Research Advances of Thermochronology in Mineral Deposits
-
摘要: 同位素地质年代学是一门传统的定年学科,广泛应用于地质各个领域研究中.随着同位素地质年代学理论创新与技术进步,现在逐步发展成为地质热年代学,即将地质年代数据赋予相应封闭温度属性,使之不仅揭示地质事件年龄,而且反映该事件发生的温度条件.不同定年方法以及测试样品的不同,其对应的封闭温度不同,从而可以揭示地质体在更大温度或年龄范围的形成演化过程,定量研究矿区或矿体的隆升与剥露,评价矿床形成后的保存与变化状况,提高找矿预测效果.主要总结和论述诸如40Ar-39Ar、裂变径迹和(U-Th)/He等中-低温热年代学技术方法及其在矿床地质中的应用研究状况,分析热年代学技术与应用发展趋势,以期为成矿作用研究提供新的应用技术手段.Abstract: Isotopic geochronology, a traditional subject to obtain absolute isotopic ages based on radioactive decay theory, has been widely used to date geological time in various fields. With theoretical innovation and technical developments, the isotopic geochronology gradually develops into the thermochronology that is of closure temperature feature and could not only date geological event, but also ascertain both temperature and thermal history of economic geological event. Since various methods have different closure temperatures, several thermochronology techniques could be synthetically applied to recover whole geological evolution history in a wide range of temperature and/or age. The thermochronology methods are especially used to reveal mineralization ages and epochs, rates of exhumation-erosion of ore deposit or ore district, and ore deposit preservation potential, providing evidences for deep ore prospecting and mineralizing potentiality evaluation.This paper summarizes the middle-low temperature thermochronology methods that have been utilized in mineralization, such as 40Ar/39Ar, fission track and (U-Th)/He techniques, and then presents research developments. It is expected that this work should provide new research contents and helpful technical methods for ore deposit field.
-
Key words:
- geological thermochronology /
- measure technique /
- dating method /
- ore deposits
-
表 1 不同矿物40Ar/39Ar封闭温度
Table 1. Closure temperatures of different minerals for 40Ar/39Ar method
矿物 封闭温度及其出处 角闪石 580~480 ℃(Harrison and McDougall, 1981);500 ±50 ℃(Reddy et al., 1997) 白云母 325~270 ℃(Snee et al., 1988);380 ℃(Robbins,1972) 黑云母 340~280 ℃(McDougall and Harrison, 1999);348 ℃(Grove and Harrison, 1996) 长石 150~350 ℃(McDougall and Harrison, 1999) 钾长石 223 ℃(Foland,1994) 表 2 不同矿物的(U-Th)/He体系封闭温度
Table 2. The different mineral closure temperatures for (U-Th)/He systems
矿物 封闭温度区间 参考文献出处 磷灰石 105±30 ℃ Wolf et al., 1998 ~80~120°(1 ℃/Ma) Warnock et al., 1997 ~95~135 ℃(10 ℃/Ma) 70 ℃ Braun,2002 65~75 ℃ Farley,2000 55~80 ℃ Flowers et al., 2009 80~90 ℃ Crowley et al., 2002 62 ℃ Flowers et al., 2009 70 ℃ Farley,2000;Reiners and Farley, 1999, 2001 60~75 ℃ Ehlers and Farley, 2003 75 ℃ Wolf et al., 1996 75±5 ℃ Wolf et al., 1998 锆石 183 ℃ Reiners et al., 2004 140~220 ℃ Guenthner et al., 2013 200~230 ℃ Reiners et al., 2002 181 ℃ Wolf and Stockli, 2010 180 ℃ Reiners et al., 2002, 2003 160~210 ℃ Reiners et al., 2002 200 ℃ Farley,2000;Reiners and Farley, 2001 190 ℃ Ehlers and Farley, 2003 175~195 ℃ Tagami et al., 2003 榍石 191~218 ℃ Reiners and Farley, 1999 200 ℃ Farley,2000 磁铁矿 ~250 ℃ Blackburn et al., 2007 独居石 206±24 ℃,230±4 ℃,286±13 ℃ Boyce et al., 2005 注:采用(U-Th)/He方法. 表 3 不同矿物的FT体系封闭温度
Table 3. The different mineral closure temperatures for FT systems
矿物 封闭温度区间 参考文献出处 锆石 ~250 ℃ Tagami and Shimada, 1996 205±18 ℃ Bernet,2009 235~245 ℃ Brandon,1992 ~240 ℃ Yamada et al., 1995 210±20 ℃ Zaun and Wagner, 1985 ~220~235 ℃ Liu et al., 2000 215~240 ℃ Garver et al., 1998 240 ± 20 ℃ Brandon et al., 1998 240 ± 50 ℃ Hurford,1986 磷灰石 ~115 ℃ Batt and Braun, 1999 110 ± 10 ℃ Gleadow et al., 1983 ~110~135 ℃ Liu et al., 2000 100~120 ℃ Garver et al., 1998 125 ℃ Gleadow et al., 1983 81~200 ℃ Ketcham et al., 2003 榍石 265~310 ℃ Coyle and Wagner, 1998 注:采用FT方法. -
[1] Avdeev, B., Niemi, N.A., 2011.Rapid Pliocene Exhumation of the Central Greater Caucasus Constrained by Low-Temperature Thermochronometry.Tectonics, 30(2). https://doi.org/10.1029/2010tc002808 [2] Bargnesi, E.A., Stockli, D.F., Mancktelow, N., et al., 2013.Miocene Core Complex Development and Coeval Supradetachment Basin Evolution of Paros, Greece, Insights from (U-Th)/He Thermochronometry.Tectonophysics, 595-596:165-182. https://doi.org/10.1016/j.tecto.2012.07.015 [3] Batt, G.E., Braun, J., 1999.The Tectonic Evolution of the Southern Alps, New Zealand:Insights from Fully Thermally Coupled Dynamical Modelling.Geophysical Journal International, 136(2):403-420. https://doi.org/10.1046/j.1365-246x.1999.00730.x [4] Berger, G.W., York, D., 1981.Geothermometry from Dating Experiments.Geochimica et