, 8(6):475-478. https://doi.org/10.1038/ngeo2418 [36] Li, C.S., Arndt, N.T., Tang, Q.Y., et al., 2015a.Trace Element in Discrimination Diagrams.Lithos, 232:76-83. https://doi.org/10.1016/j.lithos.2015.06.022 [37] Li, X.P., Chen, H.K., Wang, Z.L., et al., 2015b.Spinel Peridotite, Olivine Websterite and the Textural Evolution of the Purang Ophiolite Complex, Western Tibet.Journal of Asian Earth Sciences, 110:55-71. https://doi.org/10.1016/j.jseaes.2014.06.023 [38] Li, J.F., Xia, B., Liu, L.W., et al., 2008.SHRIMP U-Pb Zircon Dating of Diabase in the La'nga Co Ophiolite, Burang, Tibet, China, and Its Geological Significance.Geological Bulletin of China, 27(10):1739-1743 (in Chinese with English abstract). [39] Li, X.H., Wang, C.S., Li, Y.L., et al., 2014.Definition and Composition of the Zhongba Microterrane in Southwest Tibet.Acta Geologica Sinica, 88(8):1372-1381 (in Chinese with English abstract). [40] Li, Y., Li, R.B., Dong, T.C., et al., 2016.Structure of the Baimarang Massif in the Xigaze Ophiolite, Yarlung Zangbo Suture Zone, Southern Tibet, China.Chinese Science Bulletin, 61(25):2823-2833 (in Chinese with English abstract). [41] Lian, D.Y., Yang, J.S., Liu, F., et al., 2017.Geochemistry and Tectonic Significance of the Gongzhu Peridotites in the Northern Branch of the Western Yarlung Zangbo Ophiolitic Belt, Western Tibet.Mineralogy and Petrology, 111(5):729-746. https://doi.org/10.1007/s00710-017-0491-5 [42] Lian, D.Y., Yang, J.S., Robinson, P.T., et al., 2016.Tectonic Evolution of the Western Yarlung Zangbo Ophiolitic Belt, Tibet:Implications from the Petrology, Mineralogy, and Geochemistry of the Peridotites.The Journal of Geology, 124(3):353-376. https://doi.org/10.1086/685510 [43] Lian, D.Y., Yang, J.S., Xiong, F.H., et al., 2015.Platinum-Group Element Characteristics of the Peridotite and Podiform Chromitite from Dajiweng Ophiolite of the Western Segment of Yarlung-Zangbo Suture Zone, Tibet.Geology in China, 42(2):525-546 (in Chinese with English abstract). [44] Liang, F.H., Xu, Z.Q., Ba, D.Z., et al., 2011.Tectonic Occurrence and Emplacement Mechanism of Ophiolites from Luobusha-Zedang, Tibet.Acta Petrologica Sinica, 27(11):3255-3268 (in Chinese with English abstract). [45] Liu, C.Z., Zhang, C., Yang, L.Y., et al., 2014.Formation of Gabbronorites in the Purang Ophiolite (SW Tibet) through Melting of Hydrothermally Altered Mantle along a Detachment Fault.Lithos, 205:127-141. https://doi.org/10.1016/j.lithos.2014.06.019 [46] Liu, F., Dilek, Y., Xie, Y.X., et al., 2018.Melt Evolution of Upper Mantle Peridotites and Mafic Dikes in the Northern Ophiolite Belt of the Western Yarlung Zangbo Suture Zone (Southern Tibet).Lithosphere, 10(1):109-132.https://doi.org/10.1130/l689.1 doi: 10.1130/L689.1 [47] Liu, F., Yang, J.S., Dilek, Y., et al., 2015.Geochronology and Geochemistry of