Western Hunan-Hubei Fold Belt Exhumation Characteristics and Its Tectonic Implication in Mesozoic-Cenozoic:Evidence from Apatite Fission Track
-
摘要: 恢复湘鄂西褶皱带中-新生代以来的剥蚀历史, 探讨其变形的时空格架, 对于研究陆内褶皱造山以及指导该地区的油气勘探具有重要的意义.利用该地区磷灰石样品进行裂变径迹年龄测定与热史模拟, 对中-新生代的剥蚀厚度和速率进行分析.结果表明, 湘鄂西地区磷灰石裂变径迹的年龄为71~100 Ma, 与川东隔挡式褶皱带中的磷灰石样品年龄进行对比, 具有由SE到NW向递进变新的趋势; 中新生代以来的热史呈现出"三段式"的特征, 这3个阶段的转折时期为115~90 Ma和35~20 Ma, 分别对应了从晚侏罗世-早白垩世挤压造山到晚白垩世伸展成盆再到新生代整体抬升的构造转换; 燕山期为湘鄂西褶皱带的主变形期, 变形时序呈现出由SE到NW向递进变新的趋势, 剥蚀程度呈现出由SE到NW向变弱的趋势.这些认识为燕山期湘鄂西-川东褶皱带陆内递进变形的形成演化研究提供了有力的证据.Abstract: Reconstruction of the Mesozoic-Cenozoic exhumation history in western Hunan-Hubei fold belt and establishing its temporal and spatial evolution play important role in the research of intracontinental orogeny as well as the petroleum exploration in this area.Based on apatite fission track (AFT) analysis and time-temperature thermal history modeling results, this work quantitively constrains the exhumation rate and thickness of the western Hunan-Hubei fold belt.The AFT ages here range from 71 to 100 Ma.Integrating with the AFT ages from fold belt in the East Sichuan basin, all the data present a younger trend from southeast to northwest.The time-temperature thermal history since Mesozoic shows a "three-stages" feature with the turning period occurred at 115-90 Ma and 35-20 Ma.The three stages correspond well with the geological evidence and respectively indicate different deformations.The deformations are respectively orogeny during Late Jurassic-Early Cretaceous, basin formation in Late Cretaceous and tectonic uplift since Cenozoic.Yanshannian event is the main cause of the deformation.The deformation occurred earlier in the southeast and later in the northwest and the exhumation also presented a pattern being stronger in the southeast and weaker in the northwest.All the recognization during this work provides strong evidences for the deformation and evolution process of the western Hunan-Hubei to East Sichuan fold belt.
-
表 1 湘鄂西地区已发表的地层接触关系
Table 1. Published strata contact relationship in western Hunan-Hubei
不整合面位置 所处构造单元 不整合面 不整合面性质 下伏地层及产状 上覆地层及产状 指示事件 资料来源 石门新关南 桑植石门复向斜 J1xn/T2b 微角度不整合 T2b:164°∠69° J1xn:170°∠82° 印支运动 胡召齐(2011) 张家界北赵家岗 桑植石门复向斜 J2gz/T2b 微角度不整合 T2b:177°∠10° J2gz:125°∠5° 印支运动 胡召齐(2011) 恩施七里坪 中央复背斜 T3s/T2b 微角度不整合 T2b:80°∠18° T3s:112°∠21° 印支运动 胡召齐等(2009) 咸丰尖山 花果坪复向斜 T3s/T2b 微角度不整合 T2b:295°∠39° T3s:274°∠36° 印支运动 胡召齐等(2009) 石门雷山洞 桑植石门复向斜 J1/T1j 微角度不整合 T1j:145°∠63° J1:148°∠53° 印支运动 梅廉夫等(2010) 石门新关 桑植石门复向斜 K2/J2 高角度不整合 J2:153°∠61° K2:132°∠31° 燕山运动 梅廉夫等(2010) 龙山北 宜都鹤峰复背斜 K2/P 高角度不整合 P:154°∠45° K2:137°∠15° 燕山运动 梅廉夫等(2010) 恩施西 中央复背斜 K2/S1 高角度不整合 