Petrogenesis and Geological Implications of Early Jurassic Granodiorites in Renqinze Area, Central Part of Southern Lhasa Subterrane
-
摘要: 青藏高原拉萨地块南部新特提斯洋的打开和俯冲时间,目前还未得到统一的认识.南拉萨地块上广泛发育早中生代花岗质岩石,为探讨亚洲-印度大陆碰撞前的新特提斯洋俯冲过程提供了天然样品.对仁钦则地区一套花岗闪长岩进行了详细的年代学、元素和同位素地球化学分析.锆石U-Pb定年结果显示,这套花岗闪长岩主要形成于180 Ma左右,为早侏罗世岩浆活动产物.仁钦则花岗闪长岩具有相对较高的SiO2含量(62.77%~64.18%)、较低的K2O/Na2O(0.29~0.60)和A/CNK值(0.90~0.98),表明其属于Ⅰ型钙碱性岩石系列.岩石明显富集Ba、U等大离子亲石元素而亏损Nb、Ta等高场强元素,具有弧岩浆岩的地球化学特征.花岗闪长岩具有较高的CaO含量、较低的全碱和Al2O3含量,与含水的变基性岩部分熔融形成的熔体成分一致.锆石Ti和全岩Zr饱和温度计结果显示花岗闪长岩可能形成于下地壳源区.仁钦则花岗闪长岩具有较低的(87Sr/86Sr)i(0.703 671~0.703 794)、较高的εNd(t)(5.41~5.66)和锆石εHf(t)值(12.6~14.8),进一步表明其很可能为新生基性下地壳的部分熔融产物.综合分析认为,仁钦则花岗闪长岩主要形成于新特提斯洋北向俯冲背景之下,新特提斯洋的打开时间至少在晚三叠世之前.Abstract: The opening and subduction time of the Neo-Tethys ocean in the southern part of the Lhasa block on the Qinghai-Tibet Plateau ramains controversial.The widely developed Mesozoic granitoids in the southern Lhasa subterrane of Tibetan Plateau, are essential samples to explore the prolonged evolution of subduction process of the Neo-Tethys before collision between the Asia and India continents.Here, we present detailed zircon U-Pb dating, trace element and Hf isotope, whole-rock major and trace elements, and Sr-Nd isotope data for the granodiorites from the Renqinze area, central part of southern Lhasa subterrane.The granodiorites were crystallized at ca.180 Ma, which belongs to Early Jurassic.They are characterized by relatively high SiO2 (62.77%-64.18%) contents and low K2O/Na2O (0.29-0.60) and A/CNK values (0.90-0.98).These geochemical characteristics are similar to Ⅰ-type calc-alkaline rocks.Renqinze granodiorites are enriched in LILEs (e.g. Ba and U) and depleted in HFSEs (e.g. Nb and Ta), showing the geochemical affinity of arc-related magmatism.The granodiorites fall into the range of partial melts of meta-basaltic rocks due to their high CaO, low total alkaline and Al2O3 contents.The accordant results of Ti-in-zircon and whole-rock zircon saturation temperature suggest that the Renqinze granitoid rocks were derived from the lower continental crust.Moreover, the granodiorites show low (87Sr/86Sr)i(0.703 671-0.703 794), high εNd(t)(5.41-5.66) and zircon εHf(t)(12.6-14.8) values, indicating they were likely generated from partial melting of a juvenile mafic lower crust.The Renqinze granitodiorites represent the products of subduction of the Neo-Tethys ocean.The timing for the opening of the Neo-Tethys is at least before Late Triassic.
