Exhumation, Cooling and Erosion History of Triassic Oil Shale since Late Cretaceous, Binxian-Tongchuan Area of Ordos Basin
-
摘要: 利用古温标与热年代学数据共同恢复油页岩的隆升冷却历史对于研究油页岩成矿的热背景有着重要的理论意义.利用钻孔ZK900磷灰石(U-Th)/He测年数据,结合已有的永参1井磷灰石裂变径迹资料分别获得铜川地区和彬县地区延长组油页岩晚白垩世以来的古地温、抬升冷却期次、抬升冷却速率及剥蚀厚度等数据,并对比了两个地区油页岩经历的构造热演化史的差异性.ZK900钻孔长6、长9和长10段磷灰石He年龄均值依次为43.83 Ma、31.87 Ma和22.88 Ma.铜川地区油页岩晚白垩世以来经历了97~40 Ma快速抬升、40~8 Ma缓慢抬升和8 Ma以来快速抬升3个阶段,剥蚀厚度及抬升速率分别为600 m、10.5 m/Ma,10 m、0.3 m/Ma和1 290 m、161.3 m/Ma,对应的古温度及冷却速率分别为100~60 ℃、0.70 ℃/Ma,60~50 ℃、0.22 ℃/Ma和50~25 ℃、2.90 ℃/Ma.彬县地区延长组油页岩晚白垩世以来经历了3期抬升冷却过程:97~40 Ma,持续抬升冷却(130~75 ℃),冷却速率为0.96 ℃/Ma,抬升速率为14.4 m/Ma,剥蚀厚度820 m;40~8 Ma温度基本未变(75~70 ℃),抬升/冷却速率均很低,分别为1.9 m/Ma与0.16 ℃/Ma,剥蚀厚度60 m;8 Ma以来急剧降温(70~31 ℃),抬升速率125 m/Ma,冷却速率4.88 ℃/Ma,剥蚀厚度1 000 m.彬县-铜川地区三叠系油页岩晚白垩世以来经历了3个抬升阶段,始新世40 Ma和中新世8 Ma为该套油页岩成矿后期冷却的关键时刻.研究表明,彬县地区和铜川地区抬升冷却和剥蚀历史具有一定的差异性,在今后油页岩成矿及后期改造研究中应区别分析.Abstract: The recovery of exhumation history of oil shale with the method of geothermometer and thermochronology has scientific significance for the study of thermal background of oil shale mineralization and its reformation. Based on the theory of tectonothermal evolution, the paleogeotemperature, the exhumation-related cooling and the erosion of the Triassic oil shale since Late Cretaceous in the Binxian area and the Tongchuan area were recovered with the fission track data from the well Yongcan1 and the (U-Th)/He data from the drilling well ZK900, respectively. The tectonothermal evolution difference of the two areas are discussed. The average (U-Th)/He ages of the Chang6, Chang9 and Chang10 samples are 43.83 Ma, 31.87 Ma, and 22.88 Ma respectively. Three stages of exhumation-cooling since Late Cretaceous of the Tongchuan area were recovered:97-40 Ma, fast exhumation; 40-8 Ma, slow exhumation, and 8 Ma to the present, extremely fast exhumation, respectively. The erosion thickness and exhumation rate are 600 m, 10.5 m/Ma and 10 m, 0.3 m/Ma and 1 290 m, 161.3 m/Ma, respectively. The paleotemperature and cooling rate are 100-60 ℃, 0.70 ℃/Ma and 60-50 ℃, 0.22 ℃/Ma and 50-25 ℃, 2.90 ℃/Ma, respectively. Three stages of exhumation-cooling since Late Cretaceous of the Triassic in the Binxian area were recovered:97-40 Ma, increasing exhumation-cooling (130-75 ℃), cooling rate of 0.96 ℃/Ma, exhumation rate of 14.4 m/Ma, erosion thickness of 820 m; 40-8 Ma with little changed as 75-70 ℃, exhumation rate/cooling rate, 0.16 ℃/Ma and 1.9 m/Ma, erosion thickness of 60 m; 8 Ma to the present with sharp cooling as 70-31 ℃, exhumation rate of 125 m/Ma, cooling rate of 4.88 ℃/Ma, erosion thickness of 1 000 m, respectively. There are three stages for the exhumation-cooling history of the oil shale (Triassic in the Binxian-Tongchuan area). The Eocene (40 Ma) and the Late Miocene (8 Ma) are the critical moments for the cooling of the oil shale during its mineralization. More attention should be paid to the differences of exhumation, cooling, erosion between Binxian area and Tongchuan area when discussing the mineralization of the oil shale and its reformation in the Ordos basin.