S1:290°∠27° K2:300°∠10° 燕山运动 梅廉夫等(2010) 利川忠路溪 利川复向斜 K2/T3s 高角度不整合 T3s:291°∠44° K2:120°∠6° 燕山运动 梅廉夫等(2010) 建始南郊 中央复背斜 K2z/S1ln 高角度不整合 S1ln:140°∠33° K2z:290°∠10° 燕山运动 胡召齐等(2009) 恩施芭蕉 中央复背斜 K2z/P1q 高角度不整合 P1q:326°∠44° K2z:336°∠14° 燕山运动 胡召齐等(2009) 黔江东舟白 中央复背斜 K2z/T1j 高角度不整合 T1j:130°∠67° K2z:252°∠18° 燕山运动 胡召齐等(2009) 注:S1ln为下志留统龙马溪组, P1q为下二叠统栖霞组, T1j为下三叠统嘉陵江组, T2b为巴东组, T3s为上三叠统香溪组, J1为下侏罗统, J1xn为下侏罗统香溪群, J2为中侏罗统, J2gz为中侏罗统归州群, K2为上白垩统, K2z为上白垩统正阳组. 表 2 磷灰石样品采集信息及裂变径迹(AFT)测试结果
Table 2. Apatite sample collection information and apatite fission track (AFT) analysis results
样品号 采样层位 采样位置 采样岩性 颗粒数 自发径迹 诱发径迹 标准玻璃 P(χ2) (%) 中值年龄t ±1σ (Ma) 池年龄t±1σ(Ma) 围限径迹 Dpar (μm) 经度E(°) 纬度N(°) ρs(105/cm2) Ns ρi(105/cm2) Ni ρd(105/cm2) Nd 条数 平均长度±1σ(μm) 宜昌斜坡-秭归盆地 15-001 K1w 111.296 8 30.759 1 中细砂岩 35 5.616 1 532 10.023 2 734 7.888 7 124 67.3 90±5 90±5 100 13.4±1.7 1.81 15-006 T3s 110.760 1 30.957 1 粉砂岩 37 6.746 309 26.982 1 236 11.447 7 124 26.3 59±5 58±5 18 12.1±1.8 1.54 15-007 J1x 110.759 6 30.956 5 石英砂岩 35 0.203 49 1.001 241 10.819 7 124 96 45±7 45±7 12 12.0±2.8 / 15-009 T3s 110.677 5 30.896 1 粉砂岩 35 3.187 619 11.11 2 158 10.4 7 124 48 61±4 61±4 53 12.9±2.3 2.29 湘鄂西褶皱带 15-012 K2z1 109.504 7 30.368 4 石英砂岩 35 6.733 1 816 15.296 4 126 9.981 7 124 0 90±7 89±5 105 12.5±1.7 1.89 15-015 J1x 109.072 6 29.757 2 粉砂岩 35 4.385 550 9.001 1 129 9.563 7 124 66.4 98±7 95±7 52 13.1±2.2 1.97 15-016 J1x 109.072 2 29.756 0 石英砂岩 35 6.729 2 061 14.375 4 403 8.935 7 124 0 87±6 85±4 104 11.7±2.3 1.77 15-018 K 109.401 8 29.529 9 钙质砂岩 34 4.932 847 9.183 1 577 8.098 7 124 89.6 87±6 89±6 101 11.7±2.0 1.76 15-021 T2b2 110.121 3 29.415 7 泥质粉砂岩 35 7.98 1 026 13.719 1 764 7.888 7 124 0.7 97±7 93±6 103 12.3±1.8 1.77 15-022 T2b1 110.161 0 29.409 6 泥质粉砂岩 35 7.206 1 083 19.355 2 909 11.447 7 124 13.8 88±6 87±5 112 12.5±1.8 1.69 15-023 J2 110.688 8 29.493 9 石英砂岩 35 9.107 1 196 21.214 2 786 10.61 7 124 0 90±7 93±5 104 11.6±1.9 1.43 15-024 K1 110.716 7 29.269 3 泥质粉砂岩 35 4.502 1 078 8.866 2 123 9.772 7 124 0 100±8 101±6 106 12.6±1.9 1.95 15-025 K2 111.202 7 29.461 0 砾岩 33 2.642 684 6.025 1 560 7.888 7 124 53.6 69±5 71±5 88 11.8±1.7 1.51 15-029 K 111.336 4 29.614 8 砂岩 35 5.454 1 172 11.392 2 448 9.144 7 124 1.2 93±6 89±5 102 12.8±1.7 2.07 注:ρs表示自发径迹密度,Ns表示自发径迹数,ρi表示诱发径迹密度,Ni表示诱发径迹数,ρd表示铀标准玻璃的诱发径迹密度,Nd表示铀标准玻璃的诱发径迹数,Dpar为每个样品所统计的Dpar值的平均值;K1w为下白垩统五龙组,J1x为下侏罗统香溪组. 表 3 基于热史模拟的剥蚀厚度及速率分析
Table 3. Analysis of denudation thickness and velocity based on thermal history model