-
Key words:
- Renqinze /
- granodiorites /
- Sr-Nd-Hf isotopes /
- southern Lhasa subterrane /
- Neo-Tethys ocean /
- subduction /
- geochemistry /
- geochronology
-
图 1 拉萨地块中生代岩浆岩分布
修改自Zhu et al.(2013).BNS.班公湖-怒江缝合带;IYZS.雅鲁藏布江缝合带;SNMZ.狮泉河-纳木错蛇绿混杂岩带;LMF.洛巴堆-米拉山断裂带;STDS.藏南拆离断层系;MBT.主边界逆冲断层;MCT.主中央逆冲断层
Fig. 1. Distribution of the Mesozoic magmatic rocks in the Lhasa terrane
图 5 仁钦则花岗闪长岩(16RQZ-11)锆石球粒陨石标准化稀土元素分配模式
闪长岩和花岗闪长岩数据引自Huang et al.(2017)
Fig. 5. Chondrite-normalized REE pattern for zircons from the Renqinze granodiorite (16RQZ-11)
图 9 仁钦则花岗闪长岩Sr-Nd同位素组成
雅鲁藏布江蛇绿岩数据引自Xu and Castillo(2004)
Fig. 9. Sr-Nd isotopic compositions for the Renqinze granodiorites
图 11 仁钦则花岗闪长岩的源区判定图解
修改自Patiño Douce(1999);Altherr et al.(2000)
Fig. 11. The discrimination diagrams showing the source composition for the Renqinze granodiorites
图 12 仁钦则花岗闪长岩构造背景判别图解
据Pearce et al.(1984);Batchelor and Bowden(1985)
Fig. 12. Tectonic discrimination diagrams for the Renqinze granodiorites
表 1 仁钦则花岗闪长岩(16RQZ-11)锆石LA-ICP-MS U-Pb同位素定年结果
Table 1. LA-ICP-MS zircon U-Pb dating results for the Renqinze granodiorite (16RQZ-11)
点号 元素含量(10-6) Th/U 同位素比值 年龄(Ma) Pb Th U 207Pb/235U 1 σ 206Pb/238U 1 σ 207Pb/235U 1 σ 206Pb/238U 1 σ 01 6.8 88 188 0.47 0.211 3 0.018 9 0.028 2 0.000 4 195 16 179 3 02 6.4 84 170 0.49 0.215 6 0.010 4 0.028 3 0.000 4 198 9 180 3 03 20.8 432 502 0.86 0.196 2 0.013 3 0.028 5 0.000 4 182 11 181 3 04 7.8 134 204 0.66 0.197 7 0.009 4 0.028 3 0.000 4 183 8 180 2 05 11.8 228 293 0.78 0.195 7 0.008 9 0.028 5 0.000 4 182 8 181 2 06 8.0 113 209 0.54 0.209 1 0.010 2 0.028 4 0.000 4 193 9 181 2 07 8.6 131 224 0.59 0.197 4 0.009 1 0.028 2 0.000 3 183 8 179 2 08 4.7 63 126 0.50 0.213 7 0.012 4 0.028 5 0.000 4 197 10 181 3 09 8.9 181 227 0.80 0.203 1 0.009 9 0.028 5 0.000 4 188 8 181 3 10 9.9 177 262 0.68 0.200 6 0.009 6 0.028 6 0.000 4 186 8 182 2 11 9.2 144 248 0.58 0.203 6 0.009 4 0.028 3 0.000 3 188 8 180 2 12 8.0 133 218 0.61 0.206 0 0.010 1 0.028 6 0.000 4 190 9 182 3 13 6.0 77 164 0.47 0.213 5 0.025 8 0.028 6 0.000 8 196 22 182 5 14 7.9 134 218 0.61 0.213 5 0.013 0 0.028 3 0.000 4 197 11 180 2 15 4.9 60 141 0.42 0.217 6 0.014 1 0.028 5 0.000 5 200 12 181 3 16 8.0 139 218 0.64 0.195 6 0.011 4 0.028 3 0.000 4 181 10 180 3 17 5.9 101 165 0.61 0.188 8 0.012 3 0.028 3 0.000 4 176 11 180 3 18 9.0 182 250 0.73 0.211 7 0.022 2 0.028 5 0.000 5 195 19 181 3 19 6.8 91 192 0.47 0.196 5 0.011 0 0.028 4 0.000 4 182 9 180 3 表 2 仁钦则花岗闪长岩(16RQZ-11)锆石LA-ICP-MS U-Pb微量元素含量(10-6)
Table 2. LA-ICP-MS zircon trace elements data (10-6) for the Renqinze granodiorite (16RQZ-11)
点号 01 02 03 04 05 06 07 08 09 10 11 12 13 14 15 16 17 18 19 Ti 5.00 3.29 5.12 7.34 4.44 3.78 3.89 7.58 4.30 5.02 5.29 5.01 3.72 8.03 4.25 4.28 3.77 3.37 6.44 Sr 0.17 0.87 0.29 1.70 0.48 0.29 0.19 1.41 0.15 0.24 0.18 0.29 0.27 0.92 0.14 0.22 0.25 0.66 0.30 Y 739.4 496.6 1257.7 516.3 995.0 559.1 477.1 741.8 580.3 770.2 749.7 1057.6 754.0 744.9 534.6 639.6 429.6 572.8 886.9 Nb 1.92 1.23 5.22 1.41 3.43 1.49 1.21 1.38 1.89 2.22 2.06 2.00 2.18 1.98 1.16 1.77 1.15 1.73 2.20 La 0.00 1.07 0.00 1.70 0.36 0.01 0.02 0.83 0.01 0.01 0.02 0.02 0.03 0.04 0.01 0.00 0.15 0.78 0.01 Ce 