• 中国出版政府奖提名奖

    中国百强科技报刊

    湖北出版政府奖

    中国高校百佳科技期刊

    中国最美期刊

    留言板

    尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

    姓名
    邮箱
    手机号码
    标题
    留言内容
    验证码

    鄂西亚高山泥炭地有壳变形虫生态监测及对水位的指示意义

    秦养民 巩静 顾延生 薛建涛 向成玉 吴未华 葛继稳

    秦养民, 巩静, 顾延生, 薛建涛, 向成玉, 吴未华, 葛继稳, 2018. 鄂西亚高山泥炭地有壳变形虫生态监测及对水位的指示意义. 地球科学, 43(11): 4036-4045. doi: 10.3799/dqkx.2018.599
    引用本文: 秦养民, 巩静, 顾延生, 薛建涛, 向成玉, 吴未华, 葛继稳, 2018. 鄂西亚高山泥炭地有壳变形虫生态监测及对水位的指示意义. 地球科学, 43(11): 4036-4045. doi: 10.3799/dqkx.2018.599
    Qin Yangmin, Gong Jing, Gu Yansheng, Xue Jiantao, Xiang Chenyu, Wu Weihua, Ge Jiwen, 2018. Ecological Monitoring and Environmental Significance of Testate Amoebae in Subalpine Peatlands in West Hubei Province, China. Earth Science, 43(11): 4036-4045. doi: 10.3799/dqkx.2018.599
    Citation: Qin Yangmin, Gong Jing, Gu Yansheng, Xue Jiantao, Xiang Chenyu, Wu Weihua, Ge Jiwen, 2018. Ecological Monitoring and Environmental Significance of Testate Amoebae in Subalpine Peatlands in West Hubei Province, China. Earth Science, 43(11): 4036-4045. doi: 10.3799/dqkx.2018.599

    鄂西亚高山泥炭地有壳变形虫生态监测及对水位的指示意义

    doi: 10.3799/dqkx.2018.599
    基金项目: 

    国家自然科学基金项目 41330103

    国家自然科学基金项目 41572153

    国家自然科学基金项目 41502167

    详细信息
      作者简介:

      秦养民(1982-), 男, 博士, 副教授, 主要从事全球变化与生态响应、生态地理学的教学和研究工作

    • 中图分类号: P641.6

    Ecological Monitoring and Environmental Significance of Testate Amoebae in Subalpine Peatlands in West Hubei Province, China

    • 摘要: 开展湿地的生态监测研究是理解当今气候变化背景下湿地的生态响应、动态演化和生态服务功能变化的有效途径,也是湿地保护、科学管理、合理规划和生态恢复的内在需求.以我国鄂西地区广泛分布的典型亚高山泥炭湿地为研究地点,以在湿地中大量生活且对环境变化敏感的环境指示生物——有壳变形虫为研究对象,采用了一种较新的泥炭湿地水位长期定点监测方法——"PVC印迹法"监测湿地水位的长期变化,调查了有壳变形虫的生物多样性、群落组合特征及其与水位等主要环境因子的响应关系,共记录到有壳变形虫27种和类群(type),隶属14个属.对有壳变形虫的群落组成与环境因子的关系排序分析显示,泥炭湿地的水位是有壳变形虫群落组成的主控环境因子,构建了有壳变形虫属种与水位的转换函数,该函数具有较好的预测和推导能力(R2=0.62),为该地区泥炭湿地的古水位重建提供了现代过程的数据支持.