Cosmochimica Acta, 45(6):795-811. https://doi.org/10.1016/0016-7037(81)90109-5 [5] Bernet, M., 2009.A Field-Based Estimate of the Zircon Fission-Track Closure Temperature.Chemical Geology, 259(3-4):181-189. https://doi.org/10.1016/j.chemgeo.2008.10.043 [6] Blackburn, T.J., Stockli, D.F., Walker, J.D., 2007.Magnetite (U-Th)/He Dating and Its Application to the Geochronology of Intermediate to Mafic Volcanic Rocks.Earth and Planetary Science Letters, 259(3-4):360-371. https://doi.org/10.1016/j.epsl.2007.04.044 [7] Boyce, J.W., Hodges, K.V., Olszewski, W.J., et al., 2005.He Diffusion in Monazite:Implications for (U-Th)/He Thermochronometry.Geochemistry, Geophysics, Geosystems, 6(12):Q12004. https://doi.org/10.1029/2005gc001058 [8] Brandon, M.T., 1992.Decomposition of Fission-Track Grain-Age Distributions.American Journal of Science, 292(8):535-564. https://doi.org/10.2475/ajs.292.8.535 [9] Brandon, M.T., Roden-Tice, M.K., Garver, J.I., 1998.Late Cenozoic Exhumation of the Cascadia Accretionary Wedge in the Olympic Mountains, Northwest Washington State.Geological Society of America Bulletin, 110(8):985-1009.https://doi.org/10.1130/0016-7606(1998)110<0985:lceotc>2.3.co;2 doi: 10.1130/0016-7606(1998)110<0985:lceotc>2.3.co;2 [10] Braun, J., 2002.Quantifying the Effect of Recent Relief Changes on Age-Elevation Relationships.Earth and Planetary Science Letters, 200(3-4):331-343. https://doi.org/10.1016/s0012-821x(02)00638-6 [11] Brooks, W.E., Snee, L.W., 1996.Timing and Effect of Detachment-Related Potassium Metasomatism on 40Ar/39Ar Ages from the Windous Butte Formation, Grant Range, Nevada.Social Change, 34(1):57-65. http://www.academia.edu/887403/Tertiary_minette_and_melanephelinite_dikes_Wasatch_Plateau_Utah_records_of_mantle_heterogeneities_and_changing_tectonics [12] Chakurian, A.M., Arehart, G.B., Donelick, R.A., et al., 2003.Timing Constraints of Gold Mineralization along the Carlin Trend Utilizing Apatite Fission-Track, 40Ar/39Ar, and Apatite (U-Th)/He Methods.Economic Geology, 98(6):1159-1171. https://doi.org/10.2113/gsecongeo.98.6.1159 [13] Chen, W., Wan, Y.S., Li, H.Q., et al., 2011.Isotope Geochronology:Technique and Application.Acta Geologica Sinica, 85(11):1917-1947(in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-DZXE201111010.htm [14] Chen, W., Zhan, Y., Zhang, Y.Q., et al., 2006.Late Cenozoic Episodic Uplifting in Southeastern Part of the Tibetan Plateau-Evidence from Ar-Ar Thermochronology.Acta Petrologica Sinica, 22(4):867-872 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-YSXB200604010.htm [15] Chen, X.H., Chen, Z.L., Han, S.Q., et al., 2012.Geothermochronology of Mo-W Deposits in Balkhash Metallogenic Belt, Kazakhstan, Central Asia.Earth Science, 37(5):878-892(in Chinese with English abstract). https://doi.org/10.3799/dqkx.2012.097 [16] Chesley, J.T., Halliday, A.N., Snee, L.W., et al., 1993.Thermochronology of the Cornubian Batholith in Southwest England:Implications for Pluton Emplacement and Protracted Hydrothermal Mineralization.Geochimica et Cosmochimica Acta, 57(8):1817-1835. https://doi.org/10.1016/0016-7037(93)90115-d [17] Coyle, D.A., Wagner, G.A., 1998.Positioning the Titanite Fission-Track Partial Annealing Zone.Chemical Geology, 149(1-2):117-125. https://doi.org/10.1016/s0009-2541(98)00041-2 [18] Crowley, P.D., Reiners, P.W., Reuter, J.M., et al., 2002.Laramide Exhumation of the Bighorn Mountains, Wyoming:An Apatite (U-Th)/He Thermochronology Study.Geology, 30(1):27-30.https://doi.org/10.1130/0091-7613(2002)030<0027:leotbm>2.0.co;2 doi: 10.1130/0091-7613(2002)030<0027:leotbm>2.0.co;2 [19] Deng, J., Wang, C.M., Bagas, L., et al., 2015.Cretaceous-Cenozoic Tectonic History of the Jiaojia Fault and Gold Mineralization in the Jiaodong Peninsula, China:Constraints from Zircon U-Pb, Illite K-Ar, and Apatite Fission Track Thermochronometry.Mineralium Deposita, 50(8):987-1006. https://doi.org/10.1007/s00126-015-0584-1 [20] Dodson, M.H., 1973.Closure Temperature in Cooling Geochronological and Petrological Systems.Contributions to Mineralogy and Petrology, 40(3):259-274. https://doi.org/10.1007/bf00373790 [21] Duvall, A.R., Clark, M.K., Kirby, E., et al., 2013.Low-Temperature Thermochronometry along the Kunlun and Haiyuan Faults, NE Tibetan Plateau:Evidence for Kinematic Change during Late-Stage Orogenesis.Tectonics, 32(5):1190-1211. https://doi.org/10.1002/tect.20072 [22] Ehlers, T.A., Farley, K.A., 2003.Apatite (U-Th)/He Thermochronometry:Methods