9.65 9.62 29.55 12.47 21.34 9.99 9.54 11.31 12.82 13.48 12.43 12.87 9.91 10.96 8.30 9.84 8.99 12.22 11.89 Pr 0.01 0.29 0.03 0.40 0.08 0.02 0.01 0.22 0.03 0.03 0.04 0.06 0.03 0.04 0.02 0.01 0.05 0.16 0.03 Nd 0.32 1.24 0.19 2.04 0.90 0.27 0.40 1.18 0.54 0.48 0.71 1.32 0.47 0.60 0.29 0.52 0.47 0.90 0.54 Sm 1.08 0.78 2.00 1.27 1.75 0.73 0.84 1.45 1.03 1.29 1.31 2.24 0.71 1.10 0.64 1.01 0.88 0.83 1.32 Eu 0.77 0.43 1.21 0.54 0.64 0.50 0.41 0.76 0.62 0.75 0.64 1.17 0.58 0.70 0.51 0.58 0.35 0.48 0.66 Gd 8.32 6.22 16.01 6.48 13.07 6.38 5.96 9.69 8.15 9.50 8.58 13.91 7.82 9.58 5.87 6.96 5.54 7.77 9.74 Tb 3.50 2.37 7.08 2.64 5.08 2.65 2.31 3.54 2.87 3.68 3.27 5.34 3.81 3.63 2.32 3.25 2.11 2.89 4.04 Dy 47.17 33.41 90.38 36.15 67.87 37.61 32.45 48.47 41.05 51.51 48.73 73.72 46.91 48.69 32.44 42.75 28.70 38.47 56.35 Ho 23.89 15.11 39.39 16.14 31.51 17.41 15.04 22.16 17.72 23.61 23.05 32.71 22.81 22.82 15.95 19.89 13.06 17.24 26.63 Er 124.0 83.1 203.1 84.7 165.0 92.6 78.7 123.2 92.7 128.4 123.8 171.1 128.2 121.8 87.6 104.5 70.0 92.9 145.2 Tm 32.14 21.15 49.28 20.94 40.86 23.39 19.93 31.44 23.56 32.24 31.28 43.03 32.31 31.32 23.61 26.55 17.90 22.42 37.20 Yb 365.3 244.9 522.9 235.6 447.0 262.2 221.7 351.3 258.6 362.0 351.3 472.0 365.6 354.3 268.6 296.9 195.8 248.0 415.8 Lu 91.9 61.5 121.6 57.0 106.7 64.2 54.7 87.5 63.1 86.9 85.8 117.1 90.2 85.7 67.3 73.4 48.7 63.1 103.7 Hf 9 206 9 852 10 091 9 423 9 557 10 060 9 684 8 952 10 214 9 357 9 716 9 094 8 687 9 530 10 288 8 723 9 952 9 604 9 802 Ta 0.89 0.59 1.59 0.56 1.04 0.62 0.54 0.56 0.71 0.93 0.78 0.69 0.73 0.80 0.63 0.56 0.45 0.87 0.78 Ti* 684 652 685 715 674 662 664 717 672 684 688 684 661 722 671 671 662 654 704 注:Ti*表示根据锆石Ti温度计测得的温度,计算方法见Watson and Harrison(2005). 表 3 仁钦则花岗闪长岩(16RQZ-11)锆石Hf同位素分析结果
Table 3. Hf isotopic results of the Renqinze granodiorite (16RQZ-11)
点号 176Yb/177Hf 176Lu/177Hf 176Hf/177Hf 2 σ t εHf(t) tDM1(Ma) tDM2(Ma) fLu/Hf 02 0.026 529 0.001 347 0.283 060 0.000 013 180 14.0 274 328 -0.96 04 0.036 221 0.001 763 0.283 069 0.000 018 180 14.3 264 310 -0.95 05 0.029 755 0.001 468 0.283 020 0.000 018 181 12.6 333 420 -0.96 06 0.035 706 0.001 739 0.283 061 0.000 016 181 14.0 276 329 -0.95 07 0.024 040 0.001 211 0.283 034 0.000 015 179 13.1 310 387 -0.96 08 0.035 033 0.001 729 0.283 054 0.000 016 181 13.7 286 345 -0.95 09 0.032 135 0.001 568 0.283 052 0.000 016 181 13.7 287 347 -0.95 10 0.029 546 0.001 465 0.283 051 0.000 016 182 13.7 287 347 -0.96 11 0.042 485 0.001 970 0.283 067 0.000 013 180 14.1 269 318 -0.94 12 0.047 662 0.002 288 0.283 085 0.000 016 182 14.8 244 277 -0.93 15 0.034 362 0.001 665 0.283 027 0.000 015 181 12.8 324 405 -0.95 16 0.037 713 0.001 769 0.283 051 0.000 016 180 13.6 291 353 -0.95 17 0.031 667 0.001 580 0.283 033 0.000 016 180 13.0 315 392 -0.95 19 0.029 945 0.001 494 0.283 048 0.000 019 180 13.5 293 357 -0.96 表 4 仁钦则花岗闪长岩主量元素(%)和微量元素(10-6)含量
Table 4. Major elements (%) and trace elements (10-6) data of the Renqinze granodiorites