       

    • 图  1  2010—2011年监测的平均水位(a)、2011年监测水位值(b)与PVC记录的水位值的线性回归关系

      Fig.  1.  The linear regression of values between averaging water table depth in 2010 and 2011 with PVC tape recorded data (a); the linear regression of water table depth between data in 2011 and PVC records (b)

      图  2  鄂西泥炭湿地有壳变形虫各属所占比例

      Fig.  2.  Genus proportion of testate amoebae in peatlands near West Hubei Province, China

      图  3  冗余分析显示鄂西亚高山泥炭湿地有壳变形虫群落与水位的关系

      Fig.  3.  Redundancy analysis (RDA) showing the relationship between testate amoeba communities and depth to water table in peatlands in West Hubei Province, China

      图  4  2010年监测的水位值(a)以及PVC记录的水位值(b)与有壳变形虫群落构建的转换函数模型

      Fig.  4.  Hydrological transfer function development for water table depth in 2010 (a), and PVC records (b) with testate amoeba communities

      表  1  全球泥炭湿地水位监测的PVC记录

      Table  1.   Global records of water table depth monitoring by PVC tape in different peatlands

      采样点位置 设置的PVC数量 有效的PVC数量 PVC记录与实测水位的相关系数 研究地区 参考文献
      湖北恩施 28 24 0.630 长江中游 本研究
      威斯康星 97 71 0.840 美国北部 Booth et al., 2005
      美国中东部 369 369 0.680 美国中东部 Booth et al., 2008
      北卡罗莱纳 42 37 0.550 美国东部 Booth et al., 2008
      阿尔卑斯山 80 48 0.920 意大利北部 Bragazza, 1996
      阿拉斯加 128 18 0.830 北美洲西北 Markel et al., 2010
      阿拉斯加 121 0 无数据 北美洲西北 Payne et al., 2006
      苏格兰西南 34 34 0.960 英国中北部 Belyea, 1999
      捷克南部 49 49 0.938 捷克南部 Navrátilová and Hájek, 2005
      喀尔巴阡山 110 42 0.850 中欧东部 Schnitchen et al., 2006
      加拿大东部 101 62 0.930 加拿大东部 Amesbury et al., 2013
      下载: 导出CSV

      表  2  鄂西亚高山泥炭湿地有壳变形虫与水位RDA分析结果

      Table  2.   Redundancy analysis (RDA) results of testate amoeba communities and water table depth from subalpine peatlands in West Hubei, China