Basaltic Lavas in the Dongbo and Purang Ophiolites of the Yarlung-Zangbo Suture Zone:Plume-Influenced Continental Margin-Type Oceanic Lithosphere in Southern Tibet.Gondwana Research, 27(2):701-718. https://doi.org/10.1016/j.gr.2014.08.002 [48] Liu, F., Yang, J.S., Chen, S.Y., et al., 2013.Ascertainment and Environment of the OIB-Type Basalts from the Dongbo Ophiolite in the Western Part of Yarlung Zangbo Suture Zone.Acta Petrologica Sinica, 29(6):1909-1932 (in Chinese with English abstract). https://www.researchgate.net/publication/281424952_Ascertainment_and_environment_of_the_OIB-type_basalts_from_the_Dongbo_ophiolite_in_the_western_part_of_Yarlung_Zangbo_Suture_Zone [49] Liu, F., Yang, J.S., Lian, D.Y., et al., 2015a.Genesis and Characteristics of the Western Part of the Yarlung Zangbo Ophiolites, Tibet.Acta Petrologica Sinica, 31(12):3609-3628 (in Chinese with English abstract). [50] Liu, F., Yang, J.S., Lian, D.Y., et al., 2015b.The Genesis and Tectonic Significance of Mafic Dikes in the Western Part of the Yarlung Zangbo Suture Zone, Tibet.Acta Geoscientica Sinica, 36(4):441-454 (in Chinese with English abstract). [51] Liu, Q., Deng, Y.B., Xiang, S.Y., et al., 2017.Early Ordovician Tectono-Thermal Event in Zhongba Terrane and Its Geological Significance.Earth Science, 42(6):881-890 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-YSXB201205026.htm [52] Liu, Z., Li, Y., Xiong, F.H., et al., 2011.Petrology and Geochronology of MOR Gabbro in the Purang Ophiolite of Western Tibet, China.Acta Petrologica Sinica, 27(11):3269-3279 (in Chinese with English abstract). [53] Maffione, M., van Hinsbergen, D.J.J., Koornneef, L.M.T., et al., 2015.Forearc Hyperextension Dismembered the South Tibetan Ophiolites.Geology, 43(6):475-478.https://doi.org/10.1130/g36472.1 doi: 10.1130/G36472.1 [54] Mallick, S., Standish, J.J., Bizimis, M., 2015.Constraints on the Mantle Mineralogy of an Ultra-Slow Ridge:Hafnium Isotopes in Abyssal Peridotites and Basalts from the 9-25°E Southwest Indian Ridge.Earth and Planetary Science Letters, 410(7):42-53.https://doi.org/10.1016/j.epsl.2014.10.048 https://www.sciencedirect.com/science/article/pii/S0012821X1400675X [55] Miller, C., 2003.Geochemistry and Tectonomagmatic Affinity of the Yungbwa Ophiolite, SW Tibet.Lithos, 66(3-4):155-172.https://doi.org/10.1016/s0024-4937(02)00217-7 doi: 10.1016/S0024-4937(02)00217-7 [56] Molnar, P., Tapponnier, P., 1975.Cenozoic Tectonics of Asia:Effects of a Continental Collision:Features of Recent Continental Tectonics in Asia can be Interpreted as Results of the India-Eurasia Collision.Science, 189(4201):419-426. https://doi.org/10.1126/science.189.4201.419 [57] Morris, A., Gee, J.S., Pressling, N., et al., 2009.Footwall Rotation in an Oceanic Core Complex Quantified Using Reoriented Integrated Ocean Drilling Program Core Samples.Earth