• 中国出版政府奖提名奖

    中国百强科技报刊

    湖北出版政府奖

    中国高校百佳科技期刊

    中国最美期刊

    留言板

    尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

    姓名
    邮箱
    手机号码
    标题
    留言内容
    验证码

    碎屑锆石形态学分类体系及其在物源分析中的应用:以松辽盆地松科一井为例

    宋鹰 钱禛钰 张俊霞 StepashkoAndrei

    宋鹰, 钱禛钰, 张俊霞, StepashkoAndrei, 2018. 碎屑锆石形态学分类体系及其在物源分析中的应用:以松辽盆地松科一井为例. 地球科学, 43(6): 1997-2006. doi: 10.3799/dqkx.2018.607
    引用本文: 宋鹰, 钱禛钰, 张俊霞, StepashkoAndrei, 2018. 碎屑锆石形态学分类体系及其在物源分析中的应用:以松辽盆地松科一井为例. 地球科学, 43(6): 1997-2006. doi: 10.3799/dqkx.2018.607
    Song Ying, Qian Zhenyu, Zhang Junxia, Stepashko Andrei, 2018. Morphology of Detrital Zircon and Its Application in Provenance Analysis:Example from Cretaceous Continental Scientific Drilling Borehole in Songliao Basin. Earth Science, 43(6): 1997-2006. doi: 10.3799/dqkx.2018.607
    Citation: Song Ying, Qian Zhenyu, Zhang Junxia, Stepashko Andrei, 2018. Morphology of Detrital Zircon and Its Application in Provenance Analysis:Example from Cretaceous Continental Scientific Drilling Borehole in Songliao Basin. Earth Science, 43(6): 1997-2006. doi: 10.3799/dqkx.2018.607

    碎屑锆石形态学分类体系及其在物源分析中的应用:以松辽盆地松科一井为例

    doi: 10.3799/dqkx.2018.607
    基金项目: 

    山东省重点研发计划项目 2017GXGC1608

    国家自然科学基金项目 41402171

    国家自然科学基金项目 41772102

    详细信息
      作者简介:

      宋鹰(1982-), 男, 博士, 讲师, 主要从事盆地动力学研究

    • 中图分类号: P618

    Morphology of Detrital Zircon and Its Application in Provenance Analysis:Example from Cretaceous Continental Scientific Drilling Borehole in Songliao Basin

    • 摘要: 碎屑锆石的同位素热年代学提供了物源区的精确年龄和大地构造背景, 是目前物源分析中先进的、使用最为广泛的研究方法之一.在同一沉积区内, 碎屑锆石颗粒通常是多来源的, 经历了复杂的从源到汇的物质输送过程.能否揭示沉积物中的锆石颗粒从源区到沉积区的地表动力作用, 是对碎屑锆石同位素年龄及年龄谱系进行合理地质解释的关键.提出碎屑锆石形态学定量化的实验分类方法, 设计出一种适用于多参数分析的多维蛛网密度图, 试图通过对碎屑锆石的来源、锆石晶体的磨圆度、断裂方式、裂隙和表面撞痕等多种形态学参数的定量分析来揭示碎屑锆石由源区到沉积区搬运过程中经历的地表动力特征, 进而丰富和完善碎屑锆石年代学源-汇系统的内容, 为沉积物源分析提供一种新的实验手段.并以松辽盆地松科一井相关的碎屑锆石样品分析为例, 介绍了这种方法的实际应用及其效果.

