• 中国出版政府奖提名奖

    中国百强科技报刊

    湖北出版政府奖

    中国高校百佳科技期刊

    中国最美期刊

    留言板

    尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

    姓名
    邮箱
    手机号码
    标题
    留言内容
    验证码

    热年代学方法、技术手段及其在矿床地质中的研究进展

    杨莉 袁万明 王珂

    杨莉, 袁万明, 王珂, 2018. 热年代学方法、技术手段及其在矿床地质中的研究进展. 地球科学, 43(6): 1887-1902. doi: 10.3799/dqkx.2018.606
    引用本文: 杨莉, 袁万明, 王珂, 2018. 热年代学方法、技术手段及其在矿床地质中的研究进展. 地球科学, 43(6): 1887-1902. doi: 10.3799/dqkx.2018.606
    Yang Li, Yuan Wanming, Wang Ke, 2018. Research Advances of Thermochronology in Mineral Deposits. Earth Science, 43(6): 1887-1902. doi: 10.3799/dqkx.2018.606
    Citation: Yang Li, Yuan Wanming, Wang Ke, 2018. Research Advances of Thermochronology in Mineral Deposits. Earth Science, 43(6): 1887-1902. doi: 10.3799/dqkx.2018.606

    热年代学方法、技术手段及其在矿床地质中的研究进展

    doi: 10.3799/dqkx.2018.606
    基金项目: 

    国家自然科学基金项目 41172088

    国家自然科学基金项目 41730427

    详细信息
      作者简介:

      杨莉(1987-), 女, 硕士, 主要从事低温热年代学研究

      通讯作者:

      袁万明

    • 中图分类号: P597

    Research Advances of Thermochronology in Mineral Deposits

    • 摘要: 同位素地质年代学是一门传统的定年学科,广泛应用于地质各个领域研究中.随着同位素地质年代学理论创新与技术进步,现在逐步发展成为地质热年代学,即将地质年代数据赋予相应封闭温度属性,使之不仅揭示地质事件年龄,而且反映该事件发生的温度条件.不同定年方法以及测试样品的不同,其对应的封闭温度不同,从而可以揭示地质体在更大温度或年龄范围的形成演化过程,定量研究矿区或矿体的隆升与剥露,评价矿床形成后的保存与变化状况,提高找矿预测效果.主要总结和论述诸如40Ar-39Ar、裂变径迹和(U-Th)/He等中-低温热年代学技术方法及其在矿床地质中的应用研究状况,分析热年代学技术与应用发展趋势,以期为成矿作用研究提供新的应用技术手段.

       

    • 图  1  不同的同位素体系和地质过程之间的时间—温度关系

      Fig.  1.  Schematic diagram of the time-temperature relationship between various chronometers and geological processes

      表  1  不同矿物40Ar/39Ar封闭温度

      Table  1.   Closure temperatures of different minerals for 40Ar/39Ar method

      矿物 封闭温度及其出处
      角闪石 580~480 ℃(Harrison and McDougall, 1981);500 ±50 ℃(Reddy et al., 1997)
      白云母 325~270 ℃(Snee et al., 1988);380 ℃(Robbins,1972)
      黑云母 340~280 ℃(McDougall and Harrison, 1999);348 ℃(Grove and Harrison, 1996)
      长石 150~350 ℃(McDougall and Harrison, 1999)
      钾长石 223 ℃(Foland,1994)
      下载: 导出CSV

      表  2  不同矿物的(U-Th)/He体系封闭温度

      Table  2.   The different mineral closure temperatures for (U-Th)/He systems

      矿物 封闭温度区间 参考文献出处
      磷灰石 105±30 ℃ Wolf et al., 1998
      ~80~120°(1 ℃/Ma) Warnock et al., 1997
      ~95~135 ℃(10 ℃/Ma)
      70 ℃ Braun,2002
      65~75 ℃ Farley,2000
      55~80 ℃ Flowers et al., 2009
      80~90 ℃ Crowley et al., 2002
      62 ℃ Flowers et al., 2009
      70 ℃ Farley,2000Reiners and Farley, 1999, 2001
      60~75 ℃ Ehlers and Farley, 2003
      75 ℃ Wolf et al., 1996
      75±5 ℃ Wolf et al., 1998
      锆石 183 ℃ Reiners et al., 2004
      140~220 ℃ Guenthner et al., 2013
      200~230 ℃ Reiners et al., 2002
      181 ℃ Wolf and Stockli, 2010
      180 ℃ Reiners et al., 2002, 2003
      160~210 ℃ Reiners et al., 2002
      200 ℃ Farley,2000Reiners and Farley, 2001
      190 ℃ Ehlers and Farley, 2003
      175~195 ℃ Tagami et al., 2003
      榍石 191~218 ℃ Reiners and Farley, 1999
      200 ℃ Farley,2000
      磁铁矿 ~250 ℃ Blackburn et al., 2007
      独居石 206±24 ℃,230±4 ℃,286±13 ℃ Boyce et al., 2005
      注:采用(U-Th)/He方法.
      下载: 导出CSV