and Planetary Science Letters, 287(1-2):217-228. https://doi.org/10.1016/j.epsl.2009.08.007 [58] Nicolas, A., Girardeau, J., Marcoux, J., et al., 1981.The Xigaze Ophiolite (Tibet):A Peculiar Oceanic Lithosphere.Nature, 294(5840):414-417. https://doi.org/10.1038/294414a0 [59] Niu, X.L., Yang, J.S., Chen, S.Y., et al., 2013.The Reformation of the Dongbo Ultramafic Rock Massif in the Western Part of the Yarlung Zangbo Suture Zone by Subduction-Related Fluids:Evidence from the Platimun-Group Elements (PGE).Geology in China, 40(3):756-766 (in Chinese with English abstract). https://www.researchgate.net/publication/286393165_The_reformation_of_the_Dongbo_ultramafic_rock_massif_in_the_western_part_of_the_Yarlung_Zangbo_suture_zone_by_subduction-related_fluids_Evidence_from_the_platimun-group_elements_PGE [60] Niu, X.L., Yang, J.S., Dilek, Y., et al., 2015.Petrological and Os Isotopic Constraints on the Origin of the Dongbo Peridotite Massif, Yarlung Zangbo Suture Zone, Western Tibet.Journal of Asian Earth Sciences, 110:72-84. https://doi.org/10.1016/j.jseaes.2014.09.036 [61] Niu, Y.L., 2016.The Meaning of Global Ocean Ridge Basalt Major Element Compositions.Journal of Petrology, 57(11-12):2081-2103. https://doi.org/10.1093/petrology/egw073 [62] Orme, D.A., Laskowski, A.K., 2016.Basin Analysis of the Albian-Santonian Xigaze Forearc, Lazi Region, South-Central Tibet.Journal of Sedimentary Research, 86(8):894-913. https://doi.org/10.2110/jsr.2016.59 [63] Pearce, J.A., 2014.Immobile Element Fingerprinting of Ophiolites.Elements, 10(2):101-108. https://doi.org/10.2113/gselements.10.2.101 [64] Pearce, J.A., Wanming, D., 1988.The Ophiolites of the Tibetan Geotraverses, Lhasa to Golmud (1985) and Lhasa to Kathmandu (1986).Philosophical Transactions of the Royal Society A:Mathematical, Physical and Engineering Sciences, 327(1594):215-238. https://doi.org/10.1098/rsta.1988.0127 [65] Pearce, J.A., 2003.Supra-Subduction Zone Ophiolites:The Search for Modern Analogues.Special Papers-Geological Society of America, 269-294. http://orca.cf.ac.uk/8599/ [66] Reagan, M.K., Ishizuka, O., Stern, R.J., et al., 2010.Fore-Arc Basalts and Subduction Initiation in the Izu-Bonin-Mariana System.Geochemistry, Geophysics, Geosystems, 11(3):1-17.https://doi.org/10.1029/2009gc002871 doi: 10.1029/2009GC002871?scrollTo=footer-citing [67] Saccani, E., 2015.A New Method of Discriminating Different Types of Post-Archean Ophiolitic Basalts and Their Tectonic Significance Using Th-Nb and Ce-Dy-Yb Systematics.Geoscience Frontiers, 6(4):481-501. https://doi.org/10.1016/j.gsf.2014.03.006 [68] Sun, S.S., McDonough, W.F., 1989.Chemical and Isotopic Systematics of Oceanic Basalts:Implications for Mantle Composition and Processes.Geological Society, London, Special Publications, 42(1):313-345.https://doi.org/10.1144/gsl.sp.1989.042.01.19 