and Applications to Problems in Tectonic and Surface Processes.Earth and Planetary Science Letters, 206(1-2):1-14. https://doi.org/10.1016/s0012-821x(02)01069-5 [23] Enkelmann, E., Ridgway, K.D., Carignano, C., et al., 2014.A Thermochronometric View into an Ancient Landscape:Tectonic Setting, Development, and Inversion of the Paleozoic Eastern Paganzo Basin, Argentina.Lithosphere, 6(2):93-107. https://doi.org/10.1130/l309.1 [24] Evans, N.J., Byrne, J.P., Keegan, J.T., et al., 2005.Determination of Uranium and Thorium in Zircon, Apatite, and Fluorite:Application to Laser (U-Th)/He Thermochronology.Journal of Analytical Chemistry, 60(12):1159-1165. https://doi.org/10.1007/s10809-005-0260-1 [25] Farley, K.A., 2000.Helium Diffusion from Apatite:General Behavior as Illustrated by Durango Fluorapatite.Journal of Geophysical Research:Solid Earth, 105(B2):2903-2914. https://doi.org/10.1029/1999jb900348 [26] Feng, Y.L., Yuan, W.M., Cao, J.H., et al., 2015a.Minerogenetic Age of Local Gold-Deposit District in Jiapigou Glod Belt, Northeastern China Based on Zircon Fission Track Dating.Atomic Energy Science and Technology, 49(2):379-384 (in Chinese with English abstract). http://manu19.magtech.com.cn/Jwk_yznkxjs_new/CN/abstract/abstract17517.shtml [27] Feng, Y.L., Yuan, W.M., Hao, N.N., et al., 2015b.Denudation and Conservation History of Local District in Jiapigou Glod Deposit, Huadian County, Jilin Province-Evidence from Apatite Fission Track Thermochronology.Geological Review, 61(1):109-120 (in Chinese with English abstract). http://www.en.cnki.com.cn/Article_en/CJFDTOTAL-DZLP201501011.htm [28] Feng, Y.L., Yuan, W.M., Tian, Y.T., et al., 2017.Preservation and Exhumation History of the Harizha-Halongxiuma Mining Area in the East Kunlun Range, Northeastern Tibetan Plateau, China.Ore Geology Reviews, 90:1018-1031. https://doi.org/10.1016/j.oregeorev.2016.12.029 [29] Flowers, R.M., Ketcham, R.A., Shuster, D.L., et al., 2009.Apatite (U-Th)/He Thermochronometry Using a Radiation Damage Accumulation and Annealing Model.Geochimica et Cosmochimica Acta, 73(8):2347-2365. https://doi.org/10.1016/j.gca.2009.01.015 [30] Foland, K. A., 1994. Argon Diffusion in Feldspars. In: Parsons, I., ed., Feldspars and Their Reactions. NATO ASI Series (Series C: Mathematical and Physical Sciences). Springer, Dordrecht, 421. https://doi.org/10.1007/978-94-011-1106-5 [31] Gao, S.K., Yuan, W.M., Dong, J.Q., et al., 2005.A New Method of Nuclear Analysis:Alpha-Recoil Track Thermochronology.Geological Bulletin of China, 24(10):1032-1038(in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTotal-ZQYD2005Z1028.htm [32] Garver, J.I., Brandon, M.T., Roden-Tice, M., et al., 1998.Exhumation History of Orogenic Highlands Determined by Detrital Fission-Track Thermochronology.Geological Society, London, Special Publication, 154(1):283-304. https://doi.org/10.1144/gsl.sp.1999.154.01.13 [33] Geissman, J.W., Snee, L.W., Graaskamp, G.W., et al., 1992.Deformation and Age of the Red Mountain Intrusive System (Urad-Henderson Molybdenum Deposits), Colorado:Evidence from Paleomagnetic and 40Ar/39Ar Data.Geological Society of America Bulletin, 104(8):1031-1047.https://doi.org/10.1130/0016-7606(1992)104<1031:daaotr>2.3.co;2 doi: 10.1130/0016-7606(1992)104<1031:daaotr>2.3.co;2 [34] Gleadow, A.J.W., Duddy, I.R., Lovering, J.F., 1983.Fission Track Analysis:A New Tool for the Evaluation of Thermal Histories and Hydrocarbon Potential.The APPEA Journal, 23(1):93. https://doi.org/10.1071/aj82009 [35] Groff, J.A., Heizler, M.T., McIntosh, W.C., et al., 1997.40Ar/39Ar Dating and Mineral Paragenesis for Carlin-Type Gold Deposits along the Getchell Trend, Nevada; Evidence for Cretaceous and Tertiary Gold Mineralization.Economic Geology, 92(5):601-622. https://doi.org/10.2113/gsecongeo.92.5.601 [36] Grønlie, A.R.N.E., Harder, V.I.C.K.I., Roberts, D.A.V.I.D., 1990.Preliminary Fission-Track Ages of Fluorite Mineralisation along Fracture Zones, Inner Trondheimsfjord, Central Norway.Norsk Geologisk Tidsskrift, 70(3):173-178. http://inis.iaea.org/search/search.aspx?orig_q=RN:22030849 [37] Grove, M., Harrison, T.M., 1996.40Ar* Diffusion in Fe-Rich Biotite.American Mineralogist, 81(7-8):940-951. https://doi.org/10.2138/am-1996-7-816 [38] Groves, D.I., Condie, K.C., Goldfarb, R.J., et al., 2005.100th Anniversary Special Paper:Secular Changes in Global Tectonic Processes and Their Influence on the Temporal Distribution of Gold-Bearing Mineral