样品号 16RQZ-11 16RQZ-12 16RQZ-13 16RQZ-14 16RQZ-15 16RQZ-16 SiO2 63.39 62.77 63.65 63.70 63.00 64.18 TiO2 0.42 0.40 0.39 0.39 0.39 0.39 Al2O3 16.52 16.56 16.22 16.36 16.43 16.57 Fe2O3t 4.79 5.14 4.96 5.14 5.41 4.87 MnO 0.13 0.15 0.17 0.16 0.17 0.15 MgO 1.96 2.19 1.93 1.97 2.15 1.98 CaO 5.83 4.94 4.94 5.23 5.09 5.05 Na2O 3.98 3.65 4.14 3.61 3.94 3.47 K2O 1.16 1.79 1.78 1.82 1.65 2.09 P2O5 0.12 0.12 0.11 0.12 0.11 0.11 LOI 1.56 1.64 1.48 1.32 1.08 1.01 Total 99.87 99.35 99.77 99.8 99.43 99.87 K2O/Na2O 0.29 0.49 0.43 0.50 0.42 0.60 Cr 10.45 34.85 48.4 37.12 50.65 11.84 Co 10.91 14.1 14.58 11.52 11.94 11.77 Ni 5.116 5.869 5.183 5.669 6.066 5.435 Sc 10.95 11.67 10.65 9.658 10.96 9.986 V 82.22 89.97 75.81 84.66 87.25 82.58 Cu 9.051 14.5 12.48 10.34 15.9 13.28 Zn 56.2 70.34 62.1 58.64 59.47 60.98 Ge 1.721 1.426 1.449 1.48 1.481 1.353 Ga 15.69 16.3 15.98 15.5 15.53 15.77 Rb 26.21 42.92 29.146 34 39.14 43.95 Sr 514.4 468.4 475.4 462.7 426.4 445.4 Ba 531 766.3 619.2 695.7 638.8 954.4 Th 3.856 4.53 3.189 3.125 3.934 3.943 U 1.24 1.258 1.386 1.183 1.291 1.201 Pb 8.203 10.08 6.555 6.056 7.654 6.973 Nb 6.418 6.26 6.32 5.883 6.415 5.516 Ta 0.505 0.498 0.386 0.409 0.495 0.362 Zr 84.29 70.13 84.34 74.67 82.38 63.45 Hf 2.302 1.983 2.121 2.088 2.196 1.857 Y 13.65 13.5 12.39 12.46 13.77 11.86 La 13.80 11.26 11.79 11.06 13.73 12.33 Ce 25.02 22.44 21.96 20.57 25.94 22.47 Pr 2.77 2.56 2.65 2.43 2.82 2.43 Nd 10.60 10.15 10.37 9.62 10.90 9.41 Sm 2.29 2.26 2.18 2.12 2.34 2.05 Eu 0.74 0.71 0.73 0.71 0.76 0.71 Gd 2.33 2.32 2.13 2.13 2.35 2.10 Tb 0.37 0.37 0.38 0.34 0.38 0.33 Dy 2.28 2.33 2.25 2.17 2.32 2.05 Ho 0.48 0.48 0.46 0.44 0.48 0.42 Er 1.35 1.39 1.38 1.30 1.42 1.23 Tm 0.21 0.21 0.19 0.20 0.22 0.19 Yb 1.46 1.47 1.40 1.36 1.50 1.29 Lu 0.24 0.23 0.22 0.22 0.24 0.21 δEu 0.98 0.95 1.03 1.02 1.00 1.04 (La/Yb)N 6.80 5.49 6.03 5.82 6.56 6.87 (Dy/Yb)N 1.05 1.06 1.07 1.07 1.03 1.06 TZr* 704 699 706 701 706 692 注:TZr*表示全岩Zr饱和温度,计算方法据Watson and Harrison(1983). 表 5 仁钦则花岗闪长岩Sr-Nd同位素分析结果
Table 5. Sr-Nd isotopic data of the Renqinze granodiorites
样品号 16RQZ-11 16RQZ-12 16RQZ-14 16RQZ-16 16RQZ-16-R Rb(10-6) 26.21 42.92 34.00 43.95 43.95 Sr(10-6) 514.4 468.4 462.7 445.4 445.4 87Rb/86Sr 0.15 0.27 0.21 0.29 0.29 87Sr/86Sr 0.704 171 0.704 350 0.704 296 0.704 454 0.704 438 1 σ 0.000 009 0.000 008 0.000 006 0.000 009 0.000 007 (87Sr/86Sr)i 0.703 794 0.703 671 0.703 752 0.703 724 0.703 707 Sm(10-6) 2.29 2.26 2.12 2.05 2.05 Nd(10-6) 10.60 10.15 9.62 9.41 9.41 147Sm/144Nd 0.13 0.13 0.13 0.13 0.13 143Nd/144Nd 0.512 850 0.512 850 0.512 851 0.512 841 0.512 839 1 σ 0.000 005 0.000 004 0.000 006 0.000 005 0.000 005 (143Nd/144Nd)i 0.512 696 0.512 691 0.512 694 0.512 686 0.512 683 εNd(t) 5.66 5.56 5.62 5.46 5.41 tDM(Ma) 552 580 567 576 581 tDM2(Ma) 479 480 478 493 497 注:16RQZ-16-R为重复样. -
[1] Altherr, R., Holl, A., Hegner, E., et al., 2000.High-Potassium, Calc-Alkaline Ⅰ-Type Plutonism in the European Variscides:Northern Vosges(France) and Northern Schwarzwald(Germany).Lithos, 50(1-3):51-73.https://doi.org/10.1016/s0024-4937(99)00052-3 doi: 10.1016/S0024-4937(99)00052-3 [2] Batchelor, R.A., Bowden, P., 1985.Petrogenetic Interpretation of Granitoid Rock Series Using Multicationic Parameters.Chemical Geology, 48(1-4):43-55. https://doi.org/10.1016/0009-2541(85)90034-8 [3] Claiborne, L.L., Miller, C.F., Wooden, J.L., 2010.Trace Element