doi: 10.1144/GSL.SP.1989.042.01.19 [69] Tapponnier, P., Mercier, J.L., Proust, F., et al., 1981.The Tibetan Side of the India-Eurasia Collision.Nature, 294(5840):405-410. https://doi.org/10.1038/294405a0 [70] Todd, E., Gill, J.B., Pearce, J.A., 2012.A Variably Enriched Mantle Wedge and Contrasting Melt Types during Arc Stages Following Subduction Initiation in Fiji and Tonga, Southwest Pacific.Earth and Planetary Science Letters, 335-336:180-194. https://doi.org/10.1016/j.epsl.2012.05.006 [71] Velikoslavinsky, S.D., Krylov, D.P., 2014.Geochemical Discrimination of Basalts Formed in Major Geodynamic Settings.Geotectonics, 48(6):427-439.https://doi.org/10.1134/s0016852114060077 doi: 10.1134/S0016852114060077 [72] Wang, J.R., Chen, W.F., Zhang, Q., et al., 2017.Preliminary Research on Data Mining of N-MORB and E-MORB:Discussion on Method of the Basalt Discrimination Diagrams and the Character of MORB's Mantle Source.Acta Petrologica Sinica, 33(3):993-1005 (in Chinese with English abstract). https://www.researchgate.net/publication/316278054_Preliminary_research_on_data_mining_of_N-Morb_and_E-MORB_Discussion_on_method_of_the_basalt_discrimination_diagrams_and_the_character_of_MORB's_mantle_source [73] Wang, J.R., Pan, Z.J., Zhang, Q., et al., 2016.Intra-Continental Basalt Data Mining:The Diversity of Their Constituents and the Performance in Basalt Discrimination Diagrams.Acta Petrologica Sinica, 32(7):1919-1933 (in Chinese with English abstract). https://www.researchgate.net/publication/306138109_Intra-continental_basalt_data_mining_The_diversity_of_their_constituents_and_the_performance_in_basalt_discrimination_diagrams [74] Wang, X.C., Wilde, S.A., Xu, B., et al., 2016.Origin of Arc-Like Continental Basalts:Implications for Deep-Earth Fluid Cycling and Tectonic Discrimination.Lithos, 261:5-45. https://doi.org/10.1016/j.lithos.2015.12.014 [75] Wang, X.B., Zhou, X., Hao, Z.G., 2010.Some Opinions on Further Exploration for Chromite Deposits in the Luobusha Area, Tibet, China.Geological Bulletin of China, 29(1):105-114 (in Chinese with English abstract). [76] Wang, Y.P., 2015.Research on the Drilling Cores (DSD-1) of Dongbo Ophiolitic Massif in the Western Segement of Yarlung Zangbo Suture Zone(Dissertation).China University of Geosciences, Beijing (in Chinese with English abstract). [77] Whattam, S.A., Stern, R.J., 2011.The 'Subduction Initiation Rule':A Key for Linking Ophiolites, Intra-Oceanic Forearcs, and Subduction Initiation.Contributions to Mineralogy and Petrology, 162(5):1031-1045. https://doi.org/10.1007/s00410-011-0638-z [78] Wu, F.Y., Liu, C.Z., Zhang, L.L., et al., 2014.Yarlung Zangbo Ophiolite:A Critical Updated View.Acta Petrologica Sinica, 30(2):293-325(in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-YSXB201402001.htm [79] Wu, Y.B., Zheng, Y.F., 2004.Genesis of