Deposits.Economic Geology, 100(2):203-224. https://doi.org/10.2113/gsecongeo.100.2.203 [39] Guenthner, W.R., Reiners, P.W., Ketcham, R.A., et al., 2013.Helium Diffusion in Natural Zircon:Radiation Damage, Anisotropy, and the Interpretation of Zircon (U-Th)/He Thermochronology.American Journal of Science, 313(3):145-198. https://doi.org/10.2475/03.2013.01 [40] Halliday, A.N., 1978.40Ar-39Ar Stepheating Studies of Clay Concentrates from Irish Orebodies.Geochimica et Cosmochimica Acta, 42(12):1851-1858. https://doi.org/10.1016/0016-7037(78)90240-5 [41] Harrison, T.M., 2005.Fundamentals of Noble Gas Thermochronometry.Reviews in Mineralogy and Geochemistry, 58(1):123-149. https://doi.org/10.2138/rmg.2005.58.5 [42] Harrison, T.M., Clarke, G.K.C., 1979.A Model of the Thermal Effects of Igneous Intrusion and Uplift as Applied to Quottoon Pluton, British Columbia.Canadian Journal of Earth Sciences, 16(3):411-420. https://doi.org/10.1139/e79-039 [43] Harrison, T.M., Duncan, I., McDougall, I., 1985.Diffusion of 40Ar in Biotite:Temperature, Pressure and Compositional Effects.Geochimica et Cosmochimica Acta, 49(11):2461-2468. https://doi.org/10.1016/0016-7037(85)90246-7 [44] Harrison, T.M., Heizler, M.T., Lovera, O.M., 1993.In Vacuo Crushing Experiments and K-Feldspar Thermochronometry.Earth and Planetary Science Letters, 117(1-2):169-180. https://doi.org/10.1016/0012-821x(93)90124-r [45] Harrison, T.M., McDougall, I., 1981.Excess 40Ar in Metamorphic Rocks from Broken Hill, New South Wales:Implications for 40Ar/39Ar Age Spectra and the Thermal History of the Region.Earth and Planetary Science Letters, 55(1):123-149. https://doi.org/10.1016/0012-821x(81)90092-3 [46] Heim, J.A., Vasconcelos, P.M., Shuster, D.L., et al., 2006.Dating Paleochannel Iron Ore by (U-Th)/He Analysis of Supergene Goethite, Hamersley Province, Australia.Geology, 34(3):173. https://doi.org/10.1130/g22003.1 [47] House, M.A., Kohn, B.P., Farley, K.A., et al., 2002.Evaluating Thermal History Models for the Otway Basin, Southeastern Australia, Using (U-Th)/He and Fission-Track Data from Borehole Apatites.Tectonophysics, 349(1-4):277-295. https://doi.org/10.1016/s0040-1951(02)00057-4 [48] Huan, W.J., Li, N., Yuan, W.M., et al., 2013.Fission Track Constrain on Mineralization Time and Tectonic Events in Ganzi-Litang Gold Belt, Tibet Plateau.Acta Petrologica Sinica, 29(4):1338-1346(in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTotal-YSXB201304019.htm [49] Hurford, A.J., 1986.Cooling and Uplift Patterns in the Lepontine Alps South Central Switzerland and an Age of Vertical Movement on the Insubric Fault Line.Contributions to Mineralogy and Petrology, 92(4):413-427. https://doi.org/10.1007/bf00374424 [50] Kesler, S.E., Wilkinson, B.H., 2006.The Role of Exhumation in the Temporal Distribution of Ore Deposits.Economic Geology, 101(5):919-922. https://doi.org/10.2113/gsecongeo.101.5.919 [51] Ketcham, R.A., Donelick, R.A., Donelick, M.B., 2003.AFTSolve:A Program for Multi-Kinetic Modeling of Apatite Fission-Track Data.American Mineralogist, 88(5):929. https://www.mendeley.com/research-papers/aftsolve-program-multikinetic-modeling-apatite-fissiontrack-data/ [52] Kleine, T., Touboul, M., van Orman, J.A., et al., 2008.Hf-W Thermochronometry:Closure Temperature and Constraints on the Accretion and Cooling History of the H Chondrite Parent Body.Earth and Planetary Science Letters, 270(1-2):106-118. https://doi.org/10.1016/j.epsl.2008.03.013 [53] Landis, G.P., Snee, L.W., Juliani, C., 2005.Evaluation of Argon Ages and Integrity of Fluid-Inclusion Compositions:Stepwise Noble Gas Heating Experiments on 1.87 Ga Alunite from Tapajós Province, Brazil.Chemical Geology, 215(1-4):127-153. https://doi.org/10.1016/j.chemgeo.2004.06.036 [54] Li, G.M., Cao, M.J., Qin, K.Z., et al., 2014.Thermal-Tectonic History of the Baogutu Porphyry Cu Deposit, West Junggar as Constrained from Zircon U-Pb, Biotite Ar/Ar and Zircon/Apatite (U-Th)/He Dating.Journal of Asian Earth Sciences, 79:741-758. https://doi.org/10.1016/j.jseaes.2013.05.026 [55] Liu, T.K., Chen, Y.G., Chen, W.S., et al., 2000.Rates of Cooling and Denudation of the Early Penglai Orogeny, Taiwan, as Assessed by Fission-Track Constraints.Tectonophysics, 320(1):69-82. https://doi.org/10.1016/s0040-1951(00)00028-7 [56] Liu, W.H, .Zhang, J., Li, W.T., et al., 2012.Metallogenic Depth, Post-Mineralization Uplift and Denudation of Porphyry-Like Type Iron Deposits in Ningwu, Luzong