Differential Uplift and Fragmentation of Upper Yangtze Basin in Cenozoic
-
摘要: 中-新生代上扬子陆相盆地不仅是华南大陆的核心构造单元,也是大陆构造和盆地成因演化研究的天然实验室.基于楚雄盆地和四川盆地晚白垩世地层剖面中6件样品LA-ICP-MS磷灰石FT-U/Pb双法定年和热演化史模拟等研究,揭示上扬子盆地新生代差异抬升剥蚀及其分异过程.楚雄盆地大姚宜就剖面江底河组磷灰石裂变径迹(apatite fission track,AFT)年龄和径迹长度分别为43.2~33.9 Ma、10.06~11.30 μm,中新世以来快速抬升冷却速率达到约3~5 ℃/Ma;四川盆地宜宾柳嘉剖面三合组-高坎坝组AFT年龄和径迹长度分别为128.0~95.2 Ma、10.2~11.7 μm,为部分埋深退火样品.宜就剖面和柳嘉剖面上白垩统磷灰石U-Pb年龄峰值特征总体相似,共同揭示物源区古元古代(2 100~1 700 Ma)、新元古代(820~700 Ma)、早古生代(500~400 Ma)和早中生代(250~170 Ma)中高级别变质-岩浆构造热事件,其晚白垩世物源区主要为扬子板块西缘和北缘地区(即松潘-甘孜褶皱带、义敦岛弧、康滇古陆和秦岭造山带).尤其柳嘉剖面磷灰石FT-U/Pb对比年龄揭示三合组-高坎坝组中少量磷灰石矿物为物源区晚三叠世-晚白垩世快速岩浆侵位过程的初始旋回沉积产物.晚新生代上扬子盆地受控于青藏高原东南向扩展生长过程控制影响,最终发生肢解分异形成现今盆地格架.Abstract: The Meso-Cenozoic Upper Yangtze continental basin is not only the core tectonic unit of the South China continent, but also a natural laboratory for the study of continental tectonics and basin genetic evolution. Based on LA-ICP-MS apatite FT-U/Pb double dating and thermal evolution history simulation of 6 samples in the Cretaceous stratigraphic Section of Chuxiong basin and Sichuan basin, this paper reveals the differential uplift and denudation and differentiation process of the Upper Yangtze basin. The AFT(apatite fission track) ages and track length of Jiangdihe Formation in the Yijiu Section of Dayao County in Chuxiong basin are dominated with 43.2-33.9 Ma and 10.06-11.30 μm, respectively. The thermal models suggest a rapid cooling occurred in Miocene with rates of 3-5 ℃/Ma. Whilst the AFT ages and track length in the Liujia Section of Yibin County in Sichuan basin are dominated with 128.0-95.2 Ma and 10.2-11.7 μm, as a result of partial reset. Furthermore, the apatite U-Pb ages are consistent between the Yijiu and Liujia sections, characterized with peak-ages of 2 100-1 700 Ma, 820-700 Ma, 500-400 Ma, and 250-170 Ma, which indicates the Upper Yangtze basin had provenances from the Songpan-Ganzi flysch, Yidun arc, Kangdian paleo-uplift and Qinling orogen in Late Cretaceous. In particular, the contrast of apatite FT-U/Pb reveals that a few of apatite minerals from Sanhe-Gaokanba Formation stemmed from a first-cycle deposit of provenance with rapid cooling of granites during Late Triassic to Cretaceous. In the end, the Upper Yangtze basin has been dispersed and fragmented with a rapid cooling and uplift in Miocene, and then forms the current basin framework, as a result of southeastward growth of Tibetan plateau.