      表  3  不同矿物的FT体系封闭温度

      Table  3.   The different mineral closure temperatures for FT systems

      矿物 封闭温度区间 参考文献出处
      锆石 ~250 ℃ Tagami and Shimada, 1996
      205±18 ℃ Bernet,2009
      235~245 ℃ Brandon,1992
      ~240 ℃ Yamada et al., 1995
      210±20 ℃ Zaun and Wagner, 1985
      ~220~235 ℃ Liu et al., 2000
      215~240 ℃ Garver et al., 1998
      240 ± 20 ℃ Brandon et al., 1998
      240 ± 50 ℃ Hurford,1986
      磷灰石 ~115 ℃ Batt and Braun, 1999
      110 ± 10 ℃ Gleadow et al., 1983
      ~110~135 ℃ Liu et al., 2000
      100~120 ℃ Garver et al., 1998
      125 ℃ Gleadow et al., 1983
      81~200 ℃ Ketcham et al., 2003
      榍石 265~310 ℃ Coyle and Wagner, 1998
      注:采用FT方法.
      下载: 导出CSV
    • [1] Avdeev, B., Niemi, N.A., 2011.Rapid Pliocene Exhumation of the Central Greater Caucasus Constrained by Low-Temperature Thermochronometry.Tectonics, 30(2). https://doi.org/10.1029/2010tc002808
      [2] Bargnesi, E.A., Stockli, D.F., Mancktelow, N., et al., 2013.Miocene Core Complex Development and Coeval Supradetachment Basin Evolution of Paros, Greece, Insights from (U-Th)/He Thermochronometry.Tectonophysics, 595-596:165-182. https://doi.org/10.1016/j.tecto.2012.07.015
      [3] Batt, G.E., Braun, J., 1999.The Tectonic Evolution of the Southern Alps, New Zealand:Insights from Fully Thermally Coupled Dynamical Modelling.Geophysical Journal International, 136(2):403-420. https://doi.org/10.1046/j.1365-246x.1999.00730.x
      [4] Berger, G.W., York, D., 1981.Geothermometry from Dating Experiments.Geochimica et Cosmochimica Acta, 45(6):795-811. https://doi.org/10.1016/0016-7037(81)90109-5
      [5] Bernet, M., 2009.A Field-Based Estimate of the Zircon Fission-Track Closure Temperature.Chemical Geology, 259(3-4):181-189. https://doi.org/10.1016/j.chemgeo.2008.10.043
      [6] Blackburn, T.J., Stockli, D.F., Walker, J.D., 2007.Magnetite (U-Th)/He Dating and Its Application to the Geochronology of Intermediate to Mafic Volcanic Rocks.Earth and Planetary Science Letters, 259(3-4):360-371. https://doi.org/10.1016/j.epsl.2007.04.044
      [7] Boyce, J.W., Hodges, K.V., Olszewski, W.J., et al., 2005.He Diffusion in Monazite:Implications for (U-Th)/He Thermochronometry.Geochemistry, Geophysics, Geosystems, 6(12):Q12004. https://doi.org/10.1029/2005gc001058
      [8] Brandon, M.T., 1992.Decomposition of Fission-Track Grain-Age Distributions.American Journal of Science, 292(8):535-564. https://doi.org/10.2475/ajs.292.8.535
      [9] Brandon, M.T., Roden-Tice, M.K., Garver, J.I., 1998.Late Cenozoic Exhumation of the Cascadia Accretionary Wedge in the Olympic Mountains, Northwest Washington State.Geological Society of America Bulletin, 110(8):985-1009.https://doi.org/10.1130/0016-7606(1998)110<0985:lceotc>2.3.co;2 doi: 10.1130/0016-7606(1998)110<0985:lceotc>2.3.co;2
      [10] Braun, J., 2002.Quantifying the Effect of Recent Relief Changes on Age-Elevation Relationships.Earth and Planetary Science Letters, 200(3-4):331-343. https://doi.org/10.1016/s0012-821x(02)00638-6
      [11] Brooks, W.E., Snee, L.W., 1996.Timing and Effect of Detachment-Related Potassium Metasomatism on 40Ar/39Ar Ages from the Windous Butte Formation, Grant Range, Nevada.Social Change, 34(1):57-65. http://www.academia.edu/887403/Tertiary_minette_and_melanephelinite_dikes_Wasatch_Plateau_Utah_records_of_mantle_heterogeneities_and_changing_tectonics
      [12] Chakurian, A.M., Arehart, G.B., Donelick, R.A., et al., 2003.Timing Constraints of Gold Mineralization along the Carlin Trend Utilizing Apatite Fission-Track, 40Ar/39Ar, and Apatite (U-Th)/He Methods.Economic Geology, 98(6):1159-1171. https://doi.org/10.2113/gsecongeo.98.6.1159
      [13] Chen, W., Wan, Y.S., Li, H.Q., et al., 2011.Isotope Geochronology:Technique and Application.Acta Geologica Sinica, 85(11):1917-1947(in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-DZXE201111010.htm
      [14] Chen, W., Zhan, Y., Zhang, Y.Q., et al., 2006.Late Cenozoic Episodic Uplifting in Southeastern Part of the Tibetan Plateau-Evidence from Ar-Ar Thermochronology.Acta Petrologica Sinica, 22(4):867-872 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-YSXB200604010.htm
      [15] Chen, X.H., Chen, Z.L., Han, S.Q., et al., 2012.Geothermochronology of Mo-W Deposits in Balkhash Metallogenic Belt, Kazakhstan, Central Asia.Earth Science, 37(5):878-892(in Chinese with English abstract). https://doi.org/10.3799/dqkx.2012.097
      [16] Chesley, J.T., Halliday, A.N., Snee, L.W., et al., 1993.Thermochronology of the Cornubian Batholith in Southwest England:Implications for Pluton Emplacement and Protracted Hydrothermal Mineralization.Geochimica et Cosmochimica Acta, 57(8):1817-1835. https://doi.org/10.1016/0016-7037(93)90115-d