Zircon and Its Constraints on Interpretation of U-Pb Age.Chinese Science Bulletin, 49(16):1589-1604 (in Chinese). https://www.researchgate.net/profile/Yong-Fei_Zheng/publication/225204011_Genesis_of_zircon_and_its_constraints_on_interpretation_of_U-Pb_age/links/53fe74800cf21edafd151294.pdf?origin=publication_detail [80] Xiao, Q.H., Li, T.D., Pan, G.T., et al., 2016.Petrologic Ideas for Identification of Ocean-Continent Transition:Recognition of Intra-Oceanic Arc and Initial Subduction.Geology in China, 43(3):721-737(in Chinese with English abstract). http://www.refdoc.fr/Detailnotice?cpsidt=20695915 [81] Xiong, F.H., Yang, J.S., Robinson, P.T., et al., 2017.High-Al and High-Cr Podiform Chromitites from the Western Yarlung-Zangbo Suture Zone, Tibet:Implications from Mineralogy and Geochemistry of Chromian Spinel, and Platinum-Group Elements.Ore Geology Reviews, 80:1020-1041.https://doi.org/10.13039/501100004613 doi: 10.1016/j.oregeorev.2016.09.009 [82] Xiong, F.H., Yang, J.S., Liang, F.H., et al., 2011.Zircon U-Pb Ages of the Dongbo Ophiolite in the Western Yarlung Zangbo Suture Zone and Their Geological Significance.Acta Petrologica Sinica, 27(11):3223-3238(in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-YSXB201111006.htm [83] Xu, X.Z., Yang, J.S., Ba, D.Z., et al., 2011.Petrogenesis of the Kangjinla Peridotite in the Luobusa Ophiolite, Southern Tibet.Journal of Asian Earth Sciences, 42(4):553-568. https://doi.org/10.1016/j.jseaes.2011.05.007 [84] Xu, X.Z., Yang, J.S., Ba, D.Z., et al., 2015.Diamond Discovered from the Dongbo Mantle Peridotite in the Yarlung Zangbo Suture Zone, Tibet.Geology in China, 42(5):1471-1482(in Chinese with English abstract). [85] Xu, X.Z., Yang, J.S., Guo, G.L., et al., 2011.Lithological Research on the Purang Mantle Peridotite in Western Yarlung-Zangbo Suture Zone in Tibet.Acta Petrologica Sinica, 27(11):3179-3196(in Chinese with English abstract). http://or.nsfc.gov.cn/bitstream/00001903-5/254331/1/1000012489102.pdf [86] Xu, Z.Q., Dilek, Y., Yang, J.S., et al., 2015.Crustal Structure of the Indus-Tsangpo Suture Zone and Its Ophiolites in Southern Tibet.Gondwana Research, 27(2):507-524.https://doi.org/10.13039/501100001809 doi: 10.1016/j.gr.2014.08.001 [87] Yang, A.Y., Zhao, T.P., Zhou, M.F., et al., 2017.Isotopically Enriched N-MORB:A New Geochemical Signature of Off-Axis Plume-Ridge Interaction-A Case Study at 50°28'E, Southwest Indian Ridge.Journal of Geophysical Research:Solid Earth, 122(1):191-213.https://doi.org/10.13039/501100001809 doi: 10.1002/2016JB013284 [88] Yang, J., Wang, J.R., Zhang, Q., et al., 2016.Global IAB Data Excavation:The Performance in Basalt Discrimination Diagrams and Preliminary Interpretation.Geological Bulletin of China, 35(12):1937-1949(in Chinese with English