-
Key words:
- thermochronology /
- Ordos basin /
- (U-Th)/He /
- Weibei uplift /
- oil shale /
- fission track /
- tectonic /
- petroleum geology
-
表 1 钻孔ZK900磷灰石(U-Th)/He年龄
Table 1. (U-Th)/He ages of apatite, ZK900
样品 4He(10-9 mL) ± U(mg/kg) ± Th(mg/kg) ± Th/U Ft Mass(10-6 g) tU(Ma) tF(Ma) ± S(10-6 m) ZK900-6-1 0.120 0 0.003 1 5.06 0.14 22.06 0.56 4.47 0.77 7.07 13.63 17.61 0.43 70.9 ZK900-6-2 0.958 7 0.024 0 32.15 0.87 80.71 2.02 2.58 0.71 4.56 33.83 47.58 1.06 54.5 ZK900-6-3* 2.209 2 0.055 5 205.99 5.61 232.63 5.95 1.16 0.70 2.83 24.69 35.24 0.82 51.4 ZK900-6-4 0.304 0 0.007 7 14.44 0.40 34.39 0.93 2.44 0.68 2.83 39.22 57.38 1.25 49.7 ZK900-6-5* 0.405 6 0.010 2 37.31 1.04 98.39 2.68 2.71 0.63 2.49 22.16 35.12 0.71 42.7 ZK900-9-1 17.408 9 0.436 0 278.67 8.01 136.74 3.83 0.50 0.79 6.93 66.54 84.54 2.37 71.0 ZK900-9-2 0.238 9 0.006 0 10.43 0.31 27.08 0.82 2.66 0.71 3.33 35.20 49.85 1.16 53.6 ZK900-9-3* 0.049 6 0.001 3 10.46 0.35 49.29 1.47 4.83 0.57 1.09 16.97 29.52 0.58 37.7 ZK900-9-4* 0.057 0 0.001 5 18.34 0.53 47.64 1.31 2.66 0.57 0.95 16.67 29.33 0.55 36.5 ZK900-9-5 0.149 7 0.003 8 14.59 0.42 6.11 0.18 0.43 0.76 5.41 14.26 18.79 0.51 62.7 ZK900-10-1* 1.090 5 0.027 3 61.22 1.76 38.38 1.03 0.64 0.79 8.21 15.63 19.74 0.55 72.8 ZK900-10-2 0.242 3 0.006 1 26.49 0.83 9.74 0.32 0.38 0.70 2.46 28.27 40.35 1.06 50.3 ZK900-10-3* 0.071 0 0.001 8 2.28 0.08 14.65 0.46 6.59 0.76 6.66 15.32 20.28 0.53 66.2 ZK900-10-4 1.975 6 0.049 5 130.76 3.59 110.20 2.84 0.86 0.75 5.04 20.66 27.46 0.70 61.7 ZK900-10-5 0.550 5 0.013 8 16.01 0.44 53.70 1.36 3.44 0.78 8.45 18.74 24.05 0.58 71.9 注:Ft为校正系数;校正年龄(F. Age)=未校正年龄(U.Age)/Ft;颗粒编号带*的数据可用于古地温恢复; Mass为单颗粒的总重量. 表 2 永参1井YC-01样品磷灰石裂变径迹测试结果
Table 2. Apatite fission-track data of sample YC-01, well Yongcan1
Ns Ni S(10-6 cm3) ti(Ma) Ns Ni S(10-6 cm3) ti(Ma) 13 84 122 28.5 102 625 123 30.1 15 61 155 45.3 21 121 153 32 5 28 90 32.9 74 590 165 23.1 41 280 128 27 11 62 137 32.7 21 145 106 26.7 30 165 106 33.5 23 120 137 35.3 22 130 245 31.2 24 96 154 46 12 100 142 22.1 16 114 155 25.9 10 64 138 28.8 注:颗粒数为16个;统计误差σ=5.802×10-22 cm2;S为观测面积;ρs.238U自发裂变径迹密度,为1.950×105;ρi.235U诱发裂变径迹密度,为1.234×106;γsi.自发径迹数和诱发径迹数之间的相关系数,为0.979;P(χ2).观测值方差与预测方差之间的概率检验,为55%;t.裂变径迹年龄,29.1±2.0 Ma,L.裂变径迹长度,10.4±2.6 μm. -
[1] Cao, K., Wang, G.C., Liu, C., et al., 2009.Thermochronological Evidence of the Cenozoic Differential Uplift Processes of the West Kunlun and Its Adjacent Area.Earth Science, 34(6):895-906 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-DQKX200906004.htm [2] Farley, K.A., 2000.Helium Diffusion from Apatite:General Behavior as Illustrated by Durango Fluorapatite.Journal of Geophysical Research:Solid Earth, 105(B2):2903-2914. https://doi.org/10.1029/1999jb900348 [3] Hu, S.B., He, L.J., Zhu, C.Q., et al., 2008.Method System of Thermal Reconstruction for Marine Basins.Oil & Gas Geology, 29(5):607-613(in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-SYYT200805013.htm [4] Li, S.Z., Liu, X., Suo, Y.H., et al., 2009.Triassic Folding and Thrusting in the Eastern Block of the North China Craton