      [17] Coyle, D.A., Wagner, G.A., 1998.Positioning the Titanite Fission-Track Partial Annealing Zone.Chemical Geology, 149(1-2):117-125. https://doi.org/10.1016/s0009-2541(98)00041-2
      [18] Crowley, P.D., Reiners, P.W., Reuter, J.M., et al., 2002.Laramide Exhumation of the Bighorn Mountains, Wyoming:An Apatite (U-Th)/He Thermochronology Study.Geology, 30(1):27-30.https://doi.org/10.1130/0091-7613(2002)030<0027:leotbm>2.0.co;2 doi: 10.1130/0091-7613(2002)030<0027:leotbm>2.0.co;2
      [19] Deng, J., Wang, C.M., Bagas, L., et al., 2015.Cretaceous-Cenozoic Tectonic History of the Jiaojia Fault and Gold Mineralization in the Jiaodong Peninsula, China:Constraints from Zircon U-Pb, Illite K-Ar, and Apatite Fission Track Thermochronometry.Mineralium Deposita, 50(8):987-1006. https://doi.org/10.1007/s00126-015-0584-1
      [20] Dodson, M.H., 1973.Closure Temperature in Cooling Geochronological and Petrological Systems.Contributions to Mineralogy and Petrology, 40(3):259-274. https://doi.org/10.1007/bf00373790
      [21] Duvall, A.R., Clark, M.K., Kirby, E., et al., 2013.Low-Temperature Thermochronometry along the Kunlun and Haiyuan Faults, NE Tibetan Plateau:Evidence for Kinematic Change during Late-Stage Orogenesis.Tectonics, 32(5):1190-1211. https://doi.org/10.1002/tect.20072
      [22] Ehlers, T.A., Farley, K.A., 2003.Apatite (U-Th)/He Thermochronometry:Methods and Applications to Problems in Tectonic and Surface Processes.Earth and Planetary Science Letters, 206(1-2):1-14. https://doi.org/10.1016/s0012-821x(02)01069-5
      [23] Enkelmann, E., Ridgway, K.D., Carignano, C., et al., 2014.A Thermochronometric View into an Ancient Landscape:Tectonic Setting, Development, and Inversion of the Paleozoic Eastern Paganzo Basin, Argentina.Lithosphere, 6(2):93-107. https://doi.org/10.1130/l309.1
      [24] Evans, N.J., Byrne, J.P., Keegan, J.T., et al., 2005.Determination of Uranium and Thorium in Zircon, Apatite, and Fluorite:Application to Laser (U-Th)/He Thermochronology.Journal of Analytical Chemistry, 60(12):1159-1165. https://doi.org/10.1007/s10809-005-0260-1
      [25] Farley, K.A., 2000.Helium Diffusion from Apatite:General Behavior as Illustrated by Durango Fluorapatite.Journal of Geophysical Research:Solid Earth, 105(B2):2903-2914. https://doi.org/10.1029/1999jb900348
      [26] Feng, Y.L., Yuan, W.M., Cao, J.H., et al., 2015a.Minerogenetic Age of Local Gold-Deposit District in Jiapigou Glod Belt, Northeastern China Based on Zircon Fission Track Dating.Atomic Energy Science and Technology, 49(2):379-384 (in Chinese with English abstract). http://manu19.magtech.com.cn/Jwk_yznkxjs_new/CN/abstract/abstract17517.shtml
      [27] Feng, Y.L., Yuan, W.M., Hao, N.N., et al., 2015b.Denudation and Conservation History of Local District in Jiapigou Glod Deposit, Huadian County, Jilin Province-Evidence from Apatite Fission Track Thermochronology.Geological Review, 61(1):109-120 (in Chinese with English abstract). http://www.en.cnki.com.cn/Article_en/CJFDTOTAL-DZLP201501011.htm
      [28] Feng, Y.L., Yuan, W.M., Tian, Y.T., et al., 2017.Preservation and Exhumation History of the Harizha-Halongxiuma Mining Area in the East Kunlun Range, Northeastern Tibetan Plateau, China.Ore Geology Reviews, 90:1018-1031. https://doi.org/10.1016/j.oregeorev.2016.12.029
      [29] Flowers, R.M., Ketcham, R.A., Shuster, D.L., et al., 2009.Apatite (U-Th)/He Thermochronometry Using a Radiation Damage Accumulation and Annealing Model.Geochimica et Cosmochimica Acta, 73(8):2347-2365. https://doi.org/10.1016/j.gca.2009.01.015
      [30] Foland, K. A., 1994. Argon Diffusion in Feldspars. In: Parsons, I., ed., Feldspars and Their Reactions. NATO ASI Series (Series C: Mathematical and Physical Sciences). Springer, Dordrecht, 421. https://doi.org/10.1007/978-94-011-1106-5
      [31] Gao, S.K., Yuan, W.M., Dong, J.Q., et al., 2005.A New Method of Nuclear Analysis:Alpha-Recoil Track Thermochronology.Geological Bulletin of China, 24(10):1032-1038(in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTotal-ZQYD2005Z1028.htm
      [32] Garver, J.I., Brandon, M.T., Roden-Tice, M., et al., 1998.Exhumation History of Orogenic Highlands Determined by Detrital Fission-Track Thermochronology.Geological Society, London, Special Publication, 154(1):283-304. https://doi.org/10.1144/gsl.sp.1999.154.01.13
      [33] Geissman, J.W., Snee, L.W., Graaskamp, G.W., et al., 1992.Deformation and Age of the Red Mountain Intrusive System (Urad-Henderson Molybdenum Deposits), Colorado:Evidence from Paleomagnetic and 40Ar/39Ar Data.Geological Society of America Bulletin, 104(8):1031-1047.https://doi.org/10.1130/0016-7606(1992)104<1031:daaotr>2.3.co;2 doi: 10.1130/0016-7606(1992)104<1031:daaotr>2.3.co;2
      [34] Gleadow, A.J.W., Duddy, I.R., Lovering, J.F., 1983.Fission Track Analysis:A New Tool for the Evaluation of Thermal Histories and Hydrocarbon Potential.The APPEA Journal, 23(1):93. https://doi.org/10.1071/aj82009