样品号 采样层位 燕山期快速隆升剥蚀 晚燕山-早喜山缓慢隆升剥蚀 喜山晚期快速隆升剥蚀 持续时间(Ma) 剥蚀厚度(m) 剥蚀速率(m/Ma) 持续时间(Ma) 剥蚀厚度(m) 剥蚀速率(m/Ma) 持续时间(Ma) 剥蚀厚度(m) 剥蚀速率(m/Ma) 15-016 J1x 135~102 2 200 66.67 102~30 600 8.33 30~0 2 000 66.67 15-018 K 130~110 2 400 120.00 110~20 600 6.66 20~0 1 800 90.00 15-023 J2 140~115 2 400 96.00 115~22 800 8.60 22~0 1 600 72.72 15-024 K1 140~105 2 400 68.57 105~30 1 040 13.86 30~0 1 360 45.33 15-029 K 120~90 2 720 90.60 90~35 560 10.18 35~0 1 520 43.43 -
[1] Chang, Y., Zhou, Z.Y., 2010.Basic Methods to Inverse Exhumation Rates Using Low-Temperature Thermochronological Data.Science & Technology Review, 28(21):86-94(in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-KJDB201021033.htm [2] Ding, D.G., Liu, G.X., Lü, J.X., et al., 2007.Progressive Deformation of Middle Paleozoic Marine Basins in the Yangtze Plate, China.Geological Bulletin of China, 26(9):1178-1188(in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-ZQYD200709020.htm [3] Feng, Y.L., Yuan, W.M., Tian, Y.T., et al., 2017.Preservation and Exhumation History of the Harizha-Halongxiuma Mining Area in the East Kunlun Range, Northeastern Tibetan Plateau, China.Ore Geology Reviews, 90:1018-1031. https://doi.org/10.1016/j.oregeorev.2016.12.029 [4] Guo, X.S., 2014.Rules of Two-Factor Enrichment for Marine Shale Gas in Southern China-Understanding from the Longmaxi Formation Shale Gas in Sichuan Basin and Its Surrounding Area.Acta Geologica Sinica, 88(7):1209-1218(in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-DZXE201407001.htm [5] Hu, Z.Q., 2011.Studies of Tectonic Evolution and Thermochronology in the Northern Upper Yangtze Region (Dissertation).Hefei University of Technology, Hefei(in Chinese with English abstract). [6] Hu, Z.Q., Zhu, G., Liu, G.S., et al., 2009.The Folding Time of the Eastern Sichuan Jura-Type Fold Belt:Evidence from Unconformity.Geological Review, 55(1):32-42(in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-DZLP200901006.htm [7] Jin, C., Li, S.Z., Wang, Y.J., et al., 2009.Diachronous and Progressive Deformation during the Indosinian-Yanshanian Movements of the Xuefeng Mountain Intracontinental Composite Tectonic System.Oil & Gas Geology, 30(5):598-607(in Chinese with English abstract). https://www.deepdyve.com/lp/elsevier/intracontinental-deformation-in-a-frontier-of-super-convergence-a-60LhlcTx2R [8] Ketcham, R.A., Carter, A., Donelick, R.A., et al., 2007.Improved Modeling of Fission-Track Annealing in Apatite.American Mineralogist, 92(5-6):799-810. https://doi.org/10.2138/am.2007.2281 [9] Li, H., Bai, Y.S., Wang, B.Z., et al., 2014.Preservation Conditions Research on Shale Gas in the Lower Paleozoic of Western Hunan and Hubei Area.Petroleum Geology and Recovery Efficiency, 21(6):22-25(in Chinese with English abstract). [10] Li, S.J., Xiao, K.H., Wang, X.W., et al., 2008.Thermochronology of Detrital Minerals