      排序轴 轴1 轴2 轴3 轴4
      特征值 0.21 0.03 0.03 0.23
      物种-环境因子关系 0.84 0.55 0.57 0
      累积物种-环境变化百分比(%) 76.7 88.7 100 0
      下载: 导出CSV
    • [1] Amesbury, M.J., Mallon, G., Charman, D.J., et al., 2013.Statistical Testing of a New Testate Amoeba-Based Transfer Function for Water-Table Depth Reconstruction on Ombrotrophic Peatlands in North-Eastern Canada and Maine, United States.Journal of Quaternary Science, 28(1):27-39.https://doi.org/10.1002/jqs.2584 doi: 10.1002/jqs.v28.1
      [2] Amesbury, M.J., Swindles, G.T., Bobrov, A., et al., 2016.Development of a New Pan-European Testate Amoeba Transfer Function for Reconstructing Peatland Palaeohydrology.Quaternary Science Reviews, 152:132-151. doi: 10.1016/j.quascirev.2016.09.024
      [3] An, S.Q., 2003.Wetland Ecoengineering.Chemical Industry Press, Beijing, 528 (in Chinese).
      [4] Barnett, R.L., Newton, T.L., Charman, D.J., et al., 2017.Salt-Marsh Testate Amoebae as Precise and Widespread Indicators of Sea-Level Change.Earth-Science Reviews, 164:193-207. doi: 10.1016/j.earscirev.2016.11.002
      [5] Belyea, L.R., 1999.A Novel Indicator of Reducing Conditions and Water-Table Depth in Mires.Functional Ecology, 13(3):431-434.https://doi.org/10.1046/j.1365-2435.1999.00333.x http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=3120c354d6ccf6a61822fa27551b735d
      [6] Birks, H.J.B., 1995.Quantitative Palaeoenvironmental Reconstructions.In: Maddy, D., Brew, J.S., eds., Statistical Modelling of Quaternary Science Data, Technical Guide 5.Quaternary Research Association, Cambridge, 161-254.
      [7] Bobrov, A., Qin, Y.M., Wilkinson, D.M., 2015.Latitudinal Diversity Gradients in Free-Living Microorganisms-Hoogenraadia a Key Genus in Testate Amoebae Biogeography.Acta Protozoologica, 54:1-8.https://doi: 10.1046/j.1365-2435.1999.00333.x
      [8] Booth, R.K., 2001.Ecology of Testate Amoebae (Protozoa) in Two Lake Superior Coastal Wetlands:Implications for Paleoecology and Environmental Monitoring.Wetlands, 21(4):564-576.https://doi.org/10.1672/0277-5212(2001)0212.0.co; 2 doi: 10.1672/0277-5212(2001)021[0564:EOTAPI]2.0.CO;2
      [9] Booth, R.K., Hotchkiss, S.C., Wilcox, D.A., 2005.Discoloration of Polyvinyl Chloride (PVC) Tape as a Proxy for Water-Table Depth in Peatlands:Validation and Assessment of Seasonal Variability.Functional Ecology, 19(6):1040-1047.https://doi.org/10.1111/j.1365-2435.2005.01048.x doi: 10.1111/fec.2005.19.issue-6
      [10] Booth, R.K., Sullivan, M.E., Sousa, V.A., 2008.Ecology of Testate Amoebae in a North Carolina Pocosin and Their Potential Use as Environmental and Paleoenvironmental Indicators.Écoscience, 15(2):277-289. https://doi.org/10.2980/15-2-3111
      [11] Bragazza, L., 1996.Pelimitation of the Aerobic Peat Layer in a Sphagnum Mire on the Southern Alps.Oecologia Montana, 5(1):41-46. https://www.researchgate.net/publication/277989073_Delimination_of_the_aerobic_peat_layer_in_a_Sphagnum_mire_on_the_southern_Alps
      [12] Charman, D.J., Hendon, D., Woodland, W.A., 2000.The Identification of Testate Amoebae (Protozoa: Rhizopoda) in Peats: Quaternary Research Association, Technical Guide No.9.Quaternary Research Association, London.
      [13] Chen, J.H., Chen, F.H., Zhang, E.L., et al., 2009.A 1 000-Year Chironomid-Based Salinity Reconstruction from Varved Sediments of Sugan Lake, Qaidam Basin, Arid Northwest China, and Its Palaeoclimatic Significance.Chinese Science Bulletin, 54(20):3127-3135 (in Chinese). http://www.cqvip.com/Main/Detail.aspx?id=32212695