      [35] Groff, J.A., Heizler, M.T., McIntosh, W.C., et al., 1997.40Ar/39Ar Dating and Mineral Paragenesis for Carlin-Type Gold Deposits along the Getchell Trend, Nevada; Evidence for Cretaceous and Tertiary Gold Mineralization.Economic Geology, 92(5):601-622. https://doi.org/10.2113/gsecongeo.92.5.601
      [36] Grønlie, A.R.N.E., Harder, V.I.C.K.I., Roberts, D.A.V.I.D., 1990.Preliminary Fission-Track Ages of Fluorite Mineralisation along Fracture Zones, Inner Trondheimsfjord, Central Norway.Norsk Geologisk Tidsskrift, 70(3):173-178. http://inis.iaea.org/search/search.aspx?orig_q=RN:22030849
      [37] Grove, M., Harrison, T.M., 1996.40Ar* Diffusion in Fe-Rich Biotite.American Mineralogist, 81(7-8):940-951. https://doi.org/10.2138/am-1996-7-816
      [38] Groves, D.I., Condie, K.C., Goldfarb, R.J., et al., 2005.100th Anniversary Special Paper:Secular Changes in Global Tectonic Processes and Their Influence on the Temporal Distribution of Gold-Bearing Mineral Deposits.Economic Geology, 100(2):203-224. https://doi.org/10.2113/gsecongeo.100.2.203
      [39] Guenthner, W.R., Reiners, P.W., Ketcham, R.A., et al., 2013.Helium Diffusion in Natural Zircon:Radiation Damage, Anisotropy, and the Interpretation of Zircon (U-Th)/He Thermochronology.American Journal of Science, 313(3):145-198. https://doi.org/10.2475/03.2013.01
      [40] Halliday, A.N., 1978.40Ar-39Ar Stepheating Studies of Clay Concentrates from Irish Orebodies.Geochimica et Cosmochimica Acta, 42(12):1851-1858. https://doi.org/10.1016/0016-7037(78)90240-5
      [41] Harrison, T.M., 2005.Fundamentals of Noble Gas Thermochronometry.Reviews in Mineralogy and Geochemistry, 58(1):123-149. https://doi.org/10.2138/rmg.2005.58.5
      [42] Harrison, T.M., Clarke, G.K.C., 1979.A Model of the Thermal Effects of Igneous Intrusion and Uplift as Applied to Quottoon Pluton, British Columbia.Canadian Journal of Earth Sciences, 16(3):411-420. https://doi.org/10.1139/e79-039
      [43] Harrison, T.M., Duncan, I., McDougall, I., 1985.Diffusion of 40Ar in Biotite:Temperature, Pressure and Compositional Effects.Geochimica et Cosmochimica Acta, 49(11):2461-2468. https://doi.org/10.1016/0016-7037(85)90246-7
      [44] Harrison, T.M., Heizler, M.T., Lovera, O.M., 1993.In Vacuo Crushing Experiments and K-Feldspar Thermochronometry.Earth and Planetary Science Letters, 117(1-2):169-180. https://doi.org/10.1016/0012-821x(93)90124-r
      [45] Harrison, T.M., McDougall, I., 1981.Excess 40Ar in Metamorphic Rocks from Broken Hill, New South Wales:Implications for 40Ar/39Ar Age Spectra and the Thermal History of the Region.Earth and Planetary Science Letters, 55(1):123-149. https://doi.org/10.1016/0012-821x(81)90092-3
      [46] Heim, J.A., Vasconcelos, P.M., Shuster, D.L., et al., 2006.Dating Paleochannel Iron Ore by (U-Th)/He Analysis of Supergene Goethite, Hamersley Province, Australia.Geology, 34(3):173. https://doi.org/10.1130/g22003.1
      [47] House, M.A., Kohn, B.P., Farley, K.A., et al., 2002.Evaluating Thermal History Models for the Otway Basin, Southeastern Australia, Using (U-Th)/He and Fission-Track Data from Borehole Apatites.Tectonophysics, 349(1-4):277-295. https://doi.org/10.1016/s0040-1951(02)00057-4
      [48] Huan, W.J., Li, N., Yuan, W.M., et al., 2013.Fission Track Constrain on Mineralization Time and Tectonic Events in Ganzi-Litang Gold Belt, Tibet Plateau.Acta Petrologica Sinica, 29(4):1338-1346(in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTotal-YSXB201304019.htm
      [49] Hurford, A.J., 1986.Cooling and Uplift Patterns in the Lepontine Alps South Central Switzerland and an Age of Vertical Movement on the Insubric Fault Line.Contributions to Mineralogy and Petrology, 92(4):413-427. https://doi.org/10.1007/bf00374424
      [50] Kesler, S.E., Wilkinson, B.H., 2006.The Role of Exhumation in the Temporal Distribution of Ore Deposits.Economic Geology, 101(5):919-922. https://doi.org/10.2113/gsecongeo.101.5.919
      [51] Ketcham, R.A., Donelick, R.A., Donelick, M.B., 2003.AFTSolve:A Program for Multi-Kinetic Modeling of Apatite Fission-Track Data.American Mineralogist, 88(5):929. https://www.mendeley.com/research-papers/aftsolve-program-multikinetic-modeling-apatite-fissiontrack-data/
      [52] Kleine, T., Touboul, M., van Orman, J.A., et al., 2008.Hf-W Thermochronometry:Closure Temperature and Constraints on the Accretion and Cooling History of the H Chondrite Parent Body.Earth and Planetary Science Letters, 270(1-2):106-118. https://doi.org/10.1016/j.epsl.2008.03.013
      [53] Landis, G.P., Snee, L.W., Juliani, C., 2005.Evaluation of Argon Ages and Integrity of Fluid-Inclusion Compositions:Stepwise Noble Gas Heating Experiments on 1.87 Ga Alunite from Tapajós Province, Brazil.Chemical Geology, 215(1-4):127-153. https://doi.org/10.1016/j.chemgeo.2004.06.036