in the Silurian Strata from Southern China and Its Geological Implications.Acta Geologica Sinica, 82(8):1068-1076(in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-DZXE200808007.htm [11] Li, S.Z., Zhang, G.W., Zhou, L.H., et al., 2011.The Opposite Meso-Cenozoic Intracontinental Deformations under the Super-Convergence:Rifting and Extension in the North China Craton and Shortening and Thrusting in the South China Craton.Earth Science Frontiers, 18(3):79-107(in Chinese with English abstract). http://jglobal.jst.go.jp/public/201602279457184299 [12] Li, T.Y., He, S., He, Z.L., et al., 2012.Reconstruction of Tectonic Uplift and Thermal History since Mesozoic in the Dangyang Synclinorium of the Central Yangtze Area.Acta Petrolei Sinica, 33(2):213-224(in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-SYXB201202006.htm [13] Li, X.M., Shan, Y.H., 2011.Diverse Exhumation of the Mesozoic Tectonic Belt within the Yangtze Plate, China, Determined by Apatite Fission-Track Thermochronology.Geosciences Journal, 15(4):349-357. https://doi.org/10.1007/s12303-011-0037-5 [14] Liu, A., Wei, K., Li, X.B., et al., 2015.Paleo-Fluid Characteristics and Preservation of Hydrocarbons in the Sangzhi-Shimen Synclinorium and Adjacent Areas.Petroleum Geology & Experiment, 37(6):742-750(in Chinese with English abstract). http://industry.wanfangdata.com.cn/yj/Detail/Periodical?id=Periodical_sysydz201506010 [15] Liu, E.S., Li, S.Z., Jin, C., et al., 2010.Yanshanian Structural Deformation and Dynamics of the Xuefengshan Intracontinential Tectonic System.Marine Geology & Quaternary Geology, 30(5):63-74(in Chinese with English abstract). [16] Mei, L.F., Deng, D.F., Shen, C.B., et al., 2012.Tectonic Dynamics and Marine Hydrocarbon Accumulation of Jiangnan-Xuefeng Uplift.Geological Science and Technology Information, 31(5):85-93(in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-DZKQ201205013.htm [17] Mei, L.F., Liu, Z.Q., Tang, J.G., et al., 2010.Mesozoic Intra-Continental Progressive Deformation in Western Hunan-Hubei-Eastern Sichuan Provinces of China:Evidence from Apatite Fission Track and Balanced Cross-Section.Earth Science, 35(2):161-174(in Chinese with English abstract).https://doi.org/10.3799/dqkx.2010.017 http://en.cnki.com.cn/Article_en/CJFDTOTAL-DQKX201002000.htm [18] Nie, H.K., Bao, S.J., Gao, B., et al., 2012.A Study of Shale Gas Preservation Conditions for the Lower Paleozoic in Sichuan Basin and Its Periphery.Earth Science Frontiers, 19(3):280-294(in Chinese with English abstract). http://www.coag.com.cn/EN/abstract/abstract2748.shtml [19] Shen, C.B., Mei, L.F., Guo, T.L., 2007.Fission Track Analysis