Basins:Evidences from Apatite Fission Track.Earth Science, 37(5):966-980 (in Chinese with English abstract). https://doi.org/10.3799/dqkx.2012.105 [57] Liu, Z.J., Wang, J.P., Zheng, D.W., et al., 2010.Exploration Prospect and Post-Ore Denudation in the Northwestern Jiaodong Gold Province, China:Evidence from Apatite Fission Track Thermochronology.Acta Petrologica Sinica, 26(12):3597-3611(in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-YSXB201012013.htm [58] Lorencak, M., Kohn, B.P., Osadetz, K.G., et al., 2004.Combined Apatite Fission Track and (U-Th)/He Thermochronometry in a Slowly Cooled Terrane:Results from a 3 440 m-Deep Drill Hole in the Southern Canadian Shield.Earth and Planetary Science Letters, 227(1-2):87-104. https://doi.org/10.1016/j.epsl.2004.08.015 [59] Lovera, O.M., Richter, F.M., Harrison, T.M., 1989.The 40Ar/39Ar Thermochronometry for Slowly Cooled Samples Having a Distribution of Diffusion Domain Sizes.Journal of Geophysical Research:Solid Earth, 94(B12):17917-17935. https://doi.org/10.1029/jb094ib12p17917 [60] Lovera, O.M., Richter, F.M., Harrison, T.M., 1991.Diffusion Domains Determined by 39Ar Released during Step Heating.Journal of Geophysical Research:Solid Earth, 96(B2):2057-2069. https://doi.org/10.1029/90jb02217 [61] Lupker, M., Blard, P.H., Lavé, J., et al., 2012.10Be-Derived Himalayan Denudation Rates and Sediment Budgets in the Ganga Basin.Earth and Planetary Science Letters, 333-334(6):146-156. https://doi.org/10.1016/j.epsl.2012.04.020 [62] Ma, G.Y., Gao, J.P., Du, D.D., et al., 2014.Uplift Destruction after Mineralization in Jinchuan Copper-Nickel Deposit:Evidences from Thermochronology.Global Geology, 33(3):581-590(in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-SJDZ201403008.htm [63] Ma, S. W., 2017. Structural Framework and the Relationship with Mineralization of Jiama Copper-Polymetallic Deposit, Southern Tibet(Dissertation). Chinese Academy of Geological Sciences, Beijing(in Chinese with English abstract). [64] McDougall, I., Harrison, T.M., 1999.Geochronology and Thermochronology by the 40Ar/39Ar Method.Oxford University Press, New York. [65] Miller, L.D., Goldfarb, R.J., Gehrels, G.E., et al., 1994.Genetic Links among Fluid Cycling, Vein Formation, Regional Deformation, and Plutonism in the Juneau Gold Belt, Southeastern Alaska.Geology, 22(3):203.https://doi.org/10.1130/0091-7613(1994)022<0203:glafcv>2.3.co;2 doi: 10.1130/0091-7613(1994)022<0203:glafcv>2.3.co;2 [66] Miller, L.J., Goldfarb, R.J., Snee, L.W., et al., 1995.Structural Geology, Age, and Mechanisms of Gold Vein Formation at the Kensington and Jualin Deposits, Berners Bay District, Southeast Alaska.Economic Geology, 90(2):343-368. https://doi.org/10.2113/gsecongeo.90.2.343 [67] Onstott, T., Hall, C., York, D., 1989.40Ar/39Ar Thermochronometry of the Imataca Complex, Venezuela.Precambrian Research, 42(3-4):255-291. https://doi.org/10.1016/0301-9268(89)90014-4 [68] Pi, T., Solé, J., Taran, Y., 2005.(U-Th)/He Dating of Fluorite:Application to the La Azul Fluorspar Deposit in the Taxco Mining District, Mexico.Mineralium Deposita, 39(8):976-982. https://doi.org/10.1007/s00126-004-0443-y [69] Qiu, N.S., Reiners, P., Mei, Q.H., et al., 2009.Application of the (U-Th)/He Thermochronometry to the Tectono-Thermal Evolution of Sedimentary Basin-A Case History of Well KQ1 in the Tarim Basin.Chinese Journal of Geophysics, 52(4):803-813. https://doi.org/10.1002/cjg2.1403 [70] Reddy, S.M., Kelley, S.P., Magennis, L., 1997.A Microstructural and Argon Laserprobe Study of Shear Zone Development at the Western Margin of the Nanga Parbat-Haramosh Massif, Western Himalaya.Contributions to Mineralogy and Petrology, 128(1):16-29. https://doi.org/10.1007/s004100050290 [71] Reiners, P.W., Farley, K.A., 1999.Helium Diffusion and (U-Th)/He Thermochronometry of Titanite.Geochimica et Cosmochimica Acta, 63(22):3845-3859. https://doi.org/10.1016/s0016-7037(99)00170-2 [72] Reiners, P.W., Farley, K.A., 2001.Influence of Crystal Size on Apatite (U-Th)/He Thermochronology:An Example from the Bighorn Mountains, Wyoming.Earth and Planetary Science Letters, 188(3-4):413-420. https://doi.org/10.1016/s0012-821x(01)00341-7 [73] Reiners, P.W., Farley, K.A., Hickes, H.J., 2002.He Diffusion and (U-Th)/He Thermochronometry of Zircon:Initial Results from Fish Canyon Tuff and Gold Butte.Tectonophysics, 349(1-4):297-308. https://doi.org/10.1016/s0040-1951(02)00058-6 [74] Reiners, P.W., Spell, T.L., Nicolescu, S., et