abstract). https://www.researchgate.net/publication/306138109_Intra-continental_basalt_data_mining_The_diversity_of_their_constituents_and_the_performance_in_basalt_discrimination_diagrams [89] Yang, J.S., Robinson, P.T., Dilek, Y., 2014.Diamonds in Ophiolites.Elements, 10(2):127-130. https://doi.org/10.2113/gselements.10.2.127 [90] Yang, J.S., Robinson, P.T., Dilek, Y., 2015.Diamond-Bearing Ophiolites and Their Geological Occurrence.Episodes, 38(4):344-364.https://doi.org/10.18814/epigsi/2015/v38i4/82430 https://www.researchgate.net/publication/284064585_Diamond-bearing_Ophiolites_and_Their_Geological_Occurrence [91] Yang, J.S., Xiong, F.H., Guo, G.L., et al., 2011a.The Dongbo Ultramafic Massif:A Mantle Peridotite in the Western Part of the Yarlung Zangbo Suture Zone, Tibet, with Excellent Prospects for a Major Chromite Deposit.Acta Petrologica Sinica, 27(11):3207-3222(in Chinese with English abstract). [92] Yang, J.S., Xu, X.Z., Li, Y., et al., 2011b.Diamonds Recovered from Peridotite of the Purang Ophiolite in the Yarlung-Zangbo Suture of Tibet:A Proposal for a New Type of Diamond Occurrence.Acta Petrologica Sinica, 27(11):3171-3178(in Chinese with English abstract). [93] Yu, X., Chu, F.Y., Dong, Y.H., et al., 2013.Detachment Fault and Oceanic Core Complex:A New Mode of Seafloor Spreading.Earth Science, 38(5):995-1004(in Chinese with English abstract). http://www.nature.com/srep/2013/130801/srep02336/metrics/citations [94] Yuan, H.L., Gao, S., Liu, X.M., et al., 2004.Accurate U-Pb Age and Trace Element Determinations of Zircon by Laser Ablation-Inductively Coupled Plasma-Mass Spectrometry.Geostandards and Geoanalytical Research, 28(3):353-370.https://doi.org/10.1111/j.1751-908x.2004.tb00755.x doi: 10.1111/ggr.2004.28.issue-3 [95] Zahirovic, S., Matthews, K.J., Flament, N., et al., 2016.Tectonic Evolution and Deep Mantle Structure of the Eastern Tethys since the Latest Jurassic.Earth-Science Reviews, 162:293-337. https://doi.org/10.1016/j.earscirev.2016.09.005 [96] Zhang, L., Yang, J.S., Liu, F., et al., 2016.The South Gongzhucuo Peridotite Massif:A Typical MOR Type Peridotite in the Western Yarlung Zangbo Suture Zone.Acta Petrologica Sinica, 32(12):3649-3672(in Chinese with English abstract). http://www.ysxb.ac.cn/ysxb/ch/reader/view_abstract.aspx?file_no=20161207 [97] Zhang, S.Q., Mahoney, J.J., Mo, X.X., et al., 2005.Evidence for a Widespread Tethyan Upper Mantle with Indian-Ocean-Type Isotopic Characteristics.Journal of Petrology, 46(4):829-858. https://doi.org/10.1093/petrology/egi002 [98] Zheng, H., Huang, Q., Kapsiotis, A., et al., 2017.Early Cretaceous Ophiolites of the Yarlung Zangbo Suture Zone:Insights from Dolerites and Peridotites from the Baer Upper Mantle Suite, SW Tibet (China).International Geology Review, 59(11):1471-1489.https://doi.org/10.13039/501100001809 doi: 10.1080/00206814.2016.1276867 [99] Zheng, Y.F., Chen, Y.X., 