of Mesozoic-Cenozoic Thermal History in Northeast Sichuan Basin.Natural Gas Industry, 27(7):24-26(in Chinese with English abstract). doi: 10.1007%2Fs12583-013-0355-9 [20] Shen, C.B., Mei, L.F., Min, K., et al., 2012.Multi-Chronometric Dating of the Huarong Granitoids from the Middle Yangtze Craton:Implications for the Tectonic Evolution of Eastern China.Journal of Asian Earth Sciences, 52:73-87. https://doi.org/10.1016/j.jseaes.2012.02.013 [21] Shen, C.B., Mei, L.F., Xu, S.H., 2009.Fission Track Dating of Mesozoic Sandstones and Its Tectonic Significance in the Eastern Sichuan Basin, China.Radiation Measurements, 44(9-10):945-949. https://doi.org/10.1016/j.radmeas.2009.10.001 [22] Shi, H.C., Shi, X.B., 2014.Exhumation Process of Middle-Upper Yangtze since Cretaceous and Its Tectonic Significance:Low-Temperature Thermochronology Constraints.Chinese Journal of Geophysics, 57(8):2608-2619(in Chinese with English abstract). http://www.irgrid.ac.cn/handle/1471x/911390 [23] Shi, H.C., Shi, X.B., Yang, X.Q., et al., 2011.Exhumation Process of the Fangdoushan-Shizhu Fold Belt in Meso-Neozoic and Its Tectonic Significance in Western Hubei-Eastern Chongqing.Progress in Geophysics, 26(6):1993-2002(in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-DQWJ201106015.htm [24] Su, Y., 2007.Tectonic Evolution and Its Controlling Effect to Hydrocarbon Accumulation in Western Area of Hunan-Hubei(Dissertation).Graduate School of Chinese Academy of Sciences, Guangzhou(in Chinese with English abstract). [25] Sun, X.J., Wang, P.X., 2005.How Old is the Asian Monsoon System?-Palaeobotanical Records from China.Palaeogeography, Palaeoclimatology, Palaeoecology, 222(3-4):181-222. https://doi.org/10.1016/j.palaeo.2005.03.005 [26] Tang, J.G., Mei, L.F., Shen, C.B., et al., 2012.Response of Hydrocarbon Fluid Source to Tectonic Deformation in Multicycle Superimposed Basin:Example from Palaeozoic and Mesozoic Marine Strata in Yangtze Block.Earth Science, 37(3):526-534(in Chinese with English abstract).https://doi.org/10.3799/dqkx.2012.059 http://industry.wanfangdata.com.cn/dl/Detail/Periodical?id=Periodical_dqkx201203013 [27] Tian, Y.T., Yuan, Y.S., Hu, S.B., et al., 2017.Application of Low-Temperature Thermochronology to Sedimentary Basins:Case Studies in the Northern Sichuan Basin.Earth Science Frontiers, 24(3):105-115(in Chinese with English abstract). doi: 10.1016/j.cageo.2012.07.014 [28] Wang, P., Liu, S.F., Gao, T.J., et al., 2012.Cretaceous Transportation of Eastern Sichuan Arcuate Fold Belt in Three Dimensions:Insights from AFT Analysis.Chinese Journal of Geophysics, 55(5):1662-1673 