Geochronology, Petrogenesis and Tectonic Significance of Quanshuigou Pluton from Southeastern West Kunlun Mountain in Xinjiang, China
-
摘要: 泉水沟岩体位于西昆仑造山带和巴彦喀拉褶断带夹持区域,对追溯西昆仑地区的区域发展演化具有重要指示意义.通过高精度同位素年代学、岩石矿物学与地球化学等手段,准确限定岩体的形成时代并查明其地球化学特征.LA-ICP-MS锆石U-Pb定年获得该岩体中花岗闪长岩的年龄为217.6±0.9 Ma,其中的暗色包体黑云母石英闪长岩年龄为217.4±0.7 Ma,均属晚三叠世(T3).花岗闪长岩具有富硅(SiO2=67.21%~68.85%)、富碱(全碱变化于6.36%~6.76%,里特曼指数δ=1.56~1.86)、富钾(K2O=3.50%~3.96%,K2O/Na2O=1.20~1.41),而贫TiO2、MnO和P2O5(< 1%)的特点;岩体的铝饱和指数A/CNK为0.88~1.05;总体上属高钾钙碱性准铝质-弱过铝质I型花岗岩.岩石富集轻稀土,轻重稀土元素分馏明显((La/Yb)N为1.03~11.05),具有铕负异常(δEu为0.42~0.73);富集Rb、Th、K和LREE等大离子亲石元素,而贫Ba、Sr、Ti、P等元素.岩石微量元素地球化学特征显示,泉水沟花岗闪长岩及其包体为下地壳变质玄武岩熔融的产物,在岩浆演化过程中岩体的分离结晶作用以斜长石、辉石和磷灰石为主,而角闪石分离结晶不明显.区域构造环境演化表明,晚三叠世时随着古特提斯洋向北消减至最终闭合,在康西瓦断裂带两侧发生大规模陆块碰撞挤压,致使地壳垂向增生加厚引起了强烈的岩浆活动,从而在下地壳发生重熔作用形成了泉水沟岩体,也表明该区当时已处于洋陆拼合后的碰撞造山新阶段.Abstract: Lying in the transitional region of the West Kunlun area and Bayankala folded fault belt of Xinjiang, the Quanshuigou pluton has indicative significance for area evolution. In order to determine the formation time, geochemical characteristics and tectonic setting of the Quanshuigou pluton, geochronology, mineralogy, petrology and geochemistry were studied. Combined with the cathodoluminescence (CL) images and element U, Th and Pb features of zircon, this study yields two ages of 217.6±0.9 Ma and 217.4±0.7 Ma for granodiorite and quartz diorite using the LA-ICP-MS zircon U-Pb dating, belonging to the Late Triassic. The geochemical analyses show that the granodiorites are characterized by high SiO2 (67.21%-68.85%), high alkali (Na2O+K2O=6.36%-6.76%, Rittman index δ=1.56-1.86), high potassium (K2O=3.50%-3.96%, K2O/Na2O=1.20-1.41), and low TiO2, MnO and P2O5 (content < 1%); and aluminum index A/CNK=0.88-1.05, indicating a transitional composition between metaluminous and peraluminous I-type granite series. The pluton is enriched in LREE, depleted in HREE ((La/Yb)N=1.03-11.05), with negative Eu anomaly (δEu=0.42-0.73). While the trace elements are characterized by enrichment of Rb, Th, K and LREE, and depletion of Ba, Sr, Ti, P. The chemical signatures indicate that the pluton experienced the highly fractionated process and partial melting. The Quanshuigou diorite with characteristic source-mixed granite from mantle and crust should be likely derived from metabasalt in lower crust, and subsequently underwent the fractional crystallization of plagioclase, pyroxene and apatite without amphibole. In the Late Triassic, the Paleo-Tethys Ocean was gradually evolved from subduction toward north to the complete closure, and at the same time regional tectonic stress was transformed from subduction process to collision compressional action environment. Based on comprehensive analysis of the genetic type of the pluton and evolution of regional tectonic environment, it is suggested that the Quanshuigou pluton formed just after this tectonic stress transfromation, which shows that this area was in continent-continent collision orogenic regime in the Late Triassic.