-
Key words:
- apatite FT-U/Pb double-dating /
- differential uplift /
- basin fragment /
- Sichuan basin /
- Chuxiong basin /
- tectonics /
- petroleum geology
-
图 3 上扬子盆地上白垩统—新生界典型露头沉积特征
a.宜就剖面上白垩统江底河组下部河流相沉积特征,河道滞留沉积定向砾石统计揭示古水流向为北西—南东向;b.宜就剖面浅湖相江底河组三段典型虫迹特征;c.柳嘉剖面上白垩统三合组河流相沉积特征,河道滞留沉积砾石倾向统计揭示古水流方向为北西—南东向;d.柳嘉剖面上白垩统高坎坝组中部河流相沉积特征,河道滞留沉积砾石倾向统计揭示古水流方向为近南北向;e.宜就剖面古近系赵家店组浅湖相沉积特征及其斜层理,古水流方向为近北-南方向流向;f.柳嘉剖面古近系柳嘉组风成砂槽状交错层理,前积层倾向统计揭示古风向为北西—南东向
Fig. 3. Field photographs of lithofacies of Upper Cretaceous and Cenozoic in the Upper Yangtze basin
表 1 上扬子盆地LA-ICP-MS磷灰石裂变径迹年龄测试
Table 1. LA-ICP-MS apatite data in the Upper Yangtze basin
剖面名称 经纬度(°)/
h(m)样品号 采样层位 单颗粒 Ns 面积
(cm2)238U/43Ca P(χ2)
(%)离散度
(%)Cl
(%)池年龄值
(Ma)±1σ
(Ma)MLT
(N)Dpar
(μm)N25.920 734,E101.552601/1 870 S010110 江底河组 27 170 2.60E-04 3.12 0 50% 0.12 43.2 3.4 10.06±1.0
(23)1.50±0.02 大姚宜就剖面 N25.981 819,E101.522 044/2 100 S123108 江底河组 25 216 2.26E-04 4.81 34 15% 0.36 38.9 2.7 10.49±3.3
(85)1.69±0.03 N25.984 177,E101.510 021/1 980 S123103 江底河组 43 426 4.23E-04 11.2 41 0.00 0.31 33.9 1.7 11.3±3.4
(105)1.77±0.02 N29.175 868,E104.220 392/405 S040106 高坎坝组 31 358 2.85E-04 2.64 0 28% 0.19 128.0 7.2 10.15±2.9
(53)2.99±0.03 宜宾柳嘉剖面 N29.213 981,E104.215 773/460 S110106 高坎坝组 37 493 4.99E-04 3.09 2 16% 0.18 105.8 5.2 11.68±2.5
(94)1.59±0.03 N29.206 662,E104.198 844/460 S110109 三合组 39 488 4.93E-04 3.66 0 29% 0.17 95.2 4.7 10.60±2.8
(107)1.57±0.03 注:Ns.统计自发径迹数;面积为磷灰石颗粒统计径迹数的多边形区域面积;238U/43Ca.ICP-MS剥蚀磷灰石单颗粒总比率;Cl为质量百分含量;MLT和N分别为统计径迹平均长度和径迹数量;Zeta为常量17.02±0.23. 表 2 磷灰石裂变径迹年龄和U-Pb年龄多峰值年龄统计
Table 2. Peak-ages of apatite fission track and apatite U-Pb ages in the Upper Yangtze basin
剖面名称 样品号 磷灰石AFT年龄统计 磷灰石U-Pb年龄统计 年龄范围(Ma) 峰值年龄1(Ma),分布比 峰值年龄2(Ma),分布比 峰值年龄3(Ma),分布比 年龄范围(Ma) 峰值年龄1(Ma),分布比 峰值年龄2(Ma),分布比 峰值年龄3(Ma),分布比 峰值年龄4(Ma),分布比 大姚宜就剖面 S010110 19.1~234.1 37.6,89% 159,11% -- 223~2 052 253,56% 431,17% 693,17% 1 976,9% S123108 24.6~77.7 36.7,75% 60,25% -- 190~1 761 228,61% -- 798,34% 1 758,4% S123103 17.5~102.9 35.4,100% -- -- 210~2 283 254,49% 500,9% 803,37% 2 169,5% 宜宾柳嘉剖面 S040106 42.6~357.8 -- 100,65% 173,35% 75~2 495 221,47% 395,7.6% 708,4.2% 2 023,42% S110106 58.6~339.1 77,7% 111,86% 242,7% 126~1 864 179,35% 410,39% 818,17% 1 786,9% S110109 51.9~298.4 64,20% 106,75% 255,6% 93~2 292 188,52% 400,21% 741,11% 2 035,9% -
[1] Arne, D., Worley, B., Wilson, C., et al., 1997.Differential Exhumation in Response to Episodic Thrusting along the Eastern Margin of the Tibetan Plateau.Tectonophysics, 280(3-4):239-256. https://doi.org/10.1016/s0040-1951(97)00040-1 [2] Bernet, M., Zattin, M., Garver, J.I., et al., 2001.Steady-State Exhumation of the European Alps.Geology, 29(1):35.https://doi.org/10.1130/0091-7613(2001)029<0035:sseote>2.0.co;2 doi: 10.1130/0091-7613(2001)029<0035:sseote>2.0.co;2 [3] Burchfiel, B.C., Chen, Z., 2013.Tectonics of the Southeastern Tibetan Plateau and Its Adjacent Foreland.Geological Society of America Memoir, 210:1-164. https://doi.org/10.1130/2012.1210(01) [4] Carrapa, B., DeCelles, P.G., Reiners, P.W., et al., 2009.Apatite Triple Dating and White