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-DQWX201205024.htm [29] Wang, S.H., Luo, K.P., Liu, G.X., 2009.Fission Track Records of Tectonic Uplift during the Cenozoic and Mesozoic in the Periphery of the Jianghan Basin.Oil & Gas Geology, 30(3):255-259(in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTotal-SYYT200903001.htm [30] Xie, X.N., Hao, F., Lu, Y.C., et al., 2017.Differential Enrichment Mechanism and Key Technology of Shale Gas in Complex Areas of South China.Earth Science, 42(7):1045-1056(in Chinese with English abstract).https://doi.org/10.3799/dqkx.2017.084 [31] Xu, Z.Y., Yao, G.S., Liang, X., et al., 2015.Shale Gas Preservation Condition in the Lower Paleozoic, Yangtze Block.Petroleum Geology & Experiment, 37(4):407-417(in Chinese with English abstract). [32] Yan, D.P., Jin, Z.L., Zhang, W.C., et al., 2008.Rock Mechanical Characteristics of the Multi-Layer Detachment Fault System and Their Controls on the Structural Deformation Style of the Sichuan-Chongqing-Hunan-Hubei Thin-Skinned Belt, South China.Geological Bulletin of China, 27(10):1687-1697(in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-ZQYD200810012.htm [33] Yan, D.P., Zhang, B., Zhou, M.F., et al., 2009.Constraints on the Depth, Geometry and Kinematics of Blind Detachment Faults Provided by Fault-Propagation Folds:An Example from the Mesozoic Fold Belt of South China.Journal of Structural Geology, 31(2):150-162. https://doi.org/10.1016/j.jsg.2008.11.005 [34] Yan, D.P., Zhou, M.F., Song, H.L., et al., 2003.Origin and Tectonic Significance of a Mesozoic Multi-Layer Over-Thrust System within the Yangtze Block (South China).Tectonophysics, 361(3-4):239-254.https://doi.org/10.1016/s0040-1951(02)00646-7 doi: 10.1016/S0040-1951(02)00646-7 [35] Yu, W., Shen, C.B., Yang, C.Q., 2017.Constraints of Fission Track Dating on the Mesozoic-Cenozoic Tectonic-Thermal Evolution of the Zigui Basin.Earth Science Frontiers, 24(3):116-126(in Chinese with English abstract). doi: 10.1007%2Fs00531-012-0800-5 [36] Yuan, Y.S., Lin, J.H., Cheng, X.Y., et al., 2014.Yanshan-Himalayan Denudation in Western Hubei Eastern Chongqing Area.Chinese Journal of Geophysics, 57(9):2878-2884.(in Chinese with English abstract). doi: 10.1002/cjg2.20144/full?scrollTo=references [37] Yuan, Y.S., Sun, D.S., Zhou, Y., et al., 2010.Determination of Onset of Uplifting for the Mid-Upper Yangtze Area after Indosinian Event.Chinese Journal of Geophysics, 53(2):362-369(in Chinese with English abstract). doi: 10.1002/cjg2.1515/abstract [38] Zhang, P., Mei, L.F., Xiong, P., et al., 2017.Structural Features and Proto-Type Basin Reconstructions of the Bay of Bengal Basin:A Remnant Ocean Basin