      [54] Li, G.M., Cao, M.J., Qin, K.Z., et al., 2014.Thermal-Tectonic History of the Baogutu Porphyry Cu Deposit, West Junggar as Constrained from Zircon U-Pb, Biotite Ar/Ar and Zircon/Apatite (U-Th)/He Dating.Journal of Asian Earth Sciences, 79:741-758. https://doi.org/10.1016/j.jseaes.2013.05.026
      [55] Liu, T.K., Chen, Y.G., Chen, W.S., et al., 2000.Rates of Cooling and Denudation of the Early Penglai Orogeny, Taiwan, as Assessed by Fission-Track Constraints.Tectonophysics, 320(1):69-82. https://doi.org/10.1016/s0040-1951(00)00028-7
      [56] Liu, W.H, .Zhang, J., Li, W.T., et al., 2012.Metallogenic Depth, Post-Mineralization Uplift and Denudation of Porphyry-Like Type Iron Deposits in Ningwu, Luzong Basins:Evidences from Apatite Fission Track.Earth Science, 37(5):966-980 (in Chinese with English abstract). https://doi.org/10.3799/dqkx.2012.105
      [57] Liu, Z.J., Wang, J.P., Zheng, D.W., et al., 2010.Exploration Prospect and Post-Ore Denudation in the Northwestern Jiaodong Gold Province, China:Evidence from Apatite Fission Track Thermochronology.Acta Petrologica Sinica, 26(12):3597-3611(in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-YSXB201012013.htm
      [58] Lorencak, M., Kohn, B.P., Osadetz, K.G., et al., 2004.Combined Apatite Fission Track and (U-Th)/He Thermochronometry in a Slowly Cooled Terrane:Results from a 3 440 m-Deep Drill Hole in the Southern Canadian Shield.Earth and Planetary Science Letters, 227(1-2):87-104. https://doi.org/10.1016/j.epsl.2004.08.015
      [59] Lovera, O.M., Richter, F.M., Harrison, T.M., 1989.The 40Ar/39Ar Thermochronometry for Slowly Cooled Samples Having a Distribution of Diffusion Domain Sizes.Journal of Geophysical Research:Solid Earth, 94(B12):17917-17935. https://doi.org/10.1029/jb094ib12p17917
      [60] Lovera, O.M., Richter, F.M., Harrison, T.M., 1991.Diffusion Domains Determined by 39Ar Released during Step Heating.Journal of Geophysical Research:Solid Earth, 96(B2):2057-2069. https://doi.org/10.1029/90jb02217
      [61] Lupker, M., Blard, P.H., Lavé, J., et al., 2012.10Be-Derived Himalayan Denudation Rates and Sediment Budgets in the Ganga Basin.Earth and Planetary Science Letters, 333-334(6):146-156. https://doi.org/10.1016/j.epsl.2012.04.020
      [62] Ma, G.Y., Gao, J.P., Du, D.D., et al., 2014.Uplift Destruction after Mineralization in Jinchuan Copper-Nickel Deposit:Evidences from Thermochronology.Global Geology, 33(3):581-590(in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-SJDZ201403008.htm
      [63] Ma, S. W., 2017. Structural Framework and the Relationship with Mineralization of Jiama Copper-Polymetallic Deposit, Southern Tibet(Dissertation). Chinese Academy of Geological Sciences, Beijing(in Chinese with English abstract).
      [64] McDougall, I., Harrison, T.M., 1999.Geochronology and Thermochronology by the 40Ar/39Ar Method.Oxford University Press, New York.
      [65] Miller, L.D., Goldfarb, R.J., Gehrels, G.E., et al., 1994.Genetic Links among Fluid Cycling, Vein Formation, Regional Deformation, and Plutonism in the Juneau Gold Belt, Southeastern Alaska.Geology, 22(3):203.https://doi.org/10.1130/0091-7613(1994)022<0203:glafcv>2.3.co;2 doi: 10.1130/0091-7613(1994)022<0203:glafcv>2.3.co;2
      [66] Miller, L.J., Goldfarb, R.J., Snee, L.W., et al., 1995.Structural Geology, Age, and Mechanisms of Gold Vein Formation at the Kensington and Jualin Deposits, Berners Bay District, Southeast Alaska.Economic Geology, 90(2):343-368. https://doi.org/10.2113/gsecongeo.90.2.343
      [67] Onstott, T., Hall, C., York, D., 1989.40Ar/39Ar Thermochronometry of the Imataca Complex, Venezuela.Precambrian Research, 42(3-4):255-291. https://doi.org/10.1016/0301-9268(89)90014-4
      [68] Pi, T., Solé, J., Taran, Y., 2005.(U-Th)/He Dating of Fluorite:Application to the La Azul Fluorspar Deposit in the Taxco Mining District, Mexico.Mineralium Deposita, 39(8):976-982. https://doi.org/10.1007/s00126-004-0443-y
      [69] Qiu, N.S., Reiners, P., Mei, Q.H., et al., 2009.Application of the (U-Th)/He Thermochronometry to the Tectono-Thermal Evolution of Sedimentary Basin-A Case History of Well KQ1 in the Tarim Basin.Chinese Journal of Geophysics, 52(4):803-813. https://doi.org/10.1002/cjg2.1403
      [70] Reddy, S.M., Kelley, S.P., Magennis, L., 1997.A Microstructural and Argon Laserprobe Study of Shear Zone Development at the Western Margin of the Nanga Parbat-Haramosh Massif, Western Himalaya.Contributions to Mineralogy and Petrology, 128(1):16-29. https://doi.org/10.1007/s004100050290
      [71] Reiners, P.W., Farley, K.A., 1999.Helium Diffusion and (U-Th)/He Thermochronometry of Titanite.Geochimica et Cosmochimica Acta, 63(22):3845-3859. https://doi.org/10.1016/s0016-7037(99)00170-2