al., 2004.Zircon (U-Th)/He Thermochronometry:He Diffusion and Comparisons with 40Ar/39Ar Dating.Geochimica et Cosmochimica Acta, 68(8):1857-1887. https://doi.org/10.1016/j.gca.2003.10.021 [75] Reiners, P.W., Zhou, Z., Ehlers, T.A., et al., 2003.Post-Orogenic Evolution of the Dabie Shan, Eastern China, from (U-Th)/He and Fission-Track Thermochronology.American Journal of Science, 303(6):489-518. https://doi.org/10.2475/ajs.303.6.489 [76] Robbins, G. A., 1972. Radiogenic Argon Diffusion in Muscovite under Hydrothermal Conditions. Brown University, Providence, U. S. A. . [77] Shuster, D.L., Cuffey, K.M., Sanders, J.W., et al., 2011.Thermochronometry Reveals Headward Propagation of Erosion in an Alpine Landscape.Science, 332(6025):84-88. https://doi.org/10.13039/100000001 [78] Shuster, D.L., Farley, K.A., 2004.4He/3He Thermochronometry.Earth and Planetary Science Letters, 217(1-2):1-17. https://doi.org/10.1016/S0012-821x(03)00595-8 [79] Snee, L.W., Sutter, J.F., Kelly, W.C., 1988.Thermochronology of Economic Mineral Deposits; Dating the Stages of Mineralization at Panasqueira, Portugal, by High-Precision 40Ar/39Ar Age Spectrum Techniques on Muscovite.Economic Geology, 83(2):335-354. https://doi.org/10.2113/gsecongeo.83.2.335 [80] Spotila, J.A., 2005.Applications of Low-Temperature Thermochronometry to Quantification of Recent Exhumation in Mountain Belts.Reviews in Mineralogy and Geochemistry, 58(1):449-466. https://doi.org/10.2138/rmg.2005.58.17 [81] Stockli, D.F., 2005.Application of Low-Temperature Thermochronometry to Extensional Tectonic Settings.Reviews in Mineralogy and Geochemistry, 58(1):411-448. https://doi.org/10.2138/rmg.2005.58.16 [82] Stock, G.M., Ehlers, T.A., Farley, K.A., 2006.Where does Sediment Come from? Quantifying Catchment Erosion with Detrital Apatite (U-Th)/He Thermochronometry.Geology, 34(9):725-728. https://doi.org/10.1130/g22592.1 [83] Sun, F.F., Zhu, C.B., Yuan, W.M., et al., 2016.Apatite Fission Track Analysis of Tectonic Activity in Harizha Polymetallic Ore District, Dulan County, Qinghai Province.Nuclear Techniques, 39(12):37-44 (in Chinese with English abstract). http://www.en.cnki.com.cn/Article_en/CJFDTOTAL-HJSU201612007.htm [84] Tagami, T., Farley, K.A., Stockli, D.F., 2003.(U-Th)/He Geochronology of Single Zircon Grains of Known Tertiary Eruption Age.Earth and Planetary Science Letters, 207(1-4):57-67. https://doi.org/10.1016/s0012-821x(02)01144-5 [85] Tagami, T., Shimada, C., 1996.Natural Long-Term Annealing of the Zircon Fission Track System around a Granitic Pluton.Journal of Geophysical Research:Solid Earth, 101(B4):8245-8255. https://doi.org/10.1029/95jb02885 [86] Tang, Y.H., Yuan, W.M., Han, C.M., et al., 2003.Fission Track Age of the Yuerya Gold Deposit.Acta Geoscientia Sinica, 24(6):573-578(in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-DQXB200306018.htm [87] Trieloff, M., Jessberger, E.K., Herrwerth, I., et al., 2003.Structure and Thermal History of the H-Chondrite Parent Asteroid Revealed by Thermochronometry.Nature, 422(6931):502-506. https://doi.org/10.1038/nature01499 [88] Vasconcelos, P.M., Brimhall, G.H., Becker, T.A., et al., 1994.Analysis of Supergene Jarosite and Alunite:Implications to the Paleoweathering History of the Western USA and West Africa.Geochimica et Cosmochimica Acta, 58(1):401-420. https://doi.org/10.1016/0016-7037(94)90473-1 [89] Wang, C.M., Deng, J., Santosh, M., et al., 2015.Timing, Tectonic Implications and Genesis of Gold Mineralization in the Xincheng Gold Deposit, China:C-H-O Isotopes, Pyrite Rb-Sr and Zircon Fission Track Thermochronometry.Ore Geology Reviews, 65:659-673. https://doi.org/10.13039/501100001809 [90] Wang, F., Shi, W.B., Zhu, R.X., 2014.Problems of Modern 40Ar/39Ar Geochronology:Reviews.Acta Petrologica Sinica, 30(2):326-340(in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTotal-YSXB201402002.htm [91] Warnock, A.C., Zeitler, P.K., Wolf, R.A., et al., 1997.An Evaluation of Low-Temperature Apatite U-Th/He Thermochronometry.Geochimica et Cosmochimica Acta, 61(24):5371-5377. https://doi.org/10.1016/s0016-7037(97)00302-5 [92] Wernicke, R.S., Lippolt, H.J., 1993.Botryoidal Hematite from the Schwarzwald (Germany):Heterogeneous Uranium Distributions and Their Bearing on the Helium Dating Method.Earth and Planetary Science Letters, 114(2-3):287-300. https://doi.org/10.1016/0012-821x(93)90031-4 [93] Wilkinson, B.H., Kesler, S.E., 2007.Tectonism and Exhumation in