Composition of Igneous Zircon:A Thermal and Compositional Record of the Accumulation and Evolution of a Large Silicic Batholith, Spirit Mountain, Nevada.Contributions to Mineralogy and Petrology, 160(4):511-531. https://doi.org/10.1007/s00410-010-0491-5 [4] Clemens, J., 2003.S-Type Granitic Magmas-Petrogenetic Issues, Models and Evidence.Earth-Science Reviews, 61(1-2):1-18.https://doi.org/10.1016/s0012-8252(02)00107-1 doi: 10.1016/S0012-8252(02)00107-1 [5] Dong, X., Zhang, Z.M., Liu, F., et al., 2011.Zircon U-Pb Geochronology of the Nyainqentanglha Group from the Lhasa Terrane:New Constraints on the Triassic Orogeny of the South Tibet.Journal of Asian Earth Sciences, 42(4):732-739.https://doi.org/10.1016/j.jseaes.2011.01.014 http://cn.bing.com/academic/profile?id=5087d36831ede9dbae32e350953b4804&encoded=0&v=paper_preview&mkt=zh-cn [6] Dong, X., Zhang, Z.M., 2013.Genesis and Tectonic Significance of the Early Jurassic Magmatic Rocks from the Southern Lhasa Terrane.Acta Petrologica Sinica, 29(6):1933-1948 (in Chinese with English abstract). http://cn.bing.com/academic/profile?id=bb69b9b9560eb263fab6da562802967f&encoded=0&v=paper_preview&mkt=zh-cn [7] Dong, Y.H., Xu, J.F., Zeng, Q.G., et al., 2006.Is there a Neo-Tethys' Subduction Record Earlier than Arc Volcanic Rocks in the Sangri Group? Acta Petrologica Sinica, 22(3):661-668 (in Chinese with English abstract). http://cn.bing.com/academic/profile?id=a02ee922be35628ea8b2d99f8d2ecb8a&encoded=0&v=paper_preview&mkt=zh-cn [8] Guo, L.S., Liu, Y.L., Liu, S.W., et al., 2013.Petrogenesis of Early to Middle Jurassic Granitoid Rocks from the Gangdese Belt, Southern Tibet:Implications for Early History of the Neo-Tethys.Lithos, 179:320-333. https://doi.org/10.1016/j.lithos.2013.06.011 [9] Hinton, R.W., Upton, B.G.J., 1991.The Chemistry of Zircon:Variations within and between Large Crystals from Syenite and Alkali Basalt Xenoliths.Geochimica et Cosmochimica Acta, 55(11):3287-3302.https://doi.org/10.1016/0016-7037(91)90489-r doi: 10.1016/0016-7037(91)90489-R [10] Hoskin, P.W.O., 2003.The Composition of Zircon and Igneous and Metamorphic Petrogenesis.Reviews in Mineralogy and Geochemistry, 53(1):27-62. https://doi.org/10.2113/0530027 [11] Huang, F., Chen, J.L., Xu, J.F., et al., 2015.Os-Nd-Sr Isotopes in Miocene Ultrapotassic Rocks of Southern Tibet:Partial Melting of a Pyroxenite-Bearing Lithospheric Mantle?Geochimica et Cosmochimica Acta, 163:279-298. https://doi.org/10.1016/j.gca.2015.04.053 [12] Huang, F., Xu, J.F., Chen, J.L., et al., 2015.Early Jurassic Volcanic Rocks from the Yeba Formation and Sangri Group:Products of Continental Marginal Arc and Intra-Oceanic Arc during the Subduction of Neo-Tethys Ocean? Acta Petrologica Sinica, 31(7):2089-2100 (in Chinese with English abstract). [13] Huang, F., Xu, J.F., Chen, J.L., et al., 2016.Two Cenozoic Tectonic Events of N-S and E-W Extension in the Lhasa Terrane:Evidence from Geology and Geochronology.Lithos, 245:118-132. https://doi.org/10.1016/j.lithos.2015.08.014 [14] Huang, F., Xu, J.F., Zeng, Y.C., et al., 2017.Slab Breakoff of the Neo-Tethys Ocean in the Lhasa Terrane Inferred from Contemporaneous