      [14] Chen, X., Bu, Z.J., Stevenson, M.A., et al., 2016.Variations in Diatom Communities at Genus and Species Levels in Peatlands (Central China) Linked to Microhabitats and Environmental Factors.Science of the Total Environment, 568:137-146. doi: 10.1016/j.scitotenv.2016.06.015
      [15] Dong, X.H., Yang, X.D., Wang, R., 2006.Diatom Indicative Species of Eutrophication of the Lakes in the Middle and Lower Reach Regions of Yangtze River.China Environmental Science, 26(5):570-574 (in Chinese with English abstract). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=zghjkx200605014
      [16] Gu, Y.S., Li, K.J., Qin, Y.M., et al., 2013.Impact of Human Activity on the Evolution of the Ecological Environment of Jianghan Lake Group in the Historical Period, Central China.Earth Science, 38(Suppl.1):133-144 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-DQKX2013S1016.htm
      [17] Huang, X.Y., Zhang, Z.Q., Wang, H.M., et al., 2017.Overview on Critical Zone Observatory at Dajiuhu Peatland, Shennongjia.Earth Science, 42(6):1026-1038 (in Chinese with English abstract). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=dqkx201706012
      [18] Joosten, H., Clarke, D., 2002.Wise Use of Mires and Peatlands.International Mire Conversation Group and International Peat Society.Saarijärven Offset Oy, Saarijärvi, Finland, 304. http://agris.fao.org/agris-search/search.do?recordID=ID2005000064
      [19] Kosakyan, A., Gomaa, F., Lara, E., et al., 2016.Current and Future Perspectives on the Systematics, Taxonomy and Nomenclature of Testate Amoebae.European Journal of Protistology, 55:105-117. https://doi.org/10.1016/j.ejop.2016.02.001
      [20] Lamentowicz, M., Gałka, M., Lamentowicz, Ł., et al., 2015.Reconstructing Climate Change and Ombrotrophic Bog Development during the Last 4 000 Years in Northern Poland Using Biotic Proxies, Stable Isotopes and Trait-Based Approach.Palaeogeography, Palaeoclimatology, Palaeoecology, 418:261-277. doi: 10.1016/j.palaeo.2014.11.015
      [21] Lara, E., Heger, T.J., Ekelund, F., et al., 2008.Ribosomal RNA Genes Challenge the Monophyly of the Hyalospheniidae (Amoebozoa:Arcellinida).Protist, 159(2):165-176. https://doi.org/10.1016/j.protis.2007.09.003
      [22] Li, H.K., Bu, Z.J., Wang, S.Z., et al., 2009.Environmental Implications of the Modern Testate Amoebae in the Peatlands in Changbai Mountains.Quaternary Sciences, 29(4):817-824(in Chinese with English abstract). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=dsjyj200904018
      [23] Li, H.K., Wang, S.Z., Bu, Z.J., et al., 2010.The Testate Amoebae in Sphagnum Peatlands in Changbai Mountains.Wetland Science, 8(3):249-255 (in Chinese with English abstract). http://d.old.wanfangdata.com.cn/Periodical/shidkx201003006
      [24] Li, H.K., Wang, S.Z., Zhao, H.Y., et al., 2015.A Testate Amoebae Transfer Function from Sphagnum-Dominated Peatlands in the Lesser Khingan Mountains, NE China.Journal of Paleolimnology, 54(2-3):189-203.https://doi.org/10.13039/501100001809 doi: 10.1007/s10933-015-9846-2
      [25] Lü, H.Y., Wu, N.Q., Liu, K.B., et al., 2011.Modern Pollen Distributions in Qinghai-Tibetan Plateau and the Development of Transfer Functions for Reconstructing Holocene Environmental Changes.Quaternary Science Reviews, 30(7/8):947-966.https://doi.org/10.1016/j.quascirev.2011.01.008 http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=5eac6d0d6d1e337fb3ccb147b7b0f538