Convergent Margin Orogens:Insights from Ore Deposits.The Journal of Geology, 115(6):611-627. https://doi.org/10.1086/521606 [94] Wolf, R.A., Farley, K.A., Kass, D.M., 1998.Modeling of the Temperature Sensitivity of the Apatite (U-Th)/He Thermochronometer.Chemical Geology, 148(1-2):105-114. https://doi.org/10.1016/s0009-2541(98)00024-2 [95] Wolf, R.A., Farley, K.A., Silver, L.T., 1996.Helium Diffusion and Low-Temperature Thermochronometry of Apatite.Geochimica et Cosmochimica Acta, 60(21):4231-4240. https://doi.org/10.1016/s0016-7037(96)00192-5 [96] Wolfe, M.R., Stockli, D.F., 2010.Zircon (U-Th)/He Thermochronometry in the KTB Drill Hole, Germany, and Its Implications for Bulk He Diffusion Kinetics in Zircon.Earth and Planetary Science Letters, 295(1-2):69-82. https://doi.org/10.1016/j.epsl.2010.03.025 [97] Xu, X.T., Yuan, W.M., Gong, Q.J., et al., 2010.The Analysis of Zircon Fission Track's Ore-Forming Epoch in Shaquanzi Copper-Iron Deposits, Xinjiang.China Mining Magazine, 19(4):105-108(in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-ZGKA201004033.htm [98] Yamada, R., Tagami, T., Nishimura, S., et al., 1995.Annealing Kinetics of Fission Tracks in Zircon:An Experimental Study.Chemical Geology, 122(1-4):249-258. https://doi.org/10.1016/0009-2541(95)00006-8 [99] Yang, T.S., 2007.Feasibility of Probing Solid State Nuclear Tracks by Thermal Analysis Method.Chinese Science Bulletin, 52(4):380-383(in Chinese). http://kns.cnki.net/KCMS/detail/detail.aspx?filename=jxtw200708002&dbname=CJFD&dbcode=CJFQ [100] Yang, T.S., He, S.R., Li.T.X., et al., 2009.Measurement of Solid State Nuclear Tracks in Apatite by Thermal Analysis Method.Chinese Science Bulletin, 54(17):2495-2499(in Chinese). http://kns.cnki.net/KCMS/detail/detail.aspx?filename=jxtw200920029&dbname=CJFD&dbcode=CJFQ [101] Yuan, W.M., 2016.Thermochronological Method of Revealing Conservation and Changes of Mineral Deposits.Acta Petrologica Sinica, 32(8):2571-2578(in Chinese with English abstract). http://www.ysxb.ac.cn/ysxb/ch/reader/view_abstract.aspx?file_no=20160823 [102] Yuan, W.M., Bao, Z.K., Dong, J.Q., et al., 2007.Fission Track Thermochronology Application to Mineralization Ages of Hydrothermal Deposits in Kelang Basin, Northern Xinjiang, China.World Sci-Tech R & D, 29(2):8-14(in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTotal-SJKF200702001.htm [103] Yuan, W.M., Bao, Z.K., Dong, J.Q., et al., 2007.Zircon and Apatite Fission Track Analyses on Mineralization Ages and Tectonic Activities of Tuwu-Yandong Porphyry Copper Deposit in Northern Xinjiang, China.Science China:Earth Sciences, 50(12):1787-1795. https://doi.org/10.1007/s11430-007-0130-9 [104] Yuan, W.M., Dong, J.Q., Bao, Z.K., et al., 2008.Apatite Fission Track Evidences for Neogene Tectono-Thermal History in Nimu Area, Southern Gangdese Terrane, Tibet Plateau.Atomic Energy Science and Technology, 42(6):570-573 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTotal-YZJS200806023.htm [105] Yuan, W.M., Hou, Z.Q., Li, S.R., et al., 2001.Fission Track Evidence on Thermal History of Jiama Polymetallic Ore District, Tibet.Science in China (Series D), 44(Suppl.):139-145. https://doi.org/10.1007/bf02911981 [106] Yuan, W.M., Mo, X.X., Zhang, A.K., et al., 2013.Fission Track Thermochronology Evidence for Multiple Periods of Mineralization in the Wulonggou Gold Deposits, Eastern Kunlun Mountains, Qinghai Province.Journal of Earth Science, 24(4):471-478. https://doi.org/10.1007/s12583-013-0362-x [107] Yuan, W.M., Wang, S.C., Li, S.R., 2002.Apatite Fission Track Dating Evidence on the Tectonization of Gangdese Block, South Qinghai-Tibetan Plateau.Chinese Science Bulletin, 47(3):240-244. https://doi.org/10.1360/02tb9057 [108] Yuan, W.M., Wang, S.C., Wang, L.F., 1999.Fission Track Study on the Metallogeneitc Age of Xiayingfang Gold Deposit in Eastern Hebei.Nuclear Techniques, 22(7):411-413(in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-HJSU199907008.htm [109] Yuan, W.M., Wang, S.C., Wang, L.F., 2000.Metallogenic Thermal History of the Wulonggou Gold Deposits in East Kunlun Mountains in the Light of Fission Track Thermochronology.Acta Geoscientia Sinica, 21(4):389-395(in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-DQXB200004008.htm [110] Yuan, W.M., Deng, J., Zheng, Q.G., et al., 2009a.Apatite Fission Track Constraints on the Neogene Tectono-Thermal History of Nimu Area, Southern Gangdese Terrane, Tibet Plateau.Island Arc, 