Morphology of Detrital Zircon and Its Application in Provenance Analysis:Example from Cretaceous Continental Scientific Drilling Borehole in Songliao Basin
-
摘要: 碎屑锆石的同位素热年代学提供了物源区的精确年龄和大地构造背景, 是目前物源分析中先进的、使用最为广泛的研究方法之一.在同一沉积区内, 碎屑锆石颗粒通常是多来源的, 经历了复杂的从源到汇的物质输送过程.能否揭示沉积物中的锆石颗粒从源区到沉积区的地表动力作用, 是对碎屑锆石同位素年龄及年龄谱系进行合理地质解释的关键.提出碎屑锆石形态学定量化的实验分类方法, 设计出一种适用于多参数分析的多维蛛网密度图, 试图通过对碎屑锆石的来源、锆石晶体的磨圆度、断裂方式、裂隙和表面撞痕等多种形态学参数的定量分析来揭示碎屑锆石由源区到沉积区搬运过程中经历的地表动力特征, 进而丰富和完善碎屑锆石年代学源-汇系统的内容, 为沉积物源分析提供一种新的实验手段.并以松辽盆地松科一井相关的碎屑锆石样品分析为例, 介绍了这种方法的实际应用及其效果.Abstract: The geological thermochronology of detrital zircon in sediments is one of the most robust methods for the provenance analysis by providing accurate age constraint and tectonic setting of source terranes.However, the detrital zircon grains are often derived from more than one source terrane and have undergone a rather complicated terrestrial transportation processes from source to sink.The reconstruction of the surface dynamic processes from the source area to the catchment basin is critical to convincing geological interpretation of the detrital zircon U-Pb age patterns.This paper presents a new approach for the quantitative classification of detrital zircon morphologies, by quantifing various morphological parameters, including the mother rock of detrital zircon, the degree of crystal roundness, the way of crystal fracture, the degree of crystal fissure and the collision marks upon the crystal surfaces.In order to illustrate all the morphological parameters and make a reliable geological interpretation, we designed a new kind and teaching-friendly density plot, the multidimensional spider density plot, which could reveal the overall trend of one detrital zircon sample during the whole surface transportation process.Finally, detrital zircon samples, which were collected from the Cretaceous Continental Scientific Drilling borehole (CCSD-SK-1) in the Songliao basin, were analyzed to detect the provenance variation.The practical application proves that the morphological classification proposed in this paper is valid and reliable for provenance study.
-
图 1 碎屑锆石磨圆度分级实例
a为扫描电镜照片, 引自Gärtner et al.(2017); b为透射光照片
Fig. 1. The instance pictures illustrating the grading of the roundness of detrital zircons
图 4 碎屑锆石晶体表面撞击痕迹的4个等级
Ⅰ.晶体表面基本无撞痕或撞痕的数量极少, 晶体边缘和晶面平滑; Ⅱ.晶体表面出现少量撞痕, 晶体的某些边缘和少量晶面有缺陷; Ⅲ.晶体表面有相当数量的撞痕, 并在晶体内尖锐的边缘和平滑的晶面上留下显著的痕迹; Ⅳ.晶体表面有大量的撞痕, 整个晶体看起来坑坑洼洼, 粗糙不平; 扫描电镜图片引自Gärtne et al.(2017)
Fig. 4. The four grades of collision marks upon the crystal faces of detrital zircon crystals
图 5 多维蛛网密度图及其表达的6种参数
Fig. 5. The multidimensional probability diagram representing the interrelations between six parameters of detrital zircon crystals
表 1 碎屑锆石晶体磨圆度的10个等级
Table 1. The ten grades of the roundness of the detrital zircon crystals
磨圆等级 磨圆度 边缘 棱角 晶体轮廓 单晶面 晶面过渡方式 1 显著棱角状 尖锐 完整 平直 清晰可见 折痕 2 棱角状 少量轻微磨圆 完整 平直 清晰可见 折痕 3 次棱角状 大多轻微磨圆 大多轻微磨圆 平直-弧度 清晰可见 折痕 4 磨圆差 大多磨圆 大多磨圆 平直-弧度 清晰可见 折痕 5 一般磨圆 磨圆 磨圆 弧度-少量平直 清晰可见 少量晶面间呈现平滑过渡 6 磨圆 显著磨圆 显著磨圆 弧度 大多清晰可见,少部分模糊 平滑过渡 7 磨圆好 某些边缘磨圆至难以分辨 某些棱角磨圆至难以分辨 浑圆 某些晶面难以识别 平滑过渡 8 磨圆优 大多数边缘磨圆至无法分辨,仅局部残留 大多数棱角磨圆至无法分辨,仅局部残留 圆 大多晶面难以识别 平滑过渡 9 准完全磨圆 大多数边缘磨圆至无法分辨,极少数残留 大多数棱角磨圆至无法分辨,极少数残留 圆 所有晶面难以识别 平滑过渡 10 完全磨圆 所有边缘磨圆至无法分辨 所有棱角磨圆至无法分辨 圆 无法识别 平滑过渡 -