       

    • 图  1  碎屑锆石磨圆度分级实例

      a为扫描电镜照片, 引自Gärtner et al.(2017); b为透射光照片

      Fig.  1.  The instance pictures illustrating the grading of the roundness of detrital zircons

      图  2  碎屑锆石晶体的3种断裂方式

      a.无断裂, 即晶体完整; b.平行于c轴断裂; c.垂直于c轴断裂; 红色虚线为锆石断开部位

      Fig.  2.  The three grades of the way of fracturing of detrital zircon crystals

      图  3  碎屑锆石晶体表面的裂缝

      如图白色箭头指示进行分辨

      Fig.  3.  Different cracks on the crystal faces of the detrital zircon crystals

      图  4  碎屑锆石晶体表面撞击痕迹的4个等级

      Ⅰ.晶体表面基本无撞痕或撞痕的数量极少, 晶体边缘和晶面平滑; Ⅱ.晶体表面出现少量撞痕, 晶体的某些边缘和少量晶面有缺陷; Ⅲ.晶体表面有相当数量的撞痕, 并在晶体内尖锐的边缘和平滑的晶面上留下显著的痕迹; Ⅳ.晶体表面有大量的撞痕, 整个晶体看起来坑坑洼洼, 粗糙不平; 扫描电镜图片引自Gärtne et al.(2017)

      Fig.  4.  The four grades of collision marks upon the crystal faces of detrital zircon crystals

      图  5  多维蛛网密度图及其表达的6种参数

      根据Gärtne et al.(2017)修改

      Fig.  5.  The multidimensional probability diagram representing the interrelations between six parameters of detrital zircon crystals

      图  6  松辽盆地综合地层柱状图及松科一井嫩五段至四方台组综合地层剖面

      Fig.  6.  The integrated stratigraphic framework of the Songliao basin and the stratigraphic profile from the 5th member of the Nenjiang Formation to the Sifangtai Formation of the CCSD-SK-1

      图  7  松科一井北孔嫩江组(a)和四方台组(b)碎屑锆石样品的多维蛛网密度图

      Fig.  7.  The multidimensional probability diagrams representing the differences of detrital zircon crystals between the 5th member of the Nenjiang Formation (a) and the Sifangtai Formation (b) of the CCSD-SK-1