      [72] Reiners, P.W., Farley, K.A., 2001.Influence of Crystal Size on Apatite (U-Th)/He Thermochronology:An Example from the Bighorn Mountains, Wyoming.Earth and Planetary Science Letters, 188(3-4):413-420. https://doi.org/10.1016/s0012-821x(01)00341-7
      [73] Reiners, P.W., Farley, K.A., Hickes, H.J., 2002.He Diffusion and (U-Th)/He Thermochronometry of Zircon:Initial Results from Fish Canyon Tuff and Gold Butte.Tectonophysics, 349(1-4):297-308. https://doi.org/10.1016/s0040-1951(02)00058-6
      [74] Reiners, P.W., Spell, T.L., Nicolescu, S., et al., 2004.Zircon (U-Th)/He Thermochronometry:He Diffusion and Comparisons with 40Ar/39Ar Dating.Geochimica et Cosmochimica Acta, 68(8):1857-1887. https://doi.org/10.1016/j.gca.2003.10.021
      [75] Reiners, P.W., Zhou, Z., Ehlers, T.A., et al., 2003.Post-Orogenic Evolution of the Dabie Shan, Eastern China, from (U-Th)/He and Fission-Track Thermochronology.American Journal of Science, 303(6):489-518. https://doi.org/10.2475/ajs.303.6.489
      [76] Robbins, G. A., 1972. Radiogenic Argon Diffusion in Muscovite under Hydrothermal Conditions. Brown University, Providence, U. S. A. .
      [77] Shuster, D.L., Cuffey, K.M., Sanders, J.W., et al., 2011.Thermochronometry Reveals Headward Propagation of Erosion in an Alpine Landscape.Science, 332(6025):84-88. https://doi.org/10.13039/100000001
      [78] Shuster, D.L., Farley, K.A., 2004.4He/3He Thermochronometry.Earth and Planetary Science Letters, 217(1-2):1-17. https://doi.org/10.1016/S0012-821x(03)00595-8
      [79] Snee, L.W., Sutter, J.F., Kelly, W.C., 1988.Thermochronology of Economic Mineral Deposits; Dating the Stages of Mineralization at Panasqueira, Portugal, by High-Precision 40Ar/39Ar Age Spectrum Techniques on Muscovite.Economic Geology, 83(2):335-354. https://doi.org/10.2113/gsecongeo.83.2.335
      [80] Spotila, J.A., 2005.Applications of Low-Temperature Thermochronometry to Quantification of Recent Exhumation in Mountain Belts.Reviews in Mineralogy and Geochemistry, 58(1):449-466. https://doi.org/10.2138/rmg.2005.58.17
      [81] Stockli, D.F., 2005.Application of Low-Temperature Thermochronometry to Extensional Tectonic Settings.Reviews in Mineralogy and Geochemistry, 58(1):411-448. https://doi.org/10.2138/rmg.2005.58.16
      [82] Stock, G.M., Ehlers, T.A., Farley, K.A., 2006.Where does Sediment Come from? Quantifying Catchment Erosion with Detrital Apatite (U-Th)/He Thermochronometry.Geology, 34(9):725-728. https://doi.org/10.1130/g22592.1
      [83] Sun, F.F., Zhu, C.B., Yuan, W.M., et al., 2016.Apatite Fission Track Analysis of Tectonic Activity in Harizha Polymetallic Ore District, Dulan County, Qinghai Province.Nuclear Techniques, 39(12):37-44 (in Chinese with English abstract). http://www.en.cnki.com.cn/Article_en/CJFDTOTAL-HJSU201612007.htm
      [84] Tagami, T., Farley, K.A., Stockli, D.F., 2003.(U-Th)/He Geochronology of Single Zircon Grains of Known Tertiary Eruption Age.Earth and Planetary Science Letters, 207(1-4):57-67. https://doi.org/10.1016/s0012-821x(02)01144-5
      [85] Tagami, T., Shimada, C., 1996.Natural Long-Term Annealing of the Zircon Fission Track System around a Granitic Pluton.Journal of Geophysical Research:Solid Earth, 101(B4):8245-8255. https://doi.org/10.1029/95jb02885
      [86] Tang, Y.H., Yuan, W.M., Han, C.M., et al., 2003.Fission Track Age of the Yuerya Gold Deposit.Acta Geoscientia Sinica, 24(6):573-578(in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-DQXB200306018.htm
      [87] Trieloff, M., Jessberger, E.K., Herrwerth, I., et al., 2003.Structure and Thermal History of the H-Chondrite Parent Asteroid Revealed by Thermochronometry.Nature, 422(6931):502-506. https://doi.org/10.1038/nature01499
      [88] Vasconcelos, P.M., Brimhall, G.H., Becker, T.A., et al., 1994.Analysis of Supergene Jarosite and Alunite:Implications to the Paleoweathering History of the Western USA and West Africa.Geochimica et Cosmochimica Acta, 58(1):401-420. https://doi.org/10.1016/0016-7037(94)90473-1
      [89] Wang, C.M., Deng, J., Santosh, M., et al., 2015.Timing, Tectonic Implications and Genesis of Gold Mineralization in the Xincheng Gold Deposit, China:C-H-O Isotopes, Pyrite Rb-Sr and Zircon Fission Track Thermochronometry.Ore Geology Reviews, 65:659-673. https://doi.org/10.13039/501100001809
      [90] Wang, F., Shi, W.B., Zhu, R.X., 2014.Problems of Modern 40Ar/39Ar Geochronology:Reviews.Acta Petrologica Sinica, 30(2):326-340(in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTotal-YSXB201402002.htm
      [91] Warnock, A.C., Zeitler, P.K., Wolf, R.A., et al., 1997.An Evaluation of Low-Temperature Apatite U-Th/He Thermochronometry.Geochimica et Cosmochimica Acta, 61(24):5371-5377. https://doi.org/10.1016/s0016-7037(97)00302-5