[1] Allen, P.A., 2008.From Landscapes into Geological History.Nature, 451(7176):274-276. https://doi.org/10.1038/nature06586 [2] Alling, H.L., 1950.Initial Shape and Roundness of Sedimentary Rock Mineral Particles of Sand Size.Journal of Sedimentary Research, 20:133-147.https://doi.org/10.1306/d42693cd-2b26-11d7-8648000102c1865d http://archives.datapages.com/data/sepm/journals/v01-32/data/020/020003/0133.htm [3] Chen, H.H., Zhu, X.M., Huang, H.D., et al., 2017.Sediment Provenance of Shahejie Formation in Lixian Slope of Raoyang Depression Based on the Detrital Zircon Dating Analysis.Earth Science, 42(11):1955-1971(in Chinese with English abstract).https://doi.org/10.3799/dqkx.2017.124 https://www.researchgate.net/profile/Xianghua_Yang3 [4] Davis, D.W., Williams, I.S., Krogh, T.E., 2003.Historical Development of Zircon Geochronology.Reviews in Mineralogy and Geochemistry, 53(1):145-181. https://doi.org/10.2113/0530145 [5] Deer, W.A., Howie, R.A., Zussman, J., 1978.Rock-Forming Minerals, 2A.Single-Chain Silicates.Longman, London. [6] Dietz, V., 1973.Experiments on the Influence of Transport on Shape and Roundness of Heavy Minerals.Contributions to Sedimentology, 1:69-102. doi: 10.1007%2F978-94-009-3241-8_2 [7] Dunkl, I., Di Giulio, A., Kuhlemann, J., 2001.Combination of Single-Grain Fission-Track Chronology and Morphological Analysis of Detrital Zircon Crystals in Provenance Studies:Sources of the Macigno Formation(Apennines, Italy).Journal of Sedimentary Research, 71(4):516-525. https://doi.org/10.1306/102900710516 [8] Fedo, C.M., Sircombe, K.N., Rainbird, R.H., 2003.Detrital Zircon Analysis of the Sedimentary Record.Reviews in Mineralogy and Geochemistry, 53(1):277-303. https://doi.org/10.2113/0530277 [9] Feng, Z.Q., Jia, C.Z., Xie, X.N., et al., 2010.Tectonostratigraphic Units and Stratigraphic Sequences of the Nonmarine Songliao Basin, Northeast China.Basin Research, 22(1):79-95.https://doi.org/10.1111/j.1365-2117.2009.00445.x doi: 10.1111/bre.2010.22.issue-1 [10] Finch, R.J., Hanchar, J.M., 2003.Structure and Chemistry of Zircon and Zircon-Group Minerals.Reviews in Mineralogy and Geochemistry, 53(1):1-25.https://doi.org/10.2113/0530001 http://geoscienceworld.org/content/gsrmg/53/1/1.abstract [11] Gärtne, A., Linnemann, U., Sagawe, A., et al., 2013.Morphology of Zircon Crystal Grains in Sediments-Characteristics, Classifications, Definitions Morphologie Von Zirkonen in Sedimenten-Merkmale, Klassifikationen, Definitionen.Journal of Central European Geology, 59:65-73. http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.653.284 [12] Gärtne, A., Youbi, N., Villeneuve, M., et al., 2017.The Zircon Evidence of Temporally Changing Sediment Transport-The NW Gondwana Margin during Cambrian to Devonian Time(Aoucert and Smara Areas, Moroccan Sahara).International Journal of Earth Sciences, 106(8):2747-2769. https://doi.org/10.1007/s00531-017-1457-x [13] Garver, J.I., Kamp, P.J.J., 2002.Integration of Zircon Color and Zircon Fission-Track Zonation Patterns in Orogenic Belts:Application to the Southern Alps, New Zealand.Tectonophysics, 349(1-4):203-219.https://doi.org/10.1016/s0040-1951(02)00054-9 doi: 10.1016/S0040-1951(02)00054-9 [14] Hollis, J.D., Sutherland, F.L., 1985.Occurrences and Origins of Gem Zircons in Eastern Australia.Records of the Australian Museum, 36(6):299-311. https://doi.org/10.3853/j.0067-1975.36.1985.349 [15] Kong, L.Y., Mao, X.W., Chen, C., et al., 2017.Chronological Study on Detrital Zircons and Its Geological Significance from Mesoproterozoic Dagushi Group in the Dahongshan Area, North Margin of the Yangtze Block.Earth Science, 42(4):485-501(in Chinese with English abstract).https://doi.org/10.3799/dqkx.2017.039 doi: 10.1007%2F978-3-662-47885-1_6 [16] Košler, J., Sylvester, P.J., 2003.Present Trends and the Future of Zircon in Geochronology:Laser Ablation ICPMS.Reviews in Mineralogy and Geochemistry, 53(1):243-275. https://doi.org/10.2113/0530243 [17] Lin, C.S., Xia, Q.L., Shi, H.S., et al., 2015.Geomorphological Evolution, Source to Sink System and Basin Analysis.Earth Science Frontiers, 22(1):9-20(in Chinese with English abstract). doi: 10.1111/j.1365-2117.2009.00397.x/abstract [18] Liu, Y.S., Hu, Z.C., Zong, K.Q., et al., 2010.Reappraisement and Refinement of Zircon U-Pb Isotope and Trace Element Analyses by LA-ICP-MS.Chinese Science Bulletin, 55(15):1535-1546. https://doi.org/10.1007/s11434-010-3052-4 [19] Ma, H.Y., 2015.Zircon Separation and the Significance of Morphological Study-A Case Study of Zircon from Granite in Hunan.Mineral Resources and Geology, 29(5):602-607, 639(in Chinese with English abstract). [20] Meade, R.H., 1982.Sources, Sinks, and Storage of River Sediment in the Atlantic Drainage of the United States.The Journal of Geology, 90(3):235-252. https://doi.org/10.1086/628677 [21] Nasdala, L., Zhang, M., Kempe, U., et al., 2003.Spectroscopic Methods Applied to Zircon.Reviews in Mineralogy and Geochemistry, 53:427-467. doi: 10.2113/0530427 [22] Pupin, J.P., 1980.Zircon and Granite Petrology.Contributions to Mineralogy and Petrology, 73(3):207-220.https://doi.org/10.1007/bf00381441 doi: 10.1007/BF00381441 [23] Roger, F., Malavieille, J., Leloup, P.H., et al., 2004.Timing of Granite Emplacement and Cooling in the Songpan-Garzê Fold Belt(Eastern Tibetan Plateau) with Tectonic Implications.Journal of Asian Earth Sciences, 22(5):465-481.https://doi.org/10.1016/s1367-9120(03)00089-0 doi: 10.1016/S1367-9120(03)00089-0 [24] Russell, R.D., Taylor, R.E., 1937.Roundness and Shape of Mississippi River Sands.The Journal of Geology, 45(3):225-267. https://doi.org/10.1086/624526. [25] Scott, R.W., Wan, X.Q., Wang, C.S., et al., 2012.Late Cretaceous Chronostratigraphy(Turonian-Maastrichtian):SK1 Core Songliao Basin, China.Geoscience Frontiers, 3(4):357-367.https://doi.org/10.13039/501100001809 doi: 10.1016/j.gsf.2012.02.004 [26] Song, Y., Ren, J.Y., Stepashko, A., et al., 2014.Post-Rift Geodynamics of