18(3):488-495. https://doi.org/10.1111/j.1440-1738.2009.00669.x [111] Yuan, W.M., Zheng, Q.G., Bao, Z.K., et al., 2009b.Zircon Fission Track Thermochronology Constraints on Mineralization Epochs in Altai Mountains, Northern Xinjiang, China.Radiation Measurements, 44(9-10):950-954. https://doi.org/10.1016/j.radmeas.2009.10.094 [112] Zaun, P. E., Wagner, G. A., 1985. Fission-Track Stability in Zircons under Geological Conditions. Nuclear Tracks and Radiation Measurements(1982), 10(3): 303-307. https://doi.org/10.1016/0735-245x(85)90119-x [113] Zhang, J.X., Yang, T.S., 2017.Determination of α Particle Nuclear Track Density by a Thermal Analysis Method and Its Application in Geological Dating.Journal of Xinyang Normal University (Natural Science Edition), 30(2):274-278(in Chinese with English abstract). [114] Zhang, N., 2016. Fission Track Thermochronology of the Xincheng Gold Deposit, Northwest of Jiaodong Peninsula(Dissertation). China University of Geosciences, Beijing(in Chinese with English abstract). [115] Zhao, J.X., Qin, K.Z., Li, G.M., et al., 2015.The Exhumation History of Collision-Related Mineralizing Systems in Tibet:Insights from Thermal Studies of the Sharang and Yaguila Deposits, Central Lhasa.Ore Geology Reviews, 65:1043-1061. https://doi.org/10.1016/j.oregeorev.2014.09.026 [116] 陈文, 万渝生, 李华芹, 等, 2011.同位素地质年龄测定技术及应用.地质学报, 85(11):1917-1947. http://www.cnki.com.cn/Article/CJFDTOTAL-DZXE201111010.htm [117] 陈文, 张彦, 张岳桥, 等, 2006.青藏高原东南缘晚新生代幕式抬升作用的Ar-Ar热年代学证据.岩石学报:22(4):867-872. http://mall.cnki.net/magazine/Article/YSXB200604010.htm [118] 陈宣华, 陈正乐, 韩淑琴, 等, 2012.中亚巴尔喀什成矿带钼-钨矿床的地质热年代学.地球科学, 37(5):878-892. https://doi.org/10.3799/dqkx.2012.097 [119] 冯云磊, 袁万明, 曹建辉, 等, 2015a.应用锆石裂变径迹方法研究夹皮沟本区金矿成矿时代.原子能科学技术, 49(2):379-384. http://manu19.magtech.com.cn/Jwk_yznkxjs_new/CN/abstract/abstract17517.shtml [120] 冯云磊, 袁万明, 郝娜娜, 等, 2015b.吉林桦甸市夹皮沟本区金矿剥露历史和矿床保存变化——来自磷灰石裂变径迹年代学证据.地质论评, 61(1):109-120. http://www.cnki.com.cn/Article/CJFDTotal-DZLP201501011.htm [121] 高绍凯, 袁万明, 董金泉, 等, 2005.核分析新技术:Alpha反冲径迹热年代学.地质通报, 24(10):1032-1038. doi: 10.3969/j.issn.1671-2552.2005.10.028 [122] 郇伟静, 李娜, 袁万明, 等, 2013.四川甘孜-理塘金成矿带成矿时代与构造活动的裂变径迹研究.岩石学报, 29(4):1338-1346. http://www.ysxb.ac.cn/ysxb/ch/reader/view_abstract.aspx?file_no=20130419 [123] 刘文浩, 张均, 李婉婷, 等, 2012.宁芜、庐枞盆地玢岩铁矿成矿深度及成矿后抬升、剥蚀情况:来自磷灰石裂变径迹的证据.地球科学, 37(5):966-980. https://doi.org/10.3799/dqkx.2012.105 [124] 柳振江, 王建平, 郑德文, 等, 2010.胶东西北部金矿剥蚀程度及找矿潜力和方向——来自磷灰石裂变径迹热年代学的证据.岩石学报, 26(12):3597-3611. http://www.ysxb.ac.cn/ysxb/ch/reader/view_abstract.aspx?file_no=20101212 [125] 马关宇, 高军平, 杜丁丁, 等, 2014.金川铜镍矿床成矿后的抬升破坏:来自热年代学的证据.世界地质, 33(3):581-590. http://www.cqvip.com/QK/94166X/201403/662450308.html [126] 马士委, 2017. 藏南甲玛铜多金属矿床构造格架与成矿的关系(博士论文). 北京: 中国地质科学院. [127] 孙非非, 朱传宝, 袁万明, 等, 2016.青海都兰县哈日扎多金属矿区构造活动的磷灰石裂变径迹分析.核技术, 39(12):37-44. http://www.cnki.com.cn/Article/CJFDTOTAL-DZKT201405003.htm [128] 汤云晖, 袁万明, 韩春明, 等, 2003.峪耳崖金矿的成矿时代裂变径迹研究.地球学报, 24(6):573-578. http://cpfd.cnki.com.cn/Article/CPFDTOTAL-ZGDJ200311002080.htm [129] 王非, 师文贝, 朱日祥, 2014.40Ar/39Ar年代学中几个重要问题的讨论.岩石学报, 30(2):326-340. http://kns.cnki.net/KCMS/detail/detail.aspx?filename=ysxb201402002&dbname=CJFD&dbcode=CJFQ [130] 徐晓彤, 袁万明, 龚庆杰, 等, 2010.利用裂变径迹定年分析新疆沙泉子铜铁矿成矿时代.中国矿业, 19(4):105-108. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=zgky201004030 [131] 杨铜锁, 2007.热分析法探测固体核径迹的可行性论证.科学通报, 52(4):380-383. http://www.cqvip.com/QK/94252X/2007004/23984040.html [132] 杨铜锁, 何少蓉, 李天祥, 等, 2009.热分析法测量磷灰石中固体核径迹.科学通报, 54(17):2495-2499. http://www.cqvip.com/QK/94252X/200917/31720725.html [133] 袁万明, 2016.矿床保存变化研究的热年代学技术方法.岩石学报, 32(8):2571-2578. http://www.ysxb.ac.cn/ysxb/ch/reader/create_pdf.aspx?file_no=20160823&year_id=2016&quarter_id=8&falg=1 [134] 袁万明, 保增宽, 董金泉, 等, 2007.新疆阿尔泰克朗盆地热液成矿时代的裂变径迹分析.世界科技研究与发展, 29(2):8-14. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=sjkjyjyfz200702002 [135] 袁万明, 董金泉, 保增宽, 等, 2008.西藏冈底斯地块尼木地区新第三纪构造热史的磷灰石裂变径迹约束.原子能科学技术, 42(6):570-573. http://kns.cnki.net/KCMS/detail/detail.aspx?filename=yzjs200806023&dbname=CJFD&dbcode=CJFQ [136] 袁万明, 王世成, 王兰芳, 1999.河北下营坊金矿成矿时代的裂变径迹研究.核技术, 22(7):411-413. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=hjs199907009 [137] 袁万明, 王世成, 王兰芳, 2000.东昆仑五龙沟金矿床成矿热历史的裂变径迹热年代学证据.地球学报, 21(4):389-395. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=dqxb200004008 [138] 张建祥, 杨铜锁, 2017.热分析方法测定α粒子径迹密度及其在地质定年中的应用.信阳师范学院学报(自然科学版), 30(2):274-278. https://www.wenkuxiazai.com/word/f5b5584e2e3f5727a5e96280-1.doc [139] 张宁, 2016. 胶西北新城金矿床裂变径迹热年代学(学位论文). 北京: 中国地质大学.