      [92] Wernicke, R.S., Lippolt, H.J., 1993.Botryoidal Hematite from the Schwarzwald (Germany):Heterogeneous Uranium Distributions and Their Bearing on the Helium Dating Method.Earth and Planetary Science Letters, 114(2-3):287-300. https://doi.org/10.1016/0012-821x(93)90031-4
      [93] Wilkinson, B.H., Kesler, S.E., 2007.Tectonism and Exhumation in Convergent Margin Orogens:Insights from Ore Deposits.The Journal of Geology, 115(6):611-627. https://doi.org/10.1086/521606
      [94] Wolf, R.A., Farley, K.A., Kass, D.M., 1998.Modeling of the Temperature Sensitivity of the Apatite (U-Th)/He Thermochronometer.Chemical Geology, 148(1-2):105-114. https://doi.org/10.1016/s0009-2541(98)00024-2
      [95] Wolf, R.A., Farley, K.A., Silver, L.T., 1996.Helium Diffusion and Low-Temperature Thermochronometry of Apatite.Geochimica et Cosmochimica Acta, 60(21):4231-4240. https://doi.org/10.1016/s0016-7037(96)00192-5
      [96] Wolfe, M.R., Stockli, D.F., 2010.Zircon (U-Th)/He Thermochronometry in the KTB Drill Hole, Germany, and Its Implications for Bulk He Diffusion Kinetics in Zircon.Earth and Planetary Science Letters, 295(1-2):69-82. https://doi.org/10.1016/j.epsl.2010.03.025
      [97] Xu, X.T., Yuan, W.M., Gong, Q.J., et al., 2010.The Analysis of Zircon Fission Track's Ore-Forming Epoch in Shaquanzi Copper-Iron Deposits, Xinjiang.China Mining Magazine, 19(4):105-108(in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-ZGKA201004033.htm
      [98] Yamada, R., Tagami, T., Nishimura, S., et al., 1995.Annealing Kinetics of Fission Tracks in Zircon:An Experimental Study.Chemical Geology, 122(1-4):249-258. https://doi.org/10.1016/0009-2541(95)00006-8
      [99] Yang, T.S., 2007.Feasibility of Probing Solid State Nuclear Tracks by Thermal Analysis Method.Chinese Science Bulletin, 52(4):380-383(in Chinese). http://kns.cnki.net/KCMS/detail/detail.aspx?filename=jxtw200708002&dbname=CJFD&dbcode=CJFQ
      [100] Yang, T.S., He, S.R., Li.T.X., et al., 2009.Measurement of Solid State Nuclear Tracks in Apatite by Thermal Analysis Method.Chinese Science Bulletin, 54(17):2495-2499(in Chinese). http://kns.cnki.net/KCMS/detail/detail.aspx?filename=jxtw200920029&dbname=CJFD&dbcode=CJFQ
      [101] Yuan, W.M., 2016.Thermochronological Method of Revealing Conservation and Changes of Mineral Deposits.Acta Petrologica Sinica, 32(8):2571-2578(in Chinese with English abstract). http://www.ysxb.ac.cn/ysxb/ch/reader/view_abstract.aspx?file_no=20160823
      [102] Yuan, W.M., Bao, Z.K., Dong, J.Q., et al., 2007.Fission Track Thermochronology Application to Mineralization Ages of Hydrothermal Deposits in Kelang Basin, Northern Xinjiang, China.World Sci-Tech R & D, 29(2):8-14(in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTotal-SJKF200702001.htm
      [103] Yuan, W.M., Bao, Z.K., Dong, J.Q., et al., 2007.Zircon and Apatite Fission Track Analyses on Mineralization Ages and Tectonic Activities of Tuwu-Yandong Porphyry Copper Deposit in Northern Xinjiang, China.Science China:Earth Sciences, 50(12):1787-1795. https://doi.org/10.1007/s11430-007-0130-9
      [104] Yuan, W.M., Dong, J.Q., Bao, Z.K., et al., 2008.Apatite Fission Track Evidences for Neogene Tectono-Thermal History in Nimu Area, Southern Gangdese Terrane, Tibet Plateau.Atomic Energy Science and Technology, 42(6):570-573 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTotal-YZJS200806023.htm
      [105] Yuan, W.M., Hou, Z.Q., Li, S.R., et al., 2001.Fission Track Evidence on Thermal History of Jiama Polymetallic Ore District, Tibet.Science in China (Series D), 44(Suppl.):139-145. https://doi.org/10.1007/bf02911981
      [106] Yuan, W.M., Mo, X.X., Zhang, A.K., et al., 2013.Fission Track Thermochronology Evidence for Multiple Periods of Mineralization in the Wulonggou Gold Deposits, Eastern Kunlun Mountains, Qinghai Province.Journal of Earth Science, 24(4):471-478. https://doi.org/10.1007/s12583-013-0362-x
      [107] Yuan, W.M., Wang, S.C., Li, S.R., 2002.Apatite Fission Track Dating Evidence on the Tectonization of Gangdese Block, South Qinghai-Tibetan Plateau.Chinese Science Bulletin, 47(3):240-244. https://doi.org/10.1360/02tb9057
      [108] Yuan, W.M., Wang, S.C., Wang, L.F., 1999.Fission Track Study on the Metallogeneitc Age of Xiayingfang Gold Deposit in Eastern Hebei.Nuclear Techniques, 22(7):411-413(in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-HJSU199907008.htm
      [109] Yuan, W.M., Wang, S.C., Wang, L.F., 2000.Metallogenic Thermal History of the Wulonggou Gold Deposits in East Kunlun Mountains in the Light of Fission Track Thermochronology.Acta Geoscientia Sinica, 21(4):389-395(in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-DQXB200004008.htm
      [110] Yuan, W.M., Deng, J., Zheng, Q.G., et al., 2009a.Apatite Fission Track Constraints on the Neogene Tectono-Thermal History of Nimu Area, Southern Gangdese Terrane, Tibet Plateau.Island Arc, 18(3):488-495. https://doi.org/10.1111/j.1440-1738.2009.00669.x