      [26] Lü, X.G., 2008.Study on Wetland and Wetland in China.Hebei Science and Technology Press, Shijiazhuang, 922 (in Chinese).
      [27] Markel, E.R., Booth, R.K., Qin, Y.M., 2010.Testate Amoebae and δ13C of Sphagnum as Surface-Moisture Proxies in Alaskan Peatlands.The Holocene, 20(3):463-475. https://doi.org/10.1177/0959683609354303
      [28] Meisterfeld, R., 2002.Order Arcellinida Kent, 1 880, Testate Amoebae with Filopodia.In: Lee, J.J., Leedale, G.F., Bradbury, P., eds., An Illustrated Guide to the Protozoa.Allen Press, Lawrence, Kansas, 827-860.
      [29] Mitchell, E.A.D., Buttler, A.J., Warner, B.G., et al., 1999.Ecology of Testate Amoebae (Protozoa:Rhizopoda) in Sphagnum Peatlands in the Jura Mountains, Switzerland and France.Écoscience, 6(4):565-576. https://doi.org/10.1080/11956860.1999.11682555
      [30] Mitchell, E.A.D., Charman, D.J., Warner, B.G., 2008.Testate Amoebae Analysis in Ecological and Paleoecological Studies of Wetlands:Past, Present and Future.Biodiversity and Conservation, 17(9):2115-2137. https://doi.org/10.1007/s10531-007-9221-3
      [31] Navrátilová, J., Hájek, M., 2005.Recording Relative Water Table Depth Using PVC Tape Discolouration:Advantages and Constraints in Fens.Applied Vegetation Science, 8(1):21-26.https://doi.org/10.1111/j.1654-109x.2005.tb00625.x doi: 10.1111/j.1654-109X.2005.tb00625.x
      [32] Payne, R.J., Telford, R.J., Blackford, J.J., 2012.Testing Peatland Testate Amoeba Transfer Functions:Appropriate Methods for Clustered Training-Sets.Holocene, 22:819-825.https://doi.10.1177/0959683611430412 doi: 10.1177/0959683611430412
      [33] Payne, R.J., Kishaba, K., Blackford, J.J., et al., 2006.Ecology of Testate Amoebae (Protista) in South-Central Alaska Peatlands:Building Transfer-Function Models for Paleoenviron-Mental Studies.The Holocene, 16:403-14.https://doi.10.1191/0959683606hl936rp doi: 10.1191/0959683606hl936rp
      [34] Qin, Y.M., Zhang, W.J., Li, H.K., et al., 2011.Note on the Taxonomy of Testate Amoebae and Their Applications in Ecology and Palaeoecology of China, with Particular Reference to Genus Argynnia Vucetich, 1974.Quaternary Sciences, 31(6):1060-1066 (in Chinese with English abstract). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=dsjyj201106013
      [35] Qin, Y.M., Payne, R., Yang, X.D., et al., 2016a.Testate Amoebae as Indicators of Water Quality and Contamination in Shallow Lakes of the Middle and Lower Yangtze Plain.Environmental Earth Sciences, 75(7):1-11. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=191c4279da93dff149d84227d87f9ffc
      [36] Qin, Y.M., Man, B.Y., Kosakyan, A., et al., et al., 2016b.Nebela Jiuhuensis nov.Sp.(Amoebozoa; Arcellinida; Hyalospheniidae):A New Member of the Nebela Saccifera-Equicalceus-Ansata Group Described from Sphagnum Peatlands in South-Central China.Journal of Eukaryotic Microbiology, 63(5):558-566.
      [37] Qin, Y.M., Mitchell, E.A.D., Lamentowicz, M., et al., 2013.Ecology of Testate Amoebae in Peatlands of Central China and Development of a Transfer Function for Paleohydrological Reconstruction.Journal of Paleolimnology, 50(3):319-330. https://doi.org/10.1007/s10933-013-9726-6
      [38] Qin, Y.M., Payne, R., Gu, Y.S., et al., 2017.Short-Term Response of Testate Amoebae to Wildfire.Applied Soil Ecology, 116:64-69. doi: 10.1016/j.apsoil.2017.03.018