-
Key words:
- I-type granite /
- Late Triassic /
- syn-collision /
- Quanshuigou pluton /
- West Kunlun /
- geochemistry
-
图 1 新疆西昆仑地区大地构造位置(a)及侵入岩分布(b)
据李荣社等(2008).TRMB.塔里木板块; WKLS.西昆仑造山带; TSH.甜水海地块; BYF.巴颜喀拉褶断带; SQ.南羌塘地块; KT.科西斯坦地块.主要断裂:F1.公格尔-柯岗大断裂; F2.康西瓦-鲸鱼湖大断裂; F3.大红柳滩断裂; F4.喀喇昆仑大断裂; F5.班公湖-怒江大断裂
Fig. 1. Geotectonic position (a) and distribution of intrusive rocks (b) in the West Kunlun area of Xinjiang
图 5 泉水沟岩体K2O-SiO2图解
Fig. 5. Diagram of K2O-SiO2 of the Quanshuigou pluton
图 7 泉水沟岩体稀土元素球粒陨石标准化配分曲线图(a)和微量元素原始地幔标准化蛛网图(b)
a, b标准化值据Sun and McDonough(1989)
Fig. 7. Chondrite-normalized REE distribution patterns (a) and primitive mantle-normalized trace element distribution patterns (b) of the Quanshuigou pluton
图 8 泉水沟岩体成因类型判别图解
a.SiO2-Zr图解(Whalen et al., 1987); b.(Zr+Nb+Ce+Y)-TFeO/MgO图解(Eby, 1990); c.SiO2-Y图解(Chappell and White, 1992); FG.高分异的M、I、S型花岗岩;OGT.未分异的M、I、S型花岗岩
Fig. 8. Discrimination diagrams of granite genetic types for the Quanshuigou pluton
图 9 泉水沟岩体(Dy/Yb)N-(Nb/Ta)图解和C/MF-A/MF图解
Fig. 9. (Dy/Yb)N vs. (Nb/Ta) and C/MF vs. A/MF diagrams for the Quanshuigou pluton
图 10 泉水沟岩体的构造背景判别图解
Fig. 10. Diagrams of tectonic environment for the Quanshuigou pluton
表 1 泉水沟花岗闪长岩锆石LA-ICP-MS U-Pb同位素测试结果
Table 1. LA-ICP-MS U-Pb isotopic analyses for zircons from the Quanshuigou granodiorite
测点号 含量(10-6) Th/U 同位素比值 年龄(Ma) Pb Th U 207Pb/206Pb ±1σ 207Pb/235U ±1σ 206Pb/238U ±1σ 207Pb/206Pb ±1σ 207Pb/235U ±1σ 206Pb/238U ±1σ Q101 163 451 1 429 0.32 0.050 1 0.000 7 0.237 8 0.004 3 0.034 3 0.000 5 211.2 31.5 216.6 3.6 217.7 3.0 Q102 133 351 1 345 0.26 0.050 3 0.000 6 0.238 6 0.003 8 0.034 4 0.000 5 209.3 21.3 217.3 3.1 217.7 3.0 Q107 270 697 2 260 0.31 0.050 5 0.000 6 0.240 1 0.003 0 0.034 3 0.000 3 220.4 32.4 218.5 2.5 217.7 1.8 Q108 105 241 1 139 0.21 0.049 3 0.000 7 0.234 8 0.004 1 0.034 4 0.000 4 161.2 31.5 214.1 3.3 217.8 2.3 Q109 119 324 1 119 0.29 0.050 8 0.000 7 0.240 7 0.004 2 0.034 2 0.000 4 231.6 33.3 219.0 3.4 216.8 2.5 Q110 431 1 268 2 689 0.47 0.049 6 0.000 7 0.235 0 0.003 2 0.034 2 0.000 3 189.0 35.2 214.3 2.6 216.8 2.0 Q111 256 643 1 974 0.33 0.050 4 0.000 7 0.240 0 0.003 6 0.034 4 0.000 4 213.0 36.1 218.4 2.9 217.8 2.3 Q112 144 371 1 334 0.28 0.051 9 0.000 8 0.247 6 0.004 4 0.034 5 0.000 5 283.4 30.6 224.6 3.6 218.4 3.4 Q113 164 404 1 501 0.27 0.050 