Melting of the Mantle and Crust.Geochemistry, Geophysics, Geosystems, 18(11):4074-4095.https://doi.org/10.1002/2017gc007039 doi: 10.1002/ggge.v18.11 [15] Kang, Z.Q., Xu, J.F., Dong, Y.H., et al., 2008.Cretaceous Volcanic Rocks of Zenong Group in North-Middle Lhasa Block:Products of Southward Subducting of the Slainajap Ocean? Acta Petrologica Sinica, 24(2):303-314 (in Chinese with English abstract). http://cn.bing.com/academic/profile?id=e3f635a2c474e03c5e2d74694eb8f601&encoded=0&v=paper_preview&mkt=zh-cn [16] Kang, Z.Q., Xu, J.F., Wilde, S.A., et al., 2014.Geochronology and Geochemistry of the Sangri Group Volcanic Rocks, Southern Lhasa Terrane:Implications for the Early Subduction History of the Neo-Tethys and Gangdese Magmatic Arc.Lithos, 200-201:157-168. https://doi.org/10.1016/j.lithos.2014.04.019 [17] Li, X.W., Mo, X.X., Scheltens, M., et al., 2016.Mineral Chemistry and Crystallization Conditions of the Late Cretaceous Mamba Pluton from the Eastern Gangdese, Southern Tibetan Plateau.Journal of Earth Science, 27(4):545-570. https://doi.org/10.1007/s12583-016-0713-5 [18] Liu, Y.S., Gao, S., Hu, Z.C., et al., 2010.Continental and Oceanic Crust Recycling-Induced Melt-Peridotite Interactions in the Trans-North China Orogen:U-Pb Dating, Hf Isotopes and Trace Elements in Zircons from Mantle Xenoliths.Journal of Petrology, 51(1-2):537-571. https://doi.org/10.1093/petrology/egp082 [19] Ma, L., Wang, Q., Wyman, D.A., et al., 2015.Late Cretaceous Back-Arc Extension and Arc System Evolution in the Gangdese Area, Southern Tibet:Geochronological, Petrological, and Sr-Nd-Hf-O Isotopic Evidence from Dagze Diabases.Journal of Geophysical Research:Solid Earth, 120(9):6159-6181.https://doi.org/10.1002/2015jb011966 doi: 10.1002/2015JB011966 [20] Ma, X.X., Xu, Z.Q., Chen, X.J., et al., 2017.The Origin and Tectonic Significance of the Volcanic Rocks of the Yeba Formation in the Gangdese Magmatic Belt, South Tibet.Journal of Earth Science, 28(2):265-282.https://doi: 10.1007/s12583-016-0925-8 [21] Murphy, M.A., Yin, A., Harrison, T.M., et al., 1997.Did the Indo-Asian Collision Alone Create the Tibetan Plateau?Geology, 25(8):719.https://doi.org/10.1130/0091-7613(1997)025<0719:dtiaca>2.3.co;2 doi: 10.1130/0091-7613(1997)025<0719:DTIACA>2.3.CO;2 [22] Patiño Douce, A.E., 1999.What do Experiments Tell us about the Relative Contributions of Crust and Mantle to the Origin of Granitic Magmas? Geological Society, London, Special Publications, 168(1):55-75.https://doi.org/10.1144/gsl.sp.1999.168.01.05 doi: 10.1144/GSL.SP.1999.168.01.05 [23] Pearce, J.A., Harris, N.B.W., Tindle, A.G., 1984.Trace Element Discrimination Diagrams for the Tectonic Interpretation of Granitic Rocks.Journal of Petrology, 25(4):956-983. https://doi.org/10.1093/petrology/25.4.956 [24] Song, S.W., Liu, Z., Zhu, D.C., et al., 2014.Zircon U-Pb Chronology and Hf Isotope of the Late Triassic Andesitic Magmatism in Dajiacuo, Tibet.Acta Petrologica Sinica, 30(10):3100-3112 (in Chinese with English abstract). http://d.old.wanfangdata.com.cn/Periodical/ysxb98201410023 [25] van Hunen, J.V., Allen, M.B., 2011.Continental Collision and Slab Break-Off:A