Mica 40Ar/39Ar Thermochronology of Syntectonic Detritus in the Central Andes:A Multiphase Tectonothermal History.Geology, 37(5):407-410. https://doi.org/10.1130/g25698a.1 [5] Carroll, A.R., Graham, S.A., Smith, M.E., 2010.Walled Sedimentary Basins of China.Basin Research, 22(1):17-32. https://doi.org/10.1111/j.1365-2117.2009.00458.x [6] Chen, C.Y., He, H.L., 2008.Crustal Shortening of Daliangshan Tectonic Zone in Cenozoic Era and Its Implication.Seismology and Geology, 30(2):443-453(in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-DZDZ200802010.htm [7] Cherniak, D.J., Lanford, W.A., Ryerson, F.J., 1991.Lead Diffusion in Apatite and Zircon Using Ion Implantation and Rutherford Backscattering Techniques.Geochimica et Cosmochimica Acta, 55(6):1663-1673. https://doi.org/10.1016/0016-7037(91)90137-t [8] Chew, D.M., Petrus, J.A., Kamber, B.S., 2014.U-Pb LA-ICP-MS Dating Using Accessory Mineral Standards with Variable Common Pb.Chemical Geology, 363(1):185-199. https://doi.org/10.1016/j.chemgeo.2013.11.006 [9] Clark, M.K., House, M.A., Royden, L.H., et al., 2005.Late Cenozoic Uplift of Southeastern Tibet.Geology, 33(6):525-528. https://doi.org/10.1130/g21265.1 [10] Cogné, N., Chew, D., Stuart, F.M., 2014.The Thermal History of the Western Irish Onshore.Journal of the Geological Society, 171(6):779-792. https://doi.org/10.1144/jgs2014-026 [11] Deng, B., Liu, S.G., Enkelmann, E., et al., 2015a.Late Miocene Accelerated Exhumation of the Daliang Mountains, Southeastern Margin of the Tibetan Plateau.International Journal of Earth Sciences, 104(4):1061-1081. https://doi.org/10.1007/s00531-014-1129-z [12] Deng, B., Liu, S.G., Li, Z.W., 2015b.A Couple of Kilometres of Exhumation in the Late Cenozoic across the Sichuan Basin, Eastern Margin of the Tibetan Plateau-Comment.Terra Nova, 27(4):322-324. https://doi.org/10.1111/ter.12161 [13] Deng, B., Liu, S.G., Li, Z.W., et al., 2008.A Comparative Study of the Late Mesozoic Uplifting in the Eastern Margin of Qinghai-Tibet Plateau and Sichuan Basin, China.Journal of Chengdu University of Technology(Science & Technology Edition), 35(4):477-486(in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-CDLG200804018.htm [14] Deng, B., Liu, S.G., Li, Z.W., et al., 2012.Late Cretaceous Tectonic Change of the Eastern Margin of the Tibetan Plateau-Results from Multisystem Thermochronology.Journal of the Geological Society of India, 80(2):241-254. https://doi.org/10.1007/s12594-012-0134-8 [15] Deng, B., Yong, Z.Q., Liu, S.G., et al., 2016.Cenozoic Mountain-Building Processes in the Daliangshan, Southeastern Margin of the Tibetan Plateau:Evidence from Low-Temperature Thermochronology and Thermal Modeling.Chinese Journal of Geophysics, 59(6):2162-2175(in Chinese with English abstract). http://www.en.cnki.com.cn/Article_en/CJFDTotal-DQWX201606021.htm [16] Fedo, C.M., Sircombe, K.N., Rainbird, R.H., 2003.Detrital Zircon Analysis of the Sedimentary Record.Reviews in Mineralogy and Geochemistry, 53(1):277-303. https://doi.org/10.2113/0530277 [17] Gong, W., Jiang, X.D., 