Model.Journal of Earth Science, 28(4):666-682. https://doi.org/10.1007/s12583-017-0750-8 [39] Zhang, Y.Q., Dong, S.W., Li, J.H., et al., 2012.The New Progress in the Study of Mesozoic Tectonics of South China.Acta Geoscientica Sinica, 33(3):257-279(in Chinese with English abstract). doi: 10.1007%2Fs11430-013-4679-1 [40] Zhai, G.Y., Wang, Y.F., Bao, S.J., et al., 2017.Major Factors Controlling the Accumulation and High Productivity of Marine Shale Gas and Prospect Forecast in Southern China.Earth Science, 42(7):1057-1068(in Chinese with English abstract).https://doi.org/10.3799/dqkx.2017.085 https://www.researchgate.net/publication/283808736_Major_factors_controlling_the_accumulation_and_high_productivity_in_marine_shale_gas_in_the_lower_paleozoic_of_Sichuan_Basin_and_its_periphery_A_case_study_of_the_Wufeng-Longmaxi_Formation_of_Jiaoshib [41] Zheng, B., 2008.Geochemical Study of Hydrocarbon Accumulations with Multiple Source and Multiple Generation Stages in the Middle Yangzi Area(Dissertation).Chengdu University of Technology, Chengdu(in Chinese with English abstract). https://www.sciencedirect.com/science/article/pii/S0166516217303026 [42] 常远, 周祖翼, 2010.利用低温热年代学数据计算剥露速率的基本方法.科技导报, 28(21):86-94. http://www.oalib.com/paper/4626249 [43] 丁道桂, 刘光祥, 吕俊祥, 等, 2007.扬子板块海相中古生界盆地的递进变形改造.地质通报, 26(9):1178-1188. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=zgqydz200709019 [44] 郭旭升, 2014.南方海相页岩气"二元富集"规律—四川盆地及周缘龙马溪组页岩气勘探实践认识.地质学报, 88(7):1209-1218. https://www.wenkuxiazai.com/doc/c49ccc36998fcc22bdd10d9f.html [45] 胡召齐, 2011.上扬子地区北部构造演化与热年代学研究(博士学位论文).合肥:合肥工业大学. http://cdmd.cnki.com.cn/Article/CDMD-10359-1012347292.htm [46] 胡召齐, 朱光, 刘国生, 等, 2009.川东"侏罗山式"褶皱带形成时代:不整合面的证据.地质论评, 55(1):32-42. http://www.cnki.com.cn/Article/CJFDTOTAL-DZXE201306003.htm [47] 金宠, 李三忠, 王岳军, 等, 2009.雪峰山陆内复合构造系统印支-燕山期构造穿时递进特征.石油与天然气地质, 30(5):598-607. doi: 10.11743/ogg20090510 [48] 李海, 白云山, 王保忠, 等, 2014.湘鄂西地区下古生界页岩气保存条件.油气地质与采收率, 21(6):22-25. http://www.cnki.com.cn/Article/CJFDTotal-YQCS201406005.htm [49] 李三忠, 张国伟, 周立宏, 等, 2011.中、新生代超级汇聚背景下的陆内差异变形:华北伸展裂解和华南挤压逆冲.地学前缘, 18(3):79-107. http://www.cnki.com.cn/Article/CJFDTOTAL-DXQY201103012.htm [50] 李双建, 肖开华, 汪新伟, 等, 2008.南方志留系碎屑矿物热年代学分析及其地质意义.地质学报, 82(8):1068-1076. http://mall.cnki.net/magazine/Article/DZXE200808007.htm [51] 李天义, 何生, 何治亮, 等, 2012.中扬子地区当阳复向斜中生代以来的构造抬升和热史重建.石油学报, 33(2):213-224. doi: 10.7623/syxb201202005 [52] 刘安, 危凯, 李旭兵, 等, 2015.桑植-石门复向斜及邻区古流体特征与油气保存意义.石油实验地质, 37(6):742-750. doi: 10.11781/sysydz201506742 [53] 刘恩山, 李三忠, 金宠, 等, 2010.雪峰陆内构造系统燕山期构造变形特征和动力学.海洋地质与第四纪地质, 30(5):63-74. http://www.wanfangdata.com.cn/details/detail.do?_type=degree&id=Y1829763 [54] 梅廉夫, 邓大飞, 沈传波, 等, 2012.