Comparison of 3-D Numerical Models with Observations.Earth and Planetary Science Letters, 302(1-2):27-37. https://doi.org/10.1016/j.epsl.2010.11.035 [26] Wang, B.D., Chen, J.L., Xu, J.F., et al., 2014.Geochemical and Sr-Nd-Pb-Os Isotopic Compositions of Miocene Ultrapotassic Rocks in Southern Tibet:Petrogenesis and Implications for the Regional Tectonic History.Lithos, 208-209:237-250. https://doi.org/10.1016/j.lithos.2014.09.008 [27] Wang, B.D., Wang, L.Q., Chung, S.L., et al., 2016a.Evolution of the Bangong-Nujiang Tethyan Ocean:Insights from the Geochronology and Geochemistry of Mafic Rocks within Ophiolites.Lithos, 245:18-33. https://doi.org/10.1016/j.lithos.2015.07.016 [28] Wang, C., Ding, L., Zhang, L.Y., et al., 2016b.Petrogenesis of Middle-Late Triassic Volcanic Rocks from the Gangdese Belt, Southern Lhasa Terrane:Implications for Early Subduction of Neo-Tethyan Oceanic Lithosphere.Lithos, 262:320-333. https://doi.org/10.1016/j.lithos.2016.07.021 [29] Wang, R.Q., Qiu, J.S., Yu, S.B., et al., 2017.Crust-mantle Interaction during Early Jurassic Subduction of Neo-Tethyan Oceanic Slab:Evidence from the Dongga Gabbro-granite Complex in the Southern Lhasa Subterrane, Tibet.Lithos, 292-293:262-277. https://doi.org/10.1016/j.lithos.2017.09.018 [30] Watson, E.B., 2005.Zircon Thermometer Reveals Minimum Melting Conditions on Earliest Earth.Science, 308(5723):841-844. https://doi.org/10.1126/science.1110873 [31] Watson, E.B., Harrison, T.M., 1983.Zircon Saturation Revisited:Temperature and Composition Effects in a Variety of Crustal Magma Types.Earth and Planetary Science Letters, 64(2):295-304.https://doi.org/10.1016/0012-821x(83)90211-x doi: 10.1016/0012-821X(83)90211-X [32] Xiong, Q.W., Chen, J.L., Xu J.F., et al., 2015.LA-ICP-MS Zircon U-Pb Geochronology, Geochemical Characteristics and Genetic Study of Yeba Formation Lavas in Demingding Area, Southern Tibet.Geological Bulletin of China, 34(9):1645-1655 (in Chinese with English abstract). [33] Xu, B., Hou, Z.Q., Zheng, Y.C., et al., 2017.In Situ Elemental and Isotopic Study of Diorite Intrusions:Implication for Jurassic Arc Magmatism and Porphyry Cu-Au Mineralisation in Southern Tibet.Ore Geology Reviews, 90:1063-1077. https://doi.org/10.1016/j.oregeorev.2017.04.036 [34] Xu, J.F., Castillo, P.R., 2004.Geochemical and Nd-Pb Isotopic Characteristics of the Tethyan Asthenosphere:Implications for the Origin of the Indian Ocean Mantle Domain.Tectonophysics, 393(1-4):9-27. https://doi.org/10.1016/j.tecto.2004.07.028 [35] Yang, J.S., Xu, Z.Q., Geng, Q.R., et al., 2006.A Possible New HP/UHP(?) Metamorphic Belt in China:Discovery of Eclogite in the Lasha Terrane, Tibet.Acta Geologica Sinica, 80(12):1783-1792 (in Chinese with English abstract). http://cn.bing.com/academic/profile?id=601bdadaaa20c384bab5ad264b8db90b&encoded=0&v=paper_preview&mkt=zh-cn [36] Yang, J.S., Xu, Z.Q., Li, Z.L., et al., 2009.Discovery of an Eclogite Belt in the Lhasa Block, Tibet:A New Border for Paleo-Tethys?Journal of Asian Earth Sciences, 34(1):76-89. https://doi.org/10.1016/j.jseaes.2008.04.001 [37] Yin, J.R., Grant-Mackie, J.A., 2005.Late Triassic-Jurassic Bivalves