2017.Thermal Evolution History and Its Genesis of the Ailao Shan-Red River Fault Zone in the Ailao Shan and Day Nui Con Voi Massif during Oligocene-Early Miocene.Earth Science, 42(2):223-239(in Chinese with English abstract). https://doi.org/10.3799/dqkx.2017.017 [18] Green, P.F., 1986.On the Thermo-Tectonic Evolution of Northern England:Evidence from Fission Track Analysis.Geological Magazine, 123(5):493-506. https://doi.org/10.1017/s0016756800035081 [19] Hu, S.B., He, L.J., Wang, J.Y., 2000.Heat Flow in the Continental Area of China:A New Data Set.Earth and Planetary Science Letters, 179(2):407-419. https://doi.org/10.1016/s0012-821x(00)00126-6 [20] Jiang, Z.F., Wu, H., Cui, X.Z., et al., 2013.Detrital Zircon U-Pb Geochronology of the Liujia Formation of Paleogene in Sichuan Basin and Its Geological Significance.Journal of Mineralogy and Petrology, 33(4):76-84(in Chinese with English abstract). http://www.en.cnki.com.cn/Article_en/CJFDTOTAL-KWYS201304009.htm [21] Ketcham, R.A., 2005.The Role of Crystallographic Angle in Characterizing and Modeling Apatite Fission-Track Length Data.Radiation Measurements, 39(6):595-601. https://doi.org/10.1016/j.radmeas.2004.07.008 [22] Li, S.H., Huang, B.C., Zhu, R.X., 2012.Paleomagnetic Constraints on the Tectonic Rotation of the Southeastern Margin of the Tibetan Plateau.Chinese Journal of Geophysics, 55(1):76-94(in Chinese with English abstract). doi: 10.1002/cjg2.v55.1 [23] Li, Y.Q., He, D.F., Li, D., et al., 2016.Detrital Zircon U-Pb Geochronology and Provenance of Lower Cretaceous Sediments:Constraints for the Northwestern Sichuan Pro-Foreland Basin.Palaeogeography, Palaeoclimatology, Palaeoecology, 453:52-72. https://doi.org/10.13039/501100001809 [24] Li, Z.W., Liu, S.G., Chen, H.D., et al., 2012.Spatial Variation in Meso-Cenozoic Exhumation History of the Longmen Shan Thrust Belt(Eastern Tibetan Plateau) and the Adjacent Western Sichuan Basin:Constraints from Fission Track Thermochronology.Journal of Asian Earth Sciences, 47(1):185-203. https://doi.org/10.1016/j.jseaes.2011.10.016 [25] Liao, Z.L., Deng, Y.F., Liao, G.Y., 2003.Formation and Evolution of Mesozoic Thrust Fold Belt in Jinping Area, Sichuan.Geotectonica et Metallogenia, 27(2):152-159(in Chinese with English abstract). http://en.cnki.com.cn/article_en/cjfdtotal-dgyk200302007.htm [26] Liu, H.F., Liang, H.S., Cai, L.G., et al., 1994.Structural Styles of the Longmenshan Thrust Belt and Evolution of the Foreland Basin in Western Sichuan Province, China.Acta Geologica Sinica, 68(2):101-118(in Chinese with English abstract). http://kns.cnki.net/KCMS/detail/detail.aspx?filename=dzxw199404000&dbname=CJFD&dbcode=CJFQ [27] Liu, S.G., Deng, B., Li, Z.W., et al., 2012.Architecture of Basin-Mountain Systems and Their Influences on Gas Distribution:A Case Study from the Sichuan Basin, South China.Journal of Asian Earth Sciences, 47:204-215. https://doi.org/10.1016/j.jseaes.2011.10.012 [28] Meng, E., Liu, F.L., Du, L.L., et al., 2015.Petrogenesis and Tectonic Significance of the Baoxing Granitic and