and the Dabie-Sulu Orogen and Its Geodynamics.Acta Petrologica Sinica, 25(9):2031-2049 (in Chinese with English abstract). http://en.cnki.com.cn/article_en/cjfdtotal-ysxb200909001.htm [5] Qiu, N.S., Wang, J.Y., Mei, Q.H., et al., 2010.Constraints of (U-Th)/He Ages on Early Paleozoic Tectonothermal Evolution of the Tarim Basin, China.Science China:Earth Science, 40(12):1669-1683(in Chinese). http://kns.cnki.net/KCMS/detail/detail.aspx?filename=jdxg201007005&dbname=CJFD&dbcode=CJFQ [6] Ren, Z.L., 1995.Thermal History of Ordos Basin Assessed by Apatite Fission Track Analysis.Chinese Journal of Geophysics, 38(3):339-349 (in Chinese with English abstract). http://www.en.cnki.com.cn/Article_en/CJFDTOTAL-DQWX503.008.htm [7] Ren, Z.L., Cui, J.P., Guo, K., et al., 2015.Fission-Track Analysis of Uplift Times and Processes of the Weibei Uplift in the Ordos Basin.Chinese Science Bulletin, 60(14):1298-1309 (in Chinese). doi: 10.1360/N972014-00617 [8] Ren, Z.L., Zhang, S., Gao, S.L., et al., 2006.Research on Region of Maturation Anomaly and Formation Time in Ordos Basin.Acta Geologica Sinica, 80(5):674-684(in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-DZXE200605008.htm [9] Shen, C.B., Mei, L.F., Fan, Y.F., et al., 2005.Advances and Prospects of Apatite Fission Track Thermochronology.Geological Science and Technology Information, 24(2):57-63(in Chinese with English abstract). http://en.cnki.com.cn/article_en/cjfdtotal-dzkq200502014.htm [10] Tao, N., Li, Z.X., Danišík, M., et al., 2017.Thermochronological Record of Middle-Late Jurassic Magmatic Reheating to Eocene Rift-Related Rapid Cooling in the SE South China Block.Gondwana Research, 46:191-203. http://dx.doi.org/10.1016/j.gr.2017.03.003 [11] Wang, F., Luo, Q.H., Li, Q., et al., 2002. Cooling Event around 30 Ma in the Northern Edge of the Qaidam Basin:Constraints from 40Ar/39Ar and Fission Track Thermochronology.Geological Review, 48(Suppl.):88-96(in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTotal-KYDH200104005.htm [12] Wang, J.Q., Liu, C.Y., Yan, J.P., et al., 2010.Development Time and Evolution Characteristics of Weibei Uplift in the South of Ordos Basin.Journal of Lanzhou University (Natural Sciences), 46(4):22-29 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-LDZK201004006.htm [13] Wolf, R.A., Farley, K.A., Kass, D.M., 1998.Modeling of the Temperature Sensitivity of the Apatite (U-Th)/He Thermochronometer.Chemical Geology, 148(1-2):105-114. https://doi.org/10.1016/s0009-2541(98)00024-2 [14] Xiao, H., Li, J.X., Han, W., et al., 2013.The Tectonic Uplift Time and Evolution Characteristics of Weibei Uplift in the South Edge of Ordos Basin.Jouranl of Xi'an University of Scinece and Technology, 33 (5):576-582, 593(in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-XKXB201305014.htm [15] Yu, Q., 2009. The Thermal Evolution History of Ordos Basin Mesozoic and Its Relationship with Various Energy Mineral Deposit(Dissertation). Northwest University, Xi'an, 33-41 (in Chinese with English abstract). [16] Yu, Q., Ren, Z.L., Li, R.X., et al., 