      [39] Qin, Y.M., Xie, S.C., Smith, H.G., et al., 2011.Diversity, Distribution and Biogeography of Testate Amoebae in China:Implications for Ecological Studies in Asia.European Journal of Protistology, 47(1):1-9. https://doi.org/10.1016/j.ejop.2010.09.004
      [40] Qin, Y.M., Xie, S.C., Swindles, G.T., et al., 2008.Pentagonia Zhangduensis nov.spec.(Lobosea, Arcellinida), a New Freshwater Species from China.European Journal of Protistology, 44(4):287-290.https://doi.org/10.1016/j.ejop.2008.03.001 http://d.old.wanfangdata.com.cn/NSTLQK/NSTL_QKJJ0214934232/
      [41] Qin, Y.M., Wang, H.L., Zhang, Q.F., et al., 2013.Response of Testate Amoebae Community to Water Chemistry in Peatlands near the Middle Reach of Yangtze River.Quaternary Sciences, 33(1):26-33 (in Chinese with English abstract). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=dsjyj201301003
      [42] Qin, Y.M., Xie, S.C., Gu, Y.S., et al., 2008.An Excellent Indicator for Quaternary Paleoenvironmental Reconstructions-Advances in the Study of Testate Amoebae (Thecamoebians, Arcellacean).Advances in Earth Science, 23(8):803-812 (in Chinese with English abstract). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=dqkxjz200808003
      [43] Schnitchen, C., Charman, D.J., Magyari, E., et al., 2006.Reconstructing Hydrological Variability from Testate Amoebae Analysis in Carpathian Peatlands.Journal of Paleolimnology, 36(1):1-17. https://doi.org/10.1007/s10933-006-0001-y
      [44] Shen, Y.F., Zhang, Z.S., Gong, X.J., et al., 1990.Mondern Biomonitoring Techniques Using Freshwater Microbiota.China Architecture and Building Press, Beijing, 381-398 (in Chinese).
      [45] Song, L.H., Yan, X.M., Wang, K.H., et al., 2015.Nitrogen Input Altered Testate Amoebae Community in Peatland of Sanjiang Plain, Northeast China.Chinese Journal of Applied Ecology, 26(2):563-569 (in Chinese with English abstract). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=yystxb201502032
      [46] Sullivan, M.E., Booth, R.K., 2011.The Potential Influence of Short-Term Environmental Variability on the Composition of Testate Amoeba Communities in Sphagnum Peatlands.Microbial Ecology, 62(1):80-93. https://doi.org/10.1007/s00248-011-9875-y
      [47] Swindles, G.T., Morris, P.J., Wheeler, J., et al., 2016.Resilience of Peatland Ecosystem Services over Millennial Timescales:Evidence from a Degraded British Bog.Journal of Ecology, 104(3):621-636. https://doi.org/10.1111/1365-2745.12565
      [48] Swindles, G.T., Reczuga, M., Lamentowicz, M., et al., 2014.Ecology of Testate Amoebae in an Amazonian Peatland and Development of a Transfer Function for Palaeohydrological Reconstruction.Microbial Ecology, 68(2):284-298. https://doi.org/10.1007/s00248-014-0378-5
      [49] van Bellen, S., Mauquoy, D., Payne, R.J., et al., 2017.An Alternative Approach to Transfer Functions? Testing the Performance of a Functional Trait-Based Model for Testate Amoebae.Palaeogeography, Palaeoclimatology, Palaeoecology, 468:173-183. https://doi.org/10.1016/j.palaeo.2016.12.005
      [50] Warner, B.G., Asada, T., Quinn, N.P., 2007.Seasonal Influences on the Ecology of Testate Amoebae (Protozoa) in a Small Sphagnum Peatland in Southern Ontario, Canada.Microbial Ecology, 54(1):91-100. https://doi.org/10.1007/s00248-006-9176-z
      [51] Xiang, X., Wang, H.M., Gong, L.F., et al., 2013.Vertical Variations and Associated Ecological Function of Bacterial Communities from Sphagnum to Underlying Sediments in Dajiuhu Peatland.Science China:Earth Sciences, 44(6):1244-1252 (in Chinese). http://kns.cnki.net/KCMS/detail/detail.aspx?filename=JDXG201405015&dbname=CJFD&dbcode=CJFQ