Mafic Intrusions, Southwestern China:Evidence from Zircon U-Pb Dating and Lu-Hf Isotopes, and Whole-Rock Geochemistry.Gondwana Research, 28(2):800-815. https://doi.org/10.1016/j.gr.2014.07.003 [29] Metcalfe, I., 2013.Gondwana Dispersion and Asian Accretion:Tectonic and Paleogeographic Evolution of Eastern Tethys.Journal of Asian Earth Sciences, 66:1-33. https://doi.org/10.1016/j.jseaes.2012.12.020 [30] Morton, A.C., Hallsworth, C.R., 1999.Processes Controlling the Composition of Heavy Mineral Assemblages in Sandstones.Sedimentary Geology, 124(1-4):3-29. https://doi.org/10.1016/s0037-0738(98)00118-3 [31] O'Sullivan, G.J., Chew, D.M., Samson, S.D., 2016.Detecting Magma-Poor Orogens in the Detrital Record.Geology, 44(10):871-874. https://doi.org/10.1130/g38245.1 [32] Reiners, P.W., Thomson, S.N., McPhillips, D., et al., 2007.Wildfire Thermochronology and the Fate and Transport of Apatite in Hillslope and Fluvial Environments.Journal of Geophysical Research, 112(F4):F04001. https://doi.org/10.1029/2007jf000759 [33] Richardson, N.J., Densmore, A.L., Seward, D., et al., 2008.Extraordinary Denudation in the Sichuan Basin:Insights from Low-Temperature Thermochronology Adjacent to the Eastern Margin of the Tibetan Plateau.Journal of Geophysical Research, 113(B4):B04409. https://doi.org/10.1029/2006jb004739 [34] Roger, F., Jolivet, M., Malavieille, J., 2010.The Tectonic Evolution of the Songpan-Garzê(North Tibet) and Adjacent Areas from Proterozoic to Present:A Synthesis.Journal of Asian Earth Sciences, 39(4):254-269. https://doi.org/10.1016/j.jseaes.2010.03.008 [35] Roger, F., Malavieille, J., Leloup, P.H., et al., 2004.Timing of Granite Emplacement and Cooling in the Songpan-Garzê Fold Belt(Eastern Tibetan Plateau) with Tectonic Implications.Journal of Asian Earth Sciences, 22(5):465-481. https://doi.org/10.1016/s1367-9120(03)00089-0 [36] Sato, K., Liu, Y.Y., Zhu, Z.C., et al., 2001.Tertiary Paleomagnetic Data from Northwestern Yunnan, China:Further Evidence for Large Clockwise Rotation of the Indochina Block and Its Tectonic Implications.Earth and Planetary Science Letters, 185(1-2):185-198. https://doi.org/10.1016/s0012-821x(00)00377-0 [37] Tapponnier, P., Xu, Z.Q., Roger, F., et al., 2001.Oblique Stepwise Rise and Growth of the Tibet Plateau.Science, 294(5547):1671-1677. https://doi.org/10.1126/science.105978 [38] Tian, Y.T., Kohn, B.P., Hu, S.B., et al., 2014.Postorogenic Rigid Behavior of the Eastern Songpan-Ganze Terrane:Insights from Low-Temperature Thermochronology and Implications for Intracontinental Deformation in Central Asia.Geochemistry, Geophysics, Geosystems, 15(2):453-474. https://doi.org/10.1002/2013gc004951 [39] Vermeesch, P., 2009.RadialPlotter:A Java Application for Fission Track, Luminescence and Other Radial Plots.Radiation Measurements, 44(4):409-410. https://doi.org/10.1016/j.radmeas.2009.05.003 [40] Wang, E., Kirby, E., Furlong, K.P., et al., 2012.Two-Phase Growth of High Topography in Eastern Tibet during the Cenozoic.Nature Geoscience, 5(9):640-645. https://doi.org/10.1038/ngeo1538 [41] Wang, E., Meng, K., Su, Z., et al., 2014.Block Rotation:Tectonic Response of the Sichuan Basin to the Southeastward Growth of the Tibetan Plateau along the Xianshuihe-Xiaojiang Fault.Tectonics, 33(5):686-717. https://doi.org/10.1002/2013tc003337 [42] Wang, E.Q., Yin, J.Y., 2009.Cenozoic Multi-Stage Deformation Occurred in Southwest Sichuan:Cause for the Dismemberment of the Proto-Sichuan Basin.Journal of Northwest University(Natural Science Edition), 39(3):359-367(in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-XBDZ200903005.htm [43] Wang, X.L., Zhao, G.C., Zhou, J.C., et al., 2008.Geochronology and Hf Isotopes of Zircon from Volcanic Rocks of the Shuangqiaoshan Group, South China:Implications for the Neoproterozoic Tectonic Evolution of the Eastern Jiangnan Orogen.Gondwana Research, 14(3):355-367. https://doi.org/10.1016/j.gr.2008.03.001 [44] Wilson, C.J.L., Harrowfield, M.J., Reid, A.J., 2006.Brittle Modification of Triassic Architecture in Eastern Tibet:Implications for the Construction of the Cenozoic Plateau.Journal of Asian Earth Sciences, 27(3):341-357. https://doi.org/10.1016/j.jseaes.2005.04.004 [45] Xiong, Q., Zheng, J.P., Yu, C.M., et al., 2008.Zircon LA-ICP-MS U-Pb Dating and Lu-Hf Isotopic System of A-Type Granite of Quanyishang in Yichang Area and Its Implication of Proterozoic Cratonization of the Yangtze Block.Chinese Science Bulletin, 53(22):2782-2792(in Chinese). doi: 10.1007/s11430-015-5073-y [46] Xu, G.Q., Kamp, P.J.J., 2000.Tectonics and Denudation Adjacent to the Xianshuihe Fault, Eastern Tibetan Plateau:Constraints from Fission Track Thermochronology.Journal of Geophysical Research:Solid Earth, 105(B8):19231-19251. https://doi.org/10.1029/2000jb900159 [47] Xu, M., Zhu, C.Q., Tian, Y.T., et al., 2011.Borehole Temperature Logging and Characteristics of Subsurface Temperature in the Sichuan Basin.Chinese Journal of Geophysics, 54(2):1052-1060(in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTotal-DQWX201104022.htm [48] Yang, J.H., Ma, Y., 2017.Paleoclimate Perspectives of Source-to-Sink Sedimentary Processes.Earth Science, 42(11):1910-1921(in Chinese with English abstract). https://doi.org/10.3799/dqkx.2017.12 [49] Yang, P.T., Liu, S.W., Li, Q.G., et al., 2013.Chronology and Petrogenesis of the Hejiazhuang Granitoid Pluton and Its Constraints on the Early Triassic Tectonic Evolution of the South Qinling Belt.Science China:Earth Sciences, 57(2):232-246. https://doi.org/10.1007/s11430-013-4666-6 [50] Zattin, M., Andreucci, B., Thomson, S.N., et al., 2012.New Constraints on the Provenance of the ANDRILL AND-2A Succession(Western Ross Sea, Antarctica) from Apatite Triple Dating.Geochemistry, Geophysics, Geosystems, 13(10):Q10016. https://doi.org/10.1029/2012gc004357 [51] Zhang, G.W., Guo, A.L., Wang, Y.J., et al., 2013.Tectonics of South China Continent and Its Implications.Science China:Earth Sciences, 43(10):1553-1582 (in Chinese). http://kns.cnki.net/KCMS/detail/detail.aspx?filename=jdxg201311002&dbname=CJFD&dbcode=CJFQ [52] Zhang, H.F., Zhang, L., Harris, N., et