      表  1  碎屑锆石晶体磨圆度的10个等级

      Table  1.   The ten grades of the roundness of the detrital zircon crystals

      磨圆等级 磨圆度 边缘 棱角 晶体轮廓 单晶面 晶面过渡方式
      1 显著棱角状 尖锐 完整 平直 清晰可见 折痕
      2 棱角状 少量轻微磨圆 完整 平直 清晰可见 折痕
      3 次棱角状 大多轻微磨圆 大多轻微磨圆 平直-弧度 清晰可见 折痕
      4 磨圆差 大多磨圆 大多磨圆 平直-弧度 清晰可见 折痕
      5 一般磨圆 磨圆 磨圆 弧度-少量平直 清晰可见 少量晶面间呈现平滑过渡
      6 磨圆 显著磨圆 显著磨圆 弧度 大多清晰可见,少部分模糊 平滑过渡
      7 磨圆好 某些边缘磨圆至难以分辨 某些棱角磨圆至难以分辨 浑圆 某些晶面难以识别 平滑过渡
      8 磨圆优 大多数边缘磨圆至无法分辨,仅局部残留 大多数棱角磨圆至无法分辨,仅局部残留 大多晶面难以识别 平滑过渡
      9 准完全磨圆 大多数边缘磨圆至无法分辨,极少数残留 大多数棱角磨圆至无法分辨,极少数残留 所有晶面难以识别 平滑过渡
      10 完全磨圆 所有边缘磨圆至无法分辨 所有棱角磨圆至无法分辨 无法识别 平滑过渡
      下载: 导出CSV
    • [1] Allen, P.A., 2008.From Landscapes into Geological History.Nature, 451(7176):274-276. https://doi.org/10.1038/nature06586
      [2] Alling, H.L., 1950.Initial Shape and Roundness of Sedimentary Rock Mineral Particles of Sand Size.Journal of Sedimentary Research, 20:133-147.https://doi.org/10.1306/d42693cd-2b26-11d7-8648000102c1865d http://archives.datapages.com/data/sepm/journals/v01-32/data/020/020003/0133.htm
      [3] Chen, H.H., Zhu, X.M., Huang, H.D., et al., 2017.Sediment Provenance of Shahejie Formation in Lixian Slope of Raoyang Depression Based on the Detrital Zircon Dating Analysis.Earth Science, 42(11):1955-1971(in Chinese with English abstract).https://doi.org/10.3799/dqkx.2017.124 https://www.researchgate.net/profile/Xianghua_Yang3
      [4] Davis, D.W., Williams, I.S., Krogh, T.E., 2003.Historical Development of Zircon Geochronology.Reviews in Mineralogy and Geochemistry, 53(1):145-181. https://doi.org/10.2113/0530145
      [5] Deer, W.A., Howie, R.A., Zussman, J., 1978.Rock-Forming Minerals, 2A.Single-Chain Silicates.Longman, London.
      [6] Dietz, V., 1973.Experiments on the Influence of Transport on Shape and Roundness of Heavy Minerals.Contributions to Sedimentology, 1:69-102. doi: 10.1007%2F978-94-009-3241-8_2
      [7] Dunkl, I., Di Giulio, A., Kuhlemann, J., 2001.Combination of Single-Grain Fission-Track Chronology and Morphological Analysis of Detrital Zircon Crystals in Provenance Studies:Sources of the Macigno Formation(Apennines, Italy).Journal of Sedimentary Research, 71(4):516-525. https://doi.org/10.1306/102900710516
      [8] Fedo, C.M., Sircombe, K.N., Rainbird, R.H., 2003.Detrital Zircon Analysis of the Sedimentary Record.Reviews in Mineralogy and Geochemistry, 53(1):277-303. https://doi.org/10.2113/0530277
      [9] Feng, Z.Q., Jia, C.Z., Xie, X.N., et al., 2010.Tectonostratigraphic Units and Stratigraphic Sequences of the Nonmarine Songliao Basin, Northeast China.Basin Research, 22(1):79-95.https://doi.org/10.1111/j.1365-2117.2009.00445.x doi: 10.1111/bre.2010.22.issue-1
      [10] Finch, R.J., Hanchar, J.M., 2003.Structure and Chemistry of Zircon and Zircon-Group Minerals.Reviews in Mineralogy and Geochemistry, 53(1):1-25.https://doi.org/10.2113/0530001 http://geoscienceworld.org/content/gsrmg/53/1/1.abstract
      [11] Gärtne, A., Linnemann, U., Sagawe, A., et al., 2013.Morphology of Zircon Crystal Grains in Sediments-Characteristics, Classifications, Definitions Morphologie Von Zirkonen in Sedimenten-Merkmale, Klassifikationen, Definitionen.Journal of Central European Geology, 59:65-73. http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.653.284