2016.Continental versus Oceanic Subduction Zones.National Science Review, 3(4):495-519.https://doi.org/10.1093/nsr/nww049 https://www.researchgate.net/publication/306072657_Continental_versus_oceanic_subduction_zones [100] Zhou, H.Y., Dick, H.J.B., 2013.Thin Crust as Evidence for Depleted Mantle Supporting the Marion Rise.Nature, 494(7436):195-200. https://doi.org/10.1038/nature11842 [101] Zhou, M.F., Robinson, P.T., Malpas, J., et al., 1996.Podiform Chromitites in the Luobusa Ophiolite (Southern Tibet):Implications for Melt-Rock Interaction and Chromite Segregation in the Upper Mantle.Journal of Petrology, 37(1):3-21. https://doi.org/10.1093/petrology/37.1.3 [102] Zhou, M.F., Robinson, P.T., Malpas, J., et al., 2005.REE and PGE Geochemical Constraints on the Formation of Dunites in the Luobusa Ophiolite, Southern Tibet.Journal of Petrology, 46(3):615-639.https://doi.org/10.1093/petrology/egh091 [103] Zhou, W.D., Yang, J.S., Zhao, J.H., et al., 2014.Mineralogical Study and the Origin Discussion of Purang Ophiolite Peridotites, Western Part of Yarlung-Zangbo Suture Zone(YZSZ), Southern Tibet.Acta Petrologica Sinica, 30(8):2185-2203(in Chinese with English abstract). [104] Zhou, Y.S., Wu, H.R., Zheng, X.L., et al., 1982.Geology of the Ophiolite in Xigaze Prefecture of the Southern Xizang (Tibet), China.Scientia Geologica Sinica, 17(1):30-40(in Chinese with English abstract). [105] 敖松坚, 肖文交, 杨磊, 等, 2017.造山带中古洋壳核杂岩的识别与地质意义.中国科学:地球科学, 47(1):1-22. [106] 邓晋福, 刘翠, 冯艳芳, 等, 2015.关于火成岩常用图解的正确使用:讨论与建议.地质论评, 61(4):717-734. http://www.cnki.com.cn/Article/CJFDTotal-DZLP201504002.htm [107] 高洪学, 宋子季, 1995.西藏泽当蛇绿混杂岩研究新进展.中国区域地质, 14 (4):316-322. [108] 李建峰, 夏斌, 刘立文, 等, 2008.西藏普兰地区拉昂错蛇绿岩中辉绿岩的锆石SHRIMP U-Pb年龄及其地质意义.地质通报, 27(10):1739-1743. doi: 10.3969/j.issn.1671-2552.2008.10.016 [109] 李祥辉, 王成善, 李亚林, 等, 2014.仲巴微地体之定义及构成.地质学报, 88(8):1372-1381. https://www.researchgate.net/profile/Xianghui_Li2/publication/288623395_Definition_and_composition_of_the_Zhongba_microterrane_in_the_southwest_Tibet_in_Chinese_with_English_abstract/links/56a7ea3508aeded22e371c57.pdf?origin=publication_detail [110] 李源, 李瑞保, 董天赐, 等, 2016.日喀则蛇绿岩白马让岩体的穹窿形结构及构造意义.科学通报, 61(25):2823-2833. http://www.cqvip.com/QK/94252X/201625/669986427.html [111] 连东洋, 杨经绥, 熊发挥, 等, 2015.雅鲁藏布江缝合带西段达机翁地幔橄榄岩及铬铁矿的铂族元素特征.中国地质, 42 (2):525-546. doi: 10.3969/j.issn.1000-3657.2015.02.013 [112] 梁凤华, 许志琴, 巴登珠, 等, 2011. 西藏罗布莎-泽当蛇绿岩体的构造产出与侵位机制探讨岩石学报, 27(11): 3255-3268. [113] 刘飞, 杨经绥, 陈松永, 等, 2013.雅鲁藏布江缝合带西段东波蛇绿岩OIB型玄武岩的厘定及其形成环境.岩石学报, 29(6):1909-1932. http://www.ysxb.ac.cn/ysxb/ch/reader/download_pdf.aspx?file_no=20130605&year_id=2013&quarter_id=6&falg=1 [114] 刘飞, 杨经绥, 连东洋, 等, 2015a.西藏雅鲁藏布江缝合带西段南北亚带蛇绿岩的成因探讨.岩石学报, 31(12):3609-3628. [115] 刘飞, 杨经绥, 连东洋, 等, 2015b.雅鲁藏布江缝合带西段北亚带的基性岩成因和构造意义.地球学报, 36(4):441-454. http://www.cqvip.com/QK/98325X/201504/665698151.html [116] 刘强, 邓玉彪, 向树元, 等, 2017.