7 0.000 7 0.241 4 0.003 7 0.034 4 0.000 4 233.4 31.5 219.5 3.0 217.9 2.6 Q114 190 514 1 730 0.30 0.050 9 0.000 9 0.241 0 0.003 9 0.034 2 0.000 4 239.0 38.9 219.3 3.2 216.6 2.5 Q115 61 160 297 0.54 0.050 5 0.001 3 0.239 7 0.006 3 0.034 3 0.000 5 220.4 57.4 218.1 5.1 217.3 2.9 Q117 82 222 862 0.26 0.050 3 0.000 7 0.240 1 0.004 8 0.034 5 0.000 6 209.3 26.8 218.5 3.9 218.8 3.8 Q118 215 570 1 538 0.37 0.049 0 0.000 6 0.232 2 0.003 2 0.034 3 0.000 4 150.1 27.8 212.0 2.6 217.4 2.5 Q119 69 179 454 0.39 0.051 9 0.001 1 0.246 5 0.005 3 0.034 5 0.000 5 279.7 46.3 223.7 4.4 218.5 3.1 Q120 242 598 2 138 0.28 0.051 0 0.000 6 0.242 2 0.003 3 0.034 5 0.000 4 239.0 25.9 220.2 2.7 218.4 2.2 Q121 292 774 2 047 0.38 0.051 4 0.000 6 0.244 7 0.004 6 0.034 5 0.000 5 257.5 27.8 222.3 3.8 218.9 3.4 Q122 88 214 635 0.34 0.051 5 0.000 9 0.245 1 0.004 4 0.034 5 0.000 3 264.9 36.1 222.6 3.6 218.6 1.9 Q123 143 331 1 551 0.21 0.050 8 0.000 8 0.239 6 0.004 7 0.034 2 0.000 4 231.6 69.4 218.1 3.9 217.0 2.6 Q125 266 651 2 061 0.32 0.051 4 0.000 9 0.243 8 0.005 0 0.034 5 0.000 4 261.2 38.9 221.6 4.1 218.5 2.4 Q126 131 346 1 197 0.29 0.051 3 0.000 7 0.242 2 0.004 9 0.034 3 0.000 5 253.8 31.5 220.3 4.0 217.4 3.0 Q127 166 417 1 558 0.27 0.051 0 0.000 7 0.241 3 0.003 6 0.034 4 0.000 3 239.0 33.3 219.5 2.9 218.3 2.2 Q128 195 469 1 864 0.25 0.051 4 0.000 6 0.244 2 0.004 0 0.034 5 0.000 5 261.2 27.8 221.8 3.2 218.8 2.9 Q129 250 640 2 258 0.28 0.051 4 0.000 8 0.243 9 0.004 6 0.034 5 0.000 5 257.5 30.6 221.6 3.8 218.6 2.8 Q130 139 343 1 160 0.30 0.051 7 0.001 2 0.244 1 0.005 5 0.034 4 0.000 6 272.3 55.5 221.8 4.5 217.9 3.4 Q131 265 645 2 496 0.26 0.051 2 0.000 5 0.242 0 0.003 7 0.034 3 0.000 4 250.1 24.1 220.0 3.1 217.4 2.6 Q132 223 558 1 884 0.30 0.051 5 0.000 7 0.243 6 0.003 9 0.034 4 0.000 4 264.9 32.4 221.4 3.2 217.7 2.4 Q133 336 878 2 416 0.36 0.050 7 0.000 6 0.240 3 0.003 7 0.034 4 0.000 4 233.4 29.6 218.7 3.0 218.3 2.2 Q134 148 397 1 437 0.28 0.051 4 0.000 9 0.243 1 0.004 2 0.034 4 0.000 3 257.5 38.9 221.0 3.4 217.9 1.8 Q135 516 1 440 2 804 0.51 0.051 5 0.000 7 0.239 4 0.003 6 0.033 7 0.000 3 261.2 34.3 217.9 2.9 214.0 1.8 Q202 161 400 1 239 0.32 0.050 3 0.000 7 0.239 1 0.003 9 0.034 2 0.000 4 209.3 33.3 217.7 3.2 217.0 2.2 表 2 泉水沟黑云母石英闪长岩锆石LA-ICP-MS U-Pb同位素测试结果