      [12] Gärtne, A., Youbi, N., Villeneuve, M., et al., 2017.The Zircon Evidence of Temporally Changing Sediment Transport-The NW Gondwana Margin during Cambrian to Devonian Time(Aoucert and Smara Areas, Moroccan Sahara).International Journal of Earth Sciences, 106(8):2747-2769. https://doi.org/10.1007/s00531-017-1457-x
      [13] Garver, J.I., Kamp, P.J.J., 2002.Integration of Zircon Color and Zircon Fission-Track Zonation Patterns in Orogenic Belts:Application to the Southern Alps, New Zealand.Tectonophysics, 349(1-4):203-219.https://doi.org/10.1016/s0040-1951(02)00054-9 doi: 10.1016/S0040-1951(02)00054-9
      [14] Hollis, J.D., Sutherland, F.L., 1985.Occurrences and Origins of Gem Zircons in Eastern Australia.Records of the Australian Museum, 36(6):299-311. https://doi.org/10.3853/j.0067-1975.36.1985.349
      [15] Kong, L.Y., Mao, X.W., Chen, C., et al., 2017.Chronological Study on Detrital Zircons and Its Geological Significance from Mesoproterozoic Dagushi Group in the Dahongshan Area, North Margin of the Yangtze Block.Earth Science, 42(4):485-501(in Chinese with English abstract).https://doi.org/10.3799/dqkx.2017.039 doi: 10.1007%2F978-3-662-47885-1_6
      [16] Košler, J., Sylvester, P.J., 2003.Present Trends and the Future of Zircon in Geochronology:Laser Ablation ICPMS.Reviews in Mineralogy and Geochemistry, 53(1):243-275. https://doi.org/10.2113/0530243
      [17] Lin, C.S., Xia, Q.L., Shi, H.S., et al., 2015.Geomorphological Evolution, Source to Sink System and Basin Analysis.Earth Science Frontiers, 22(1):9-20(in Chinese with English abstract). doi: 10.1111/j.1365-2117.2009.00397.x/abstract
      [18] Liu, Y.S., Hu, Z.C., Zong, K.Q., et al., 2010.Reappraisement and Refinement of Zircon U-Pb Isotope and Trace Element Analyses by LA-ICP-MS.Chinese Science Bulletin, 55(15):1535-1546. https://doi.org/10.1007/s11434-010-3052-4
      [19] Ma, H.Y., 2015.Zircon Separation and the Significance of Morphological Study-A Case Study of Zircon from Granite in Hunan.Mineral Resources and Geology, 29(5):602-607, 639(in Chinese with English abstract).
      [20] Meade, R.H., 1982.Sources, Sinks, and Storage of River Sediment in the Atlantic Drainage of the United States.The Journal of Geology, 90(3):235-252. https://doi.org/10.1086/628677
      [21] Nasdala, L., Zhang, M., Kempe, U., et al., 2003.Spectroscopic Methods Applied to Zircon.Reviews in Mineralogy and Geochemistry, 53:427-467. doi: 10.2113/0530427
      [22] Pupin, J.P., 1980.Zircon and Granite Petrology.Contributions to Mineralogy and Petrology, 73(3):207-220.https://doi.org/10.1007/bf00381441 doi: 10.1007/BF00381441
      [23] Roger, F., Malavieille, J., Leloup, P.H., et al., 2004.Timing of Granite Emplacement and Cooling in the Songpan-Garzê Fold Belt(Eastern Tibetan Plateau) with Tectonic Implications.Journal of Asian Earth Sciences, 22(5):465-481.https://doi.org/10.1016/s1367-9120(03)00089-0 doi: 10.1016/S1367-9120(03)00089-0
      [24] Russell, R.D., Taylor, R.E., 1937.Roundness and Shape of Mississippi River Sands.The Journal of Geology, 45(3):225-267. https://doi.org/10.1086/624526.
      [25] Scott, R.W., Wan, X.Q., Wang, C.S., et al., 2012.Late Cretaceous Chronostratigraphy(Turonian-Maastrichtian):SK1 Core Songliao Basin, China.Geoscience Frontiers, 3(4):357-367.https://doi.org/10.13039/501100001809 doi: 10.1016/j.gsf.2012.02.004