from Volcanic Sediments of the Lhasa Block, Tibet.New Zealand Journal of Geology and Geophysics, 48(3):555-577. https://doi.org/10.1080/00288306.2005.9515133 [38] Zeng, Y.C., Chen, J.L., Xu, J.F., et al., 2016.Sediment Melting during Subduction Initiation:Geochronological and Geochemical Evidence from the Darutso High-Mg Andesites within Ophiolite Melange, Central Tibet.Geochemistry, Geophysics, Geosystems, 17(12):4859-4877.https://doi.org/10.1002/2016gc006456 doi: 10.1002/2016GC006456 [39] Zeng, Y.C., Xu, J.F., Chen, J.L., et al., 2018.Geochronological and Geochemical Constraints on the Origin of the Yunzhug Ophiolite in the Shiquanhe-Yunzhug-Namu Tso Ophiolite Belt, Lhasa Terrane, Tibetan Plateau.Lithos, 300-301:250-260. https://doi.org/10.1016/j.lithos.2017.11.025 [40] Zhang, H.F., Xu, W.C., Guo, J.Q., et al., 2007.Zircon U-Pb and Hf Isotopic Composition of Deformed Granite in the Southern Margin of the Gangdise Belt, Tibet:Evidence for Early Jurassic Subduction of Neo-Tethyan Oceanic Slab.Acta Petrologica Sinica, 23(6):1347-1353 (in Chinese with English abstract). [41] Zhang, Z., Song, J.L., Tang, J.X., et al., 2017.Petrogenesis, Diagenesis and Mineralization Ages of Galale Cu-Au Deposit, Tibet:Zircon U-Pb Age, Hf Isotopic Composition and Molybdenite Re-Os Dating.Earth Science, 42(6):862-880 (in Chinese with English abstract).https://doi.org/10.3799/dqkx.2017.523 [42] Zhu, D.C., Zhao, Z.D., Niu, Y.L., et al., 2011.The Lhasa Terrane:Record of a Microcontinent and Its Sistories of Drift and Growth.Earth and Planetary Science Letters, 301(1-2):241-255. https://doi.org/10.1016/j.epsl.2010.11.005 [43] Zhu, D.C., Zhao, Z.D., Niu, Y., et al., 2013.The Origin and Pre-Cenozoic Evolution of the Tibetan Plateau.Gondwana Research, 23(4):1429-1454. https://doi.org/10.1016/j.gr.2012.02.002 [44] 董昕, 张泽明, 2013.拉萨地体南部早侏罗世岩浆岩的成因和构造意义.岩石学报, 29(6):1933-1948. http://d.old.wanfangdata.com.cn/Periodical/ysxb98201306006 [45] 董彦辉, 许继峰, 曾庆高, 等, 2006.存在比桑日群弧火山岩更早的新特提斯洋俯冲记录么?岩石学报, 22(3):661-668. http://d.old.wanfangdata.com.cn/Periodical/ysxb98200603015 [46] 黄丰, 许继峰, 陈建林, 等, 2015.早侏罗世叶巴组与桑日群火山岩:特提斯洋俯冲过程中的陆缘弧与洋内弧?岩石学报, 31(7):2089-2100. http://d.old.wanfangdata.com.cn/Periodical/ysxb98201507022 [47] 康志强, 许继峰, 董彦辉, 等, 2008.拉萨地块中北部白垩纪则弄群火山岩:Slainajap洋南向俯冲的产物?岩石学报, 24(2):303-314. http://d.old.wanfangdata.com.cn/Periodical/ysxb98200802010 [48] 宋绍玮, 刘泽, 朱弟成, 等, 2014.西藏打加错晚三叠世安山质岩浆作用的锆石U-Pb年代学和Hf同位素.岩石学报, 30(10):3100-3112. http://d.old.wanfangdata.com.cn/Periodical/ysxb98201410023 [49] 熊秋伟, 陈建林, 许继峰, 等, 2015.拉萨地块南部得明顶地区叶巴组火山岩LA-ICP-MS锆石U-Pb年龄、地球化学特征及其成因.地质通报, 34(9):1645-1655. doi: 10.3969/j.issn.1671-2552.2015.09.006 [50] 杨经绥, 许志琴, 耿全如, 等, 2006.中国境内可能存在一条新的高压/超高压(?)变质带——青藏高原拉萨地体中发现榴辉岩带.地质学报, 80(12):1783-1792. http://kns.cnki.net/KCMS/detail/detail.aspx?filename=DZXE200612000&dbname=CJFD&dbcode=CJFQ [51] 张宏飞, 徐旺春, 郭建秋, 等, 2007.冈底斯南缘变形花岗岩锆石U-Pb年龄和Hf同位素组成:新特提斯洋早侏罗世俯冲作用的证据.岩石学报, 23(6):1347-1353. doi: 10.3969/j.issn.1000-0569.2007.06.011 [52] 张志, 宋俊龙, 唐菊兴, 等, 2017.西藏嘎拉勒铜金矿床的成岩成矿时代与岩石成因:锆石U-Pb年龄、Hf同位素组成及辉钼矿Re-Os定年.地球科学, 42(6):862-880.https://doi.org/10.3799/dqkx.2017.523 http://earth-science.net/WebPage/Article.aspx?id=3584