al., 2006.U-Pb Zircon Ages, Geochemical and Isotopic Compositions of Granitoids in Songpan-Garze Fold Belt, Eastern Tibetan Plateau:Constraints on Petrogenesis and Tectonic Evolution of the Basement.Contributions to Mineralogy and Petrology, 152(1):75-88. https://doi.org/10.1007/s00410-006-0095-2 [53] Zhao, J.H., Zhou, M.F., 2009.Secular Evolution of the Neoproterozoic Lithospheric Mantle underneath the Northern Margin of the Yangtze Block, South China.Lithos, 107(3-4):152-168. https://doi.org/10.1016/j.lithos.2008.09.017 [54] Zhao, J.H., Zhou, M.F., Zheng, J.P., 2013.Constraints from Zircon U-Pb Ages, O and Hf Isotopic Compositions on the Origin of Neoproterozoic Peraluminous Granitoids from the Jiangnan Fold Belt, South China.Contributions to Mineralogy and Petrology, 166(5):1505-1519. https://doi.org/10.1007/s00410-013-0940-z [55] Zhou, M.F., Ma, Y.X., Yan, D.P., et al., 2006.The Yanbian Terrane(Southern Sichuan Province, SW China):A Neoproterozoic Arc Assemblage in the Western Margin of the Yangtze Block.Precambrian Research, 144(1-2):19-38. https://doi.org/10.1016/j.precamres.2005.11.002 [56] Zhu, R.X., Potts, R., Pan, Y.X., et al., 2008.Paleomagnetism of the Yuanmou Basin near the Southeastern Margin of the Tibetan Plateau and Its Constraints on Late Neogene Sedimentation and Tectonic Rotation.Earth and Planetary Science Letters, 272(1-2):97-104. https://doi.org/10.1016/j.epsl.2008.04.016 [57] 陈长云, 何宏林, 2008.大凉山地区新生代地壳缩短及其构造意义.地震地质, 30(2):443-453. http://www.cnki.com.cn/Article/CJFDTOTAL-DZDZ200802010.htm [58] 邓宾, 刘树根, 李智武, 等, 2008.青藏高原东缘及四川盆地晚中生代以来隆升作用对比研究.成都理工大学学报(自然科学版), 35(4):477-486. http://www.cqvip.com/QK/91405B/200804/27880817.html [59] 邓宾, 雍自权, 刘树根, 等, 2016.青藏高原东南缘大凉山新生代隆升建造过程-多封闭体系低温热年代学与热模型限制.地球物理学报, 59(6):2162-2175. doi: 10.6038/cjg20160621 [60] 宫伟, 姜效典, 2017.哀牢山-红河断裂带哀牢山-大象山段渐新世-早中新世热史演化及成因.地球科学, 42(2):223-239. https://doi.org/10.3799/dqkx.2017.017 [61] 江卓斐, 伍皓, 崔晓庄, 等, 2013.四川盆地古近系柳嘉组碎屑锆石U-Pb年代学研究及其地质意义.矿物岩石, 33(4):76-84. http://mall.cnki.net/magazine/Article/KWYS201304009.htm [62] 李仕虎, 黄保春, 朱日祥, 2012.青藏高原东南缘构造旋转的古地磁学证据.地球物理学报, 55(1):76-94. http://cpfd.cnki.com.cn/Article/CPFDTOTAL-DZDQ201301003012.htm [63] 廖忠礼, 邓永福, 廖光宇, 2003.四川锦屏地区新生代冲断作用.大地构造与成矿学, 27(2):152-159. http://www.oalib.com/paper/4892866 [64] 刘和甫, 梁慧社, 蔡立国, 等, 1994.川西龙门山冲断系构造样式与前陆盆地演化.地质学报, 68(2):101-118. http://mall.cnki.net/magazine/Article/DZXE199402000.htm [65] 王二七, 尹纪云, 2009.川西南新生代构造作用以及四川原型盆地的破坏.西北大学学报(自然科学版), 39(3):359-367. http://www.cnki.com.cn/Article/CJFDTOTAL-XBDZ200903005.htm [66] 熊庆, 郑建平, 余淳梅, 等, 2008.宜昌圈椅埫A型花岗岩锆石U-Pb年龄和Hf同位素与扬子大陆古元古代克拉通化作用.科学通报, 53(22):2782-2792. doi: 10.3321/j.issn:0023-074X.2008.22.017 [67] 徐明, 朱传庆, 田云涛, 等, 2011.四川盆地钻孔温度测量及现今地热特征.地球物理学报, 54(4):1052-1060. http://cpfd.cnki.com.cn/Article/CPFDTOTAL-DZDQ201201001087.htm [68] 杨江海, 马严, 2017.源-汇沉积过程的深时古气候意义.地球科学, 42(11):1910-1921. http://www.earth-science.net/WebPage/Article.aspx?id=3686 [69] 张国伟, 郭安林, 王岳军, 等, 2013.中国华南大陆构造与问题.中国科学:地球科学, 43(10):1553-1582. http://www.cnki.com.cn/Article/CJFDTOTAL-JDXK201310003.htm