      [26] Song, Y., Ren, J.Y., Stepashko, A., et al., 2014.Post-Rift Geodynamics of the Songliao Basin, NE China:Origin and Significance of T11(Coniacian) Unconformity.Tectonophysics, 634:1-18.https://doi.org/10.13039/501100001809 doi: 10.1016/j.tecto.2014.07.023
      [27] Song, Y., Zhang, J.X., Stepashko, A., et al., 2016.Decomposition the Detrital Grain Ages by Kernel Density Estimation and Its Applications:Determining the Major Tectonic Events in the Songliao Basin, NE China.Earth Science Frontiers, 23(4):265-276(in Chinese with English abstract). https://www.researchgate.net/publication/305243750_Decomposition_the_detrital_grain_ages_by_Kernel_Density_Estimation_and_its_applications_Determining_the_major_tectonic_events_in_the_Songliao_Basin_NE_China
      [28] Vavra, G., Schmid, R., Gebauer, D., 1999.Internal Morphology, Habit and U-Th-Pb Microanalysis of Amphibolite-to-Granulite Facies Zircons:Geochronology of the Ivrea Zone(Southern Alps).Contributions to Mineralogy and Petrology, 134(4):380-404. doi: 10.1007/s004100050492
      [29] Wang, C.S., Cao, K., Huang, Y.J., 2009.Sedimentary Record and Cretaceous Earth Surface System Changes.Earth Science Frontiers, 16(5):1-14(in Chinese with English abstract). doi: 10.1029/JB085iB07p03711
      [30] Wang, C.S., Feng, Z.Q., Wu, H.Y., et al., 2008.Preliminary Achievement of the Chinese Cretaceous Continental Scientific Drilling Project-SK-I.Acta Geologica Sinica, 82(1):9-20(in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-DZXE200801005.htm
      [31] Wang, X., 1998.Quantitative Description of Zircon Morphology and Its Dynamics Analysis.Science in China (Series D), 41(4):422-428. doi: 10.1007/BF02932695
      [32] Wayne, D.M., Sinha, A.K., 1988.Physical and Chemical Response of Zircons to Deformation.Contributions to Mineralogy and Petrology, 98(1):109-121.https://doi.org/10.1007/bf00371915 doi: 10.1007/BF00371915
      [33] Zoleikhaei, Y., Frei, D., Morton, A., et al., 2016.Roundness of Heavy Minerals(Zircon and Apatite) as a Provenance Tool for Unraveling Recycling:A Case Study from the Sefidrud and Sarbaz Rivers in N and SE Iran.Sedimentary Geology, 342:106-117. https://doi.org/10.1016/j.sedgeo.2016.06.016
      [34] 陈贺贺, 朱筱敏, 黄捍东, 等, 2017.基于碎屑锆石定年的饶阳凹陷蠡县斜坡沙河街组物源分析.地球科学, 42(11):1955-1971.https://doi.org/10.3799/dqkx.2017.124 http://www.earth-science.net/WebPage/Article.aspx?id=3682
      [35] 孔令耀, 毛新武, 陈超, 等, 2017.扬子北缘大洪山地区中元古代打鼓石群碎屑锆石年代学及其地质意义.地球科学, 42(4):485-501.https://doi.org/10.3799/dqkx.2017.039 http://www.earth-science.net/WebPage/Article.aspx?id=3563
      [36] 林畅松, 夏庆龙, 施和生, 等, 2015.地貌演化、源-汇过程与盆地分析.地学前缘, 22(1):9-20. https://www.doc88.com/p-5965875001701.html
      [37] 马慧英, 2015.锆石分离与形态学研究的意义—以湖南省花岗岩锆石为例.矿产与地质, 29(5):602-607, 639. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=kcydz201505009
      [38] 宋鹰, 张俊霞, Stepashko, A., 等, 2016.基于核密度估计的碎屑颗粒年龄分析及应用:松辽盆地构造事件定年.地学前缘, 23(4):265-276. http://www.cnki.com.cn/Article/CJFDTotal-DXQY201604026.htm
      [39] 王成善, 曹珂, 黄永建, 2009.沉积记录与白垩纪地球表层系统变化.地学前缘, 16(5):1-14. http://www.cqvip.com/QK/98600X/200905/32018405.html
      [40] 王成善, 冯志强, 吴河勇, 等, 2008.中国白垩纪大陆科学钻探工程:松科一井科学钻探工程的实施与初步进展.地质学报, 82(1):9-20. http://www.cqvip.com/QK/95080X/200801/26492893.html
    • 加载中
    图(7) / 表(1)
    计量
    • 文章访问数:  5417
    • HTML全文浏览量:  1806
    • PDF下载量:  52
    • 被引次数: 0
    出版历程
    • 收稿日期:  2017-12-31
    • 刊出日期:  2018-06-15

    目录

      /

      返回文章
      返回