      [52] Xie, S.C., Huang, X.Y., Yang, H., et al., 2013.An Overview on Microbial Proxies for the Reconstruction of Past Global Environmental Change.Quaternary Sciences, 33(1):1-19 (in Chinese with English abstract). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=dsjyj201301001
      [53] Yang, X.D., Anderson, N.J., Dong, X.H., et al., 2008.Surface Sediment Diatom Assemblages and Epilimnetic Total Phosphorus in Large, Shallow Lakes of the Yangtze Floodplain:Their Relationships and Implications for Assessing Long-Term Eutrophication.Freshwater Biology, 53(7):1273-1290. https://doi.org/10.1111/j.1365-2427.2007.01921.x
      [54] Zhang, E.L., Bedford, A., Jones, R., et al., 2006.Quantitative Model Research of Typical Chironomid Subfossils-Total Phosphorus of the Lakes in the Middle and Lower Reach Regions of Yangtze River.Chinese Science Bulletin, 51(11):1318-1325 (in Chinese). http://www.cqvip.com/qk/86894X/200617/22721528.html
      [55] Zhu, C., Ma, C.M., Yu, S.Y., et al., 2010.A Detailed Pollen Record of Vegetation and Climate Changes in Central China during the Past 16 000 Years.Boreas, 39(1):69-76.https://doi.org/10.1111/j.1502-3885.2009.00098.x doi: 10.1111/bor.2010.39.issue-1
      [56] 安树青, 2003.湿地生态工程.北京:化学工业出版社, 528.
      [57] 陈建徽, 陈发虎, 张恩楼, 等, 2009.柴达木盆地苏干湖年纹层岩芯摇蚊记录的过去1 000年干旱区湿度变化及其意义.科学通报, 54(20):3127-3135. http://www.cqvip.com/Main/Detail.aspx?id=32212695
      [58] 董旭辉, 羊向东, 王荣, 2006.长江中下游地区湖泊富营养化的硅藻指示性属种.中国环境科学, 26(5):570-574. doi: 10.3321/j.issn:1000-6923.2006.05.014
      [59] 顾延生, 李贶家, 秦养民, 等, 2013.历史时期以来人类活动与江汉湖群生态环境演变.地球科学, 38(增刊1):133-144. http://www.cnki.com.cn/Article/CJFDTOTAL-DQKX2013S1016.htm
      [60] 黄咸雨, 张志麒, 王红梅, 等, 2017.神农架大九湖泥炭湿地关键带监测进展.地球科学, 42(6):1026-1038. http://earth-science.net/WebPage/Article.aspx?id=3594
      [61] 李鸿凯, 卜兆君, 王升忠, 等, 2009.长白山区泥炭地现代有壳变形虫环境意义探讨.第四纪研究, 29(4):817-824. doi: 10.3969/j.issn.1001-7410.2009.04.18
      [62] 李鸿凯, 王升忠, 卜兆君, 等, 2010.长白山区典型泥炭藓沼泽的有壳变形虫.湿地科学, 8(3):249-255. http://d.old.wanfangdata.com.cn/Periodical/shidkx201003006
      [63] 吕宪国, 2008.中国湿地与湿地研究.石家庄:河北科学技术出版社, 922.
      [64] 秦养民, 王翰林, 张千帆, 等, 2013.长江中游泥炭湿地有壳变形虫空间分布及其对水化学因子的响应.第四纪研究, 33(1):26-33. doi: 10.3969/j.issn.1001-7410.2013.01.03
      [65] 秦养民, 谢树成, 顾延生, 等, 2008.第四纪环境重建的良好代用指标——有壳变形虫记录与古生态学研究进展.地球科学进展, 23(8):803-812. doi: 10.3321/j.issn:1001-8166.2008.08.003
      [66] 秦养民, 张文静, 李鸿凯, 等, 2011.中国有壳变形虫Argynnia(Vucetich, 1974)属的修订及若干环境重建问题探讨.第四纪研究, 31(6):1060-1066. doi: 10.3969/j.issn.1001-7410.2011.06.13
      [67] 沈韫芬, 章宗涉, 龚循矩, 等, 1990.微型生物监测新技术.北京:中国建筑工业出版社, 381-398.
      [68] 宋理洪, 闫修民, 王可洪, 等, 2015.外源氮输入改变三江平原泥炭沼泽有壳变形虫群落结构.应用生态学报, 26(2):563-569. http://d.old.wanfangdata.com.cn/Periodical/yystxb201502032
      [69] 向兴, 王红梅, 龚林锋, 等, 2014.细菌群落在神农架大九湖泥炭藓与表层沉积物的垂向变化及其生态意义.中国科学:地球科学, 44(6):1244-1252. http://kns.cnki.net/KCMS/detail/detail.aspx?filename=JDXK201406016&dbname=CJFD&dbcode=CJFQ
      [70] 谢树成, 黄咸雨, 杨欢, 等, 2013.示踪全球环境变化的微生物代用指标.第四纪研究, 33(1):1-19. doi: 10.3969/j.issn.1001-7410.2013.01.01
      [71] 张恩楼, Bedford, A., Jones, R., 等, 2006.长江中下游地区典型湖泊摇蚊亚化石-湖水总磷定量模型研究.科学通报, 51(11):1318-1325. doi: 10.3321/j.issn:0023-074X.2006.11.013
    • 加载中
    图(4) / 表(2)
    计量
    • 文章访问数:  3510
    • HTML全文浏览量:  1197
    • PDF下载量:  19
    • 被引次数: 0
    出版历程
    • 收稿日期:  2017-05-08
    • 刊出日期:  2018-11-15

    目录

      /

      返回文章
      返回