2017.Paleogeotemperature and Maturity Evolutionary History of the Source Rocks in the Ordos Basin.Geological Journal, 52(S1):97-118. https://doi.org/10.1002/gj.3069 [17] Yu, Q., Ren, Z.L., Ni, J., et al., 2012.The Thermal Evolution History of Mesozoic, Fuxian Exploratory Area of Ordos Basin.Journal of Northwest University (Natural Science Edition), 42(5):801-805(in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTotal-XBDZ201205020.htm [18] Yu, Q., Ren, Z.L., Wang, B.J., et al., 2018.Geothermal Field and Deep Thermal Structure of the Tianshan-Altun Region.Geological Journal. https://doi.org/10.1002/gj.3202 [19] Yuan, W.M., Wang, S.C., Wang, L.F., 2001.Apatite and Zircon Fission Track Study on the Mineralization Age and Its Thermal History of Nanliang Gold Deposit, Eastern Hebei, China.Acta Mineralogica Sinica, 21(2):225-230(in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTotal-KWXB200102020.htm [20] Zhou, X., He, S., Chen, Z.Y., et al., 2016.Characteristics and Controlling Factors of Source Rocks in Yanchang Formation Sequence Framework, Ordos Basin.Earth Science, 41(6):1055-1066(in Chinese with English abstract). https://doi.org/10.3799/dqkx.2016.087 [21] 曹凯, 王国灿, 刘超, 等, 2009.西昆仑及邻区新生代差异隆升的热年代学证据.地球科学, 34(6):895-906. http://www.earth-science.net/WebPage/Article.aspx?id=1904 [22] 胡圣标, 何丽娟, 朱传庆, 等, 2008.海相盆地热史恢复方法体系.石油与天然气地质, 29(5):607-613. doi: 10.11743/ogg20080509 [23] 李三忠, 刘鑫, 索艳慧, 等, 2009.华北克拉通东部地块和大别-苏鲁造山带印支期褶皱-逆冲构造与动力学背景.岩石学报, 25(9):2031-2049. http://www.cnki.com.cn/Article/CJFDTOTAL-YSXB200909001.htm [24] 邱楠生, 汪集暘, 梅庆华, 等, 2010.(U-Th)/He年龄约束下的塔里木盆地早古生代构造-热演化.中国科学:地球科学, 40(12):1669-1683. http://mall.cnki.net/magazine/Article/JDXK201012005.htm [25] 任战利, 1995.利用磷灰石裂变径迹法研究鄂尔多斯盆地地热史.地球物理学报, 38(3):339-349. http://mall.cnki.net/magazine/Article/DQWX503.008.htm [26] 任战利, 崔军平, 郭科, 等, 2015.鄂尔多斯盆地渭北隆起抬升期次及过程的裂变径迹分析.科学通报, 60(14):1298-1309. http://www.oalib.com/paper/4267625 [27] 任战利, 张盛, 高胜利, 等, 2006.鄂尔多斯盆地热演化程度异常分布区及形成时期探讨.地质学报, 80(5):674-684. http://mall.cnki.net/magazine/Article/DZXE200605008.htm [28] 沈传波, 梅廉夫, 凡元芳, 等, 2005.磷灰石裂变径迹热年代学研究的进展与展望.地质科技情报, 24(2):57-63. http://mall.cnki.net/magazine/article/DZKQ200502014.htm [29] 王非, 罗清华, 李齐, 等, 2002.柴达木盆地北缘30 Ma前的快速冷却事件及构造意义——40Ar/39Ar及FT热年代学制约.地质论评, 48(增刊):88-96. http://kns.cnki.net/KCMS/detail/detail.aspx?filename=dzlp2002s1016&dbname=CJFD&dbcode=CJFQ [30] 王建强, 刘池洋, 闫建萍, 等, 2010.鄂尔多斯盆地南部渭北隆起发育时限及其演化.兰州大学学报(自然科学版), 46(4):22-29. http://or.nsfc.gov.cn/handle/00001903-5/53650 [31] 肖晖, 李建新, 韩伟, 等, 2013.鄂尔多斯盆地南缘渭北隆起中新生代构造抬升及演化.西安科技大学学报, 33(5):576-582, 593. http://www.cnki.com.cn/Article/CJFDTOTAL-XKXB201305014.htm [32] 于强, 2009. 鄂尔多斯盆地南部中生界热演化史及其与多种能源关系研究(硕士学位论文). 西安: 西北大学, 33-41. [33] 于强, 任战利, 倪军, 等, 2012.鄂尔多斯盆地富县地区中生界热演化史探讨.西北大学学报(自然科学版), 42(5):801-805. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=xbdxxb201205020 [34] 袁万明, 王世成, 王兰芬, 2001.裂变径迹分析法研究河北南梁金矿床成矿时代及其热历史.矿物学报, 21(2):225-230. http://www.cnki.com.cn/Article/CJFDTOTAL-KWXB200102020.htm [35] 周翔, 何生, 陈召佑, 等, 2016.鄂尔多斯盆地南部延长组层序地层格架中烃源岩特征及控制因素.地球科学, 41(6):1055-1066. https://doi.org/10.3799/dqkx.2016.087