江南-雪峰隆起构造动力学与海相油气成藏演化.地质科技情报, 31(5):85-93. http://www.cnki.com.cn/Article/CJFDTOTAL-DZKQ201205013.htm [55] 梅廉夫, 刘昭茜, 汤济广, 等, 2010.湘鄂西-川东中生代陆内递进扩展变形:来自裂变径迹和平衡剖面的证据.地球科学, 35(2):161-174.https://doi.org/10.3799/dqkx.2010.017 http://www.earth-science.net/WebPage/Article.aspx?id=1941 [56] 聂海宽, 包书景, 高波, 等, 2012.四川盆地及其周缘下古生界页岩气保存条件研究.地学前缘, 19(3):280-294. http://mall.cnki.net/magazine/Article/DXQY201203030.htm [57] 沈传波, 梅廉夫, 郭彤楼, 2007.川东北地区中、新生代热历史的裂变径迹分析.天然气工业, 27(7):24-26. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=trqgy200707007 [58] 石红才, 施小斌, 2014.中、上扬子白垩纪以来的剥蚀过程及构造意义—低温年代学数据约束.地球物理学报, 57(8):2608-2619. doi: 10.6038/cjg20140820 [59] 石红才, 施小斌, 杨小秋, 等, 2011.鄂西渝东方斗山-石柱褶皱带中新生代隆升剥蚀过程及构造意义.地球物理学进展, 26(6):1993-2002. http://mall.cnki.net/magazine/Article/DQWJ201106015.htm [60] 苏勇, 2007.湘鄂西区块构造演化及其对油气聚集的控制作用(博士学位论文).广州:中国科学院研究生院. http://cdmd.cnki.com.cn/Article/CDMD-10425-1016711438.htm [61] 汤济广, 梅廉夫, 沈传波, 等, 2012.多旋回叠合盆地烃流体源与构造变形响应:以扬子地块中古生界海相为例.地球科学, 37(3):526-534.https://doi.org/10.3799/dqkx.2012.059 http://www.earth-science.net/WebPage/Article.aspx?id=2256 [62] 田云涛, 袁玉松, 胡圣标, 等, 2017.低温热年代学在沉积盆地研究中的应用:以四川盆地北部为例.地学前缘, 24(3):105-115. https://www.researchgate.net/publication/317374228_diwenreniandaixuezaichenjipendeyanjiuzhongdeyingyongyisichuanpendebeibuweili [63] 王平, 刘少峰, 郜瑭珺, 等, 2012.川东弧形带三维构造扩展的AFT记录.地球物理学报, 55(5):1662-1673. doi: 10.6038/j.issn.0001-5733.2012.05.023 [64] 王韶华, 罗开平, 刘光祥, 2009.江汉盆地周缘中、新生代构造隆升裂变径迹记录.石油与天然气地质, 30(3):255-259. doi: 10.11743/ogg20090301 [65] 解习农, 郝芳, 陆永潮, 等, 2017.南方复杂地区页岩气差异富集机理及其关键技术.地球科学, 42(7):1045-1056.https://doi.org/10.3799/dqkx.2017.084 http://www.earth-science.net/WebPage/Article.aspx?id=3612 [66] 徐政语, 姚根顺, 梁兴, 等, 2015.扬子陆块下古生界页岩气保存条件分析.石油实验地质, 37(4):407-417. doi: 10.11781/sysydz201504407 [67] 颜丹平, 金哲龙, 张维宸, 等, 2008.川渝湘鄂薄皮构造带多层拆离滑脱系的岩石力学性质及其对构造变形样式的控制.地质通报, 27(10):1687-1697. doi: 10.3969/j.issn.1671-2552.2008.10.011 [68] 余武, 沈传波, 杨超群, 2017.秭归盆地中新生代构造-热演化的裂变径迹约束.地学前缘, 24(3):116-126. http://d.old.wanfangdata.com.cn/Periodical/dxqy201703010 [69] 袁玉松, 林娟华, 程心阳, 等, 2014.鄂西渝东地区晚燕山-喜马拉雅期剥蚀量.地球物理学报, 57(9):2878-2884. doi: 10.6038/cjg20140913 [70] 袁玉松, 孙冬胜, 周雁, 等, 2010.中上扬子地区印支期以来抬升剥蚀时限的确定.地球物理学报, 53(2):362-369. http://www.cnki.com.cn/Article/CJFDTOTAL-DQWX201002015.htm [71] 张岳桥, 董树文, 李建华, 等, 2012.华南中生代大地构造研究新进展.地球学报, 33(3):257-279. http://mall.cnki.net/magazine/Article/DQXB201203001.htm [72] 翟刚毅, 王玉芳, 包书景, 等, 2017.我国南方海相页岩气富集高产主控因素及前景预测.地球科学, 42(7):1057-1068.https://doi.org/10.3799/dqkx.2017.085 http://www.earth-science.net/WebPage/Article.aspx?id=3611 [73] 郑冰, 2008.中扬子区多源、多期油气成藏地球化学研究(博士学位论文).成都:成都理工大学. http://www.cnki.com.cn/Article/CJFDTOTAL-SYXB201206012.htm