the Songliao Basin, NE China:Origin and Significance of T11(Coniacian) Unconformity.Tectonophysics, 634:1-18.https://doi.org/10.13039/501100001809 doi: 10.1016/j.tecto.2014.07.023 [27] Song, Y., Zhang, J.X., Stepashko, A., et al., 2016.Decomposition the Detrital Grain Ages by Kernel Density Estimation and Its Applications:Determining the Major Tectonic Events in the Songliao Basin, NE China.Earth Science Frontiers, 23(4):265-276(in Chinese with English abstract). https://www.researchgate.net/publication/305243750_Decomposition_the_detrital_grain_ages_by_Kernel_Density_Estimation_and_its_applications_Determining_the_major_tectonic_events_in_the_Songliao_Basin_NE_China [28] Vavra, G., Schmid, R., Gebauer, D., 1999.Internal Morphology, Habit and U-Th-Pb Microanalysis of Amphibolite-to-Granulite Facies Zircons:Geochronology of the Ivrea Zone(Southern Alps).Contributions to Mineralogy and Petrology, 134(4):380-404. doi: 10.1007/s004100050492 [29] Wang, C.S., Cao, K., Huang, Y.J., 2009.Sedimentary Record and Cretaceous Earth Surface System Changes.Earth Science Frontiers, 16(5):1-14(in Chinese with English abstract). doi: 10.1029/JB085iB07p03711 [30] Wang, C.S., Feng, Z.Q., Wu, H.Y., et al., 2008.Preliminary Achievement of the Chinese Cretaceous Continental Scientific Drilling Project-SK-I.Acta Geologica Sinica, 82(1):9-20(in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-DZXE200801005.htm [31] Wang, X., 1998.Quantitative Description of Zircon Morphology and Its Dynamics Analysis.Science in China (Series D), 41(4):422-428. doi: 10.1007/BF02932695 [32] Wayne, D.M., Sinha, A.K., 1988.Physical and Chemical Response of Zircons to Deformation.Contributions to Mineralogy and Petrology, 98(1):109-121.https://doi.org/10.1007/bf00371915 doi: 10.1007/BF00371915 [33] Zoleikhaei, Y., Frei, D., Morton, A., et al., 2016.Roundness of Heavy Minerals(Zircon and Apatite) as a Provenance Tool for Unraveling Recycling:A Case Study from the Sefidrud and Sarbaz Rivers in N and SE Iran.Sedimentary Geology, 342:106-117. https://doi.org/10.1016/j.sedgeo.2016.06.016 [34] 陈贺贺, 朱筱敏, 黄捍东, 等, 2017.基于碎屑锆石定年的饶阳凹陷蠡县斜坡沙河街组物源分析.地球科学, 42(11):1955-1971.https://doi.org/10.3799/dqkx.2017.124 http://www.earth-science.net/WebPage/Article.aspx?id=3682 [35] 孔令耀, 毛新武, 陈超, 等, 2017.扬子北缘大洪山地区中元古代打鼓石群碎屑锆石年代学及其地质意义.地球科学, 42(4):485-501.https://doi.org/10.3799/dqkx.2017.039 http://www.earth-science.net/WebPage/Article.aspx?id=3563 [36] 林畅松, 夏庆龙, 施和生, 等, 2015.地貌演化、源-汇过程与盆地分析.地学前缘, 22(1):9-20. https://www.doc88.com/p-5965875001701.html [37] 马慧英, 2015.锆石分离与形态学研究的意义—以湖南省花岗岩锆石为例.矿产与地质, 29(5):602-607, 639. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=kcydz201505009 [38] 宋鹰, 张俊霞, Stepashko, A., 等, 2016.基于核密度估计的碎屑颗粒年龄分析及应用:松辽盆地构造事件定年.地学前缘, 23(4):265-276. http://www.cnki.com.cn/Article/CJFDTotal-DXQY201604026.htm [39] 王成善, 曹珂, 黄永建, 2009.沉积记录与白垩纪地球表层系统变化.地学前缘, 16(5):1-14. http://www.cqvip.com/QK/98600X/200905/32018405.html [40] 王成善, 冯志强, 吴河勇, 等, 2008.中国白垩纪大陆科学钻探工程:松科一井科学钻探工程的实施与初步进展.地质学报, 82(1):9-20. http://www.cqvip.com/QK/95080X/200801/26492893.html