      [111] Yuan, W.M., Zheng, Q.G., Bao, Z.K., et al., 2009b.Zircon Fission Track Thermochronology Constraints on Mineralization Epochs in Altai Mountains, Northern Xinjiang, China.Radiation Measurements, 44(9-10):950-954. https://doi.org/10.1016/j.radmeas.2009.10.094
      [112] Zaun, P. E., Wagner, G. A., 1985. Fission-Track Stability in Zircons under Geological Conditions. Nuclear Tracks and Radiation Measurements(1982), 10(3): 303-307. https://doi.org/10.1016/0735-245x(85)90119-x
      [113] Zhang, J.X., Yang, T.S., 2017.Determination of α Particle Nuclear Track Density by a Thermal Analysis Method and Its Application in Geological Dating.Journal of Xinyang Normal University (Natural Science Edition), 30(2):274-278(in Chinese with English abstract).
      [114] Zhang, N., 2016. Fission Track Thermochronology of the Xincheng Gold Deposit, Northwest of Jiaodong Peninsula(Dissertation). China University of Geosciences, Beijing(in Chinese with English abstract).
      [115] Zhao, J.X., Qin, K.Z., Li, G.M., et al., 2015.The Exhumation History of Collision-Related Mineralizing Systems in Tibet:Insights from Thermal Studies of the Sharang and Yaguila Deposits, Central Lhasa.Ore Geology Reviews, 65:1043-1061. https://doi.org/10.1016/j.oregeorev.2014.09.026
      [116] 陈文, 万渝生, 李华芹, 等, 2011.同位素地质年龄测定技术及应用.地质学报, 85(11):1917-1947. http://www.cnki.com.cn/Article/CJFDTOTAL-DZXE201111010.htm
      [117] 陈文, 张彦, 张岳桥, 等, 2006.青藏高原东南缘晚新生代幕式抬升作用的Ar-Ar热年代学证据.岩石学报:22(4):867-872. http://mall.cnki.net/magazine/Article/YSXB200604010.htm
      [118] 陈宣华, 陈正乐, 韩淑琴, 等, 2012.中亚巴尔喀什成矿带钼-钨矿床的地质热年代学.地球科学, 37(5):878-892. https://doi.org/10.3799/dqkx.2012.097
      [119] 冯云磊, 袁万明, 曹建辉, 等, 2015a.应用锆石裂变径迹方法研究夹皮沟本区金矿成矿时代.原子能科学技术, 49(2):379-384. http://manu19.magtech.com.cn/Jwk_yznkxjs_new/CN/abstract/abstract17517.shtml
      [120] 冯云磊, 袁万明, 郝娜娜, 等, 2015b.吉林桦甸市夹皮沟本区金矿剥露历史和矿床保存变化——来自磷灰石裂变径迹年代学证据.地质论评, 61(1):109-120. http://www.cnki.com.cn/Article/CJFDTotal-DZLP201501011.htm
      [121] 高绍凯, 袁万明, 董金泉, 等, 2005.核分析新技术:Alpha反冲径迹热年代学.地质通报, 24(10):1032-1038. doi: 10.3969/j.issn.1671-2552.2005.10.028
      [122] 郇伟静, 李娜, 袁万明, 等, 2013.四川甘孜-理塘金成矿带成矿时代与构造活动的裂变径迹研究.岩石学报, 29(4):1338-1346. http://www.ysxb.ac.cn/ysxb/ch/reader/view_abstract.aspx?file_no=20130419
      [123] 刘文浩, 张均, 李婉婷, 等, 2012.宁芜、庐枞盆地玢岩铁矿成矿深度及成矿后抬升、剥蚀情况:来自磷灰石裂变径迹的证据.地球科学, 37(5):966-980. https://doi.org/10.3799/dqkx.2012.105
      [124] 柳振江, 王建平, 郑德文, 等, 2010.胶东西北部金矿剥蚀程度及找矿潜力和方向——来自磷灰石裂变径迹热年代学的证据.岩石学报, 26(12):3597-3611. http://www.ysxb.ac.cn/ysxb/ch/reader/view_abstract.aspx?file_no=20101212
      [125] 马关宇, 高军平, 杜丁丁, 等, 2014.金川铜镍矿床成矿后的抬升破坏:来自热年代学的证据.世界地质, 33(3):581-590. http://www.cqvip.com/QK/94166X/201403/662450308.html
      [126] 马士委, 2017. 藏南甲玛铜多金属矿床构造格架与成矿的关系(博士论文). 北京: 中国地质科学院.
      [127] 孙非非, 朱传宝, 袁万明, 等, 2016.青海都兰县哈日扎多金属矿区构造活动的磷灰石裂变径迹分析.核技术, 39(12):37-44. http://www.cnki.com.cn/Article/CJFDTOTAL-DZKT201405003.htm
      [128] 汤云晖, 袁万明, 韩春明, 等, 2003.峪耳崖金矿的成矿时代裂变径迹研究.地球学报, 24(6):573-578. http://cpfd.cnki.com.cn/Article/CPFDTOTAL-ZGDJ200311002080.htm
      [129] 王非, 师文贝, 朱日祥, 2014.40Ar/39Ar年代学中几个重要问题的讨论.岩石学报, 30(2):326-340. http://kns.cnki.net/KCMS/detail/detail.aspx?filename=ysxb201402002&dbname=CJFD&dbcode=CJFQ
      [130] 徐晓彤, 袁万明, 龚庆杰, 等, 2010.利用裂变径迹定年分析新疆沙泉子铜铁矿成矿时代.中国矿业, 19(4):105-108. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=zgky201004030
      [131] 杨铜锁, 2007.热分析法探测固体核径迹的可行性论证.科学通报, 52(4):380-383. http://www.cqvip.com/QK/94252X/2007004/23984040.html
      [132] 杨铜锁, 何少蓉, 李天祥, 等, 2009.热分析法测量磷灰石中固体核径迹.科学通报, 54(17):2495-2499. http://www.cqvip.com/QK/94252X/200917/31720725.html
      [133] 袁万明, 2016.矿床保存变化研究的热年代学技术方法.岩石学报, 32(8):2571-2578. http://www.ysxb.ac.cn/ysxb/ch/reader/create_pdf.aspx?file_no=20160823&year_id=2016&quarter_id=8&falg=1
      [134] 袁万明, 保增宽, 董金泉, 等, 2007.新疆阿尔泰克朗盆地热液成矿时代的裂变径迹分析.世界科技研究与发展, 29(2):8-14. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=sjkjyjyfz200702002
      [135] 袁万明, 董金泉, 保增宽, 等, 2008.西藏冈底斯地块尼木地区新第三纪构造热史的磷灰石裂变径迹约束.原子能科学技术, 42(6):570-573. http://kns.cnki.net/KCMS/detail/detail.aspx?filename=yzjs200806023&dbname=CJFD&dbcode=CJFQ
      [136] 袁万明, 王世成, 王兰芳, 1999.河北下营坊金矿成矿时代的裂变径迹研究.核技术, 22(7):411-413. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=hjs199907009
      [137] 袁万明, 王世成, 王兰芳, 2000.东昆仑五龙沟金矿床成矿热历史的裂变径迹热年代学证据.地球学报, 21(4):389-395. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=dqxb200004008
      [138] 张建祥, 杨铜锁, 2017.热分析方法测定α粒子径迹密度及其在地质定年中的应用.信阳师范学院学报(自然科学版), 30(2):274-278. https://www.wenkuxiazai.com/word/f5b5584e2e3f5727a5e96280-1.doc
      [139] 张宁, 2016. 胶西北新城金矿床裂变径迹热年代学(学位论文). 北京: 中国地质大学.
    • 加载中
    图(1) / 表(3)
    计量
    • 文章访问数:  5836
    • HTML全文浏览量:  1914
    • PDF下载量:  76
    • 被引次数: 0
    出版历程
    • 收稿日期:  2018-01-21
    • 刊出日期:  2018-06-15

    目录

      /

      返回文章
      返回