藏南仲巴地体早奥陶世构造-热事件及其地质意义.地球科学, 42(6):881-890. http://www.earth-science.net/WebPage/Article.aspx?id=3585 [117] 刘钊, 李源, 熊发挥, 等, 2011.西藏西部普兰蛇绿岩中的MOR型辉长岩:岩石学和年代学.岩石学报, 27(11):3269-3279. http://kns.cnki.net/KCMS/detail/detail.aspx?filename=ysxb201111009&dbname=CJFD&dbcode=CJFQ [118] 牛晓露, 杨经绥, 陈松永, 等, 2013.雅鲁藏布江西段东波超镁铁岩体经历了俯冲带流体的改造:来自铂族元素的证据.中国地质, 40(3):756-766. http://d.wanfangdata.com.cn/Periodical_zgdizhi201303008.aspx [119] 王金荣, 陈万峰, 张旗, 等, 2017.N-MORB和E-MORB数据挖掘——玄武岩判别图及洋中脊源区地幔性质的讨论.岩石学报, 33(3):993-1005. http://www.cnki.com.cn/Article/CJFDTOTAL-YSXB201703023.htm [120] 王金荣, 潘振杰, 张旗, 等, 2016.大陆板内玄武岩数据挖掘:成分多样性及在判别图中的表现.岩石学报, 32(7):1919-1933. http://www.ysxb.ac.cn/ysxb/ch/reader/create_pdf.aspx?file_no=20160701&journal_id=ysxb&year_id=2016 [121] 王希斌, 周详, 郝梓国, 2010.西藏罗布莎铬铁矿床的进一步找矿意见和建议.地质通报, 29(1):105-114. [122] 王云鹏, 2015. 雅鲁藏布江缝合带西段东波地幔橄榄岩体钻孔(DSD-1)岩心研究(硕士学位论文). 北京: 中国地质大学. [123] 吴福元, 刘传周, 张亮亮, 等, 2014.雅鲁藏布蛇绿岩——事实与臆想.岩石学报, 30(2):293-325. http://www.ysxb.ac.cn/ysxb/ch/reader/create_pdf.aspx?file_no=20140201&journal_id=ysxb&year_id=2014 [124] 吴元保, 郑永飞, 2004.锆石成因矿物学研究及其对U-Pb年龄解释的制约.科学通报, 49(16):1589-1604. doi: 10.3321/j.issn:0023-074X.2004.16.002 [125] 肖庆辉, 李廷栋, 潘桂棠, 等, 2016.识别洋陆转换的岩石学思路——洋内弧与初始俯冲的识别.中国地质, 43(3):721-737. doi: 10.12029/gc20160303 [126] 熊发挥, 杨经绥, 梁凤华, 等, 2011.西藏雅鲁藏布江缝合带西段东波蛇绿岩中锆石U-Pb定年及地质意义.岩石学报, 11(27):3223-3238. http://kns.cnki.net/KCMS/detail/detail.aspx?filename=ysxb201111006&dbname=CJFD&dbcode=CJFQ [127] 徐向珍, 杨经绥, 巴登珠, 等, 2015.西藏雅鲁藏布江缝合带东波地幔橄榄岩中金刚石的发现及地质意义.中国地质, 42(5):1471-1482. http://kns.cnki.net/KCMS/detail/detail.aspx?filename=dizi201505019&dbname=CJFD&dbcode=CJFQ [128] 徐向珍, 杨经绥, 郭国林, 等, 2011.雅鲁藏布江缝合带西段普兰蛇绿岩中地幔橄榄岩的岩石学研究.岩石学报, 27(11):3179-3196. http://www.ysxb.ac.cn/ysxb/ch/reader/view_abstract.aspx?file_no=20111103 [129] 杨经绥, 熊发挥, 郭国林, 等, 2011a.东波超镁铁岩体:西藏雅鲁藏布江缝合带西段一个甚具铬铁矿前景的地幔橄榄岩体.岩石学报, 27(11):3207-3222. http://www.cnki.com.cn/Article/CJFDTOTAL-YSXB201111005.htm [130] 杨经绥, 徐向珍, 李源, 等, 2011b.西藏雅鲁藏布江缝合带的普兰地幔橄榄岩中发现金刚石:蛇绿岩型金刚石分类的提出.岩石学报, 27(11):3171-3178. http://kns.cnki.net/KCMS/detail/detail.aspx?filename=ysxb201111002&dbname=CJFD&dbcode=CJFQ [131] 杨婧, 王金荣, 张旗, 等, 2016.全球岛弧玄武岩数据挖掘——在玄武岩判别图上的表现及初步解释.地质通报, 35(12):1937-1949. doi: 10.3969/j.issn.1671-2552.2016.12.001 [132] 余星, 初凤友, 董彦辉, 等, 2013.拆离断层与大洋核杂岩:一种新的海底扩张模式.地球科学, 38(5):995-1004. http://www.earth-science.net/WebPage/Article.aspx?id=2788 [133] 张利, 杨经绥, 刘飞, 等, 2016.南公珠错地幔橄榄岩:雅鲁藏布江缝合带西段一个典型的大洋地幔橄榄岩.岩石学报, 32(12):3649-3672. http://www.ysxb.ac.cn/ysxb/ch/reader/view_abstract.aspx?file_no=20161207 [134] 周文达, 杨经绥, 赵军红, 等, 2014.西藏雅鲁藏布江缝合带西段普兰蛇绿岩地幔橄榄岩矿物学研究和成因探讨.岩石学报, 30(8):2185-2203. http://kns.cnki.net/KCMS/detail/detail.aspx?filename=ysxb201408005&dbname=CJFD&dbcode=CJFQ [135] 周云生, 吴浩若, 郑锡澜, 等, 1982.西藏南部日喀则地区蛇绿岩地质.地质科学, 17(1):30-39. http://kns.cnki.net/KCMS/detail/detail.aspx?filename=dzkx198201004&dbname=CJFD&dbcode=CJFQ