Table 2. LA-ICP-MS U-Pb isotopic analyses for zircons from the Quanshuigou biotite quartz diorite
测点号 含量(10-6) Th/U 同位素比值 年龄(Ma) Pb Th U 207Pb/206Pb ±1σ 207Pb/235U ±1σ 206Pb/238U ±1σ 207Pb/206Pb ±1σ 207Pb/235U ±1σ 206Pb/238U ±1σ Q601 1 660 4 663 3 842 1.21 0.050 9 0.000 6 0.242 0 0.003 5 0.034 5 0.000 3 235.3 27.8 220.1 2.9 218.8 1.9 Q602 2 152 6 129 4 469 1.37 0.050 7 0.000 6 0.240 2 0.003 3 0.034 4 0.000 3 227.8 27.8 218.6 2.7 217.8 1.7 Q603 2 715 7 889 5 119 1.54 0.050 5 0.000 5 0.239 5 0.003 2 0.034 4 0.000 3 216.7 25.9 218.0 2.6 218.0 1.8 Q604 1 896 5 732 3 956 1.45 0.050 9 0.000 6 0.238 9 0.003 4 0.034 0 0.000 2 235.3 29.6 217.5 2.8 215.7 1.6 Q605 2 797 7 933 4 966 1.60 0.050 2 0.000 5 0.238 7 0.003 4 0.034 5 0.000 3 211.2 19.4 217.4 2.8 218.6 2.1 Q606 421 1 052 2 625 0.40 0.050 2 0.000 5 0.238 1 0.005 2 0.034 4 0.000 7 205.6 21.3 216.9 4.3 217.8 4.4 Q607 594 1 714 2 157 0.79 0.050 5 0.000 5 0.238 2 0.002 8 0.034 2 0.000 2 216.7 24.1 217.0 2.3 216.7 1.4 Q608 1 704 4 999 3 791 1.32 0.050 7 0.000 6 0.238 7 0.002 8 0.034 1 0.000 3 227.8 21.3 217.3 2.3 216.3 1.6 Q609 1 265 3 472 3 369 1.03 0.049 9 0.000 6 0.237 0 0.003 0 0.034 4 0.000 3 190.8 27.8 216.0 2.4 218.1 1.7 Q610 2 105 6 140 4 543 1.35 0.050 5 0.000 6 0.239 8 0.003 3 0.034 4 0.000 3 220.4 30.5 218.2 2.7 217.8 1.6 Q611 107 276 795 0.35 0.048 7 0.001 1 0.232 1 0.005 7 0.034 6 0.000 5 200.1 53.7 211.9 4.7 219.2 3.1 Q612 2 034 5 832 4 136 1.41 0.049 9 0.000 6 0.236 1 0.003 0 0.034 3 0.000 3 190.8 25.9 215.2 2.4 217.3 1.8 Q613 2 876 7 982 6 734 1.19 0.049 8 0.000 6 0.235 9 0.003 1 0.034 3 0.000 3 183.4 23.1 215.0 2.6 217.5 1.8 Q614 1 570 4 681 3 500 1.34 0.049 2 0.000 7 0.232 3 0.004 5 0.034 2 0.000 4 166.8 33.3 212.1 3.7 216.7 2.8 Q615 2 212 6 490 4 799 1.35 0.049 6 0.000 6 0.235 7 0.003 0 0.034 4 0.000 3 189.0 27.8 214.9 2.5 218.1 1.9 Q616 1 394 4 012 3 394 1.18 0.050 3 0.000 7 0.239 7 0.004 1 0.034 5 0.000 4 209.3 33.3 218.1 3.4 218.8 2.5 Q617 233 638 1 198 0.53 0.049 1 0.000 7 0.234 9 0.004 8 0.034 7 0.000 6 153.8 33.3 214.2 3.9 219.7 3.6 Q618 853 2 490 2 639 0.94 0.050 0 0.000 5 0.236 6 0.002 8 0.034 3 0.000 3 194.5 24.1 215.7 2.3 217.4 1.6 Q619 1 845 5 149 4 735 1.09 0.050 0 0.000 6 0.236 5 0.003 1 0.034 3 0.000 3 194.5 27.8 215.6 2.5 217.6 1.6 Q620 1 530 4 440 3 775 1.18 0.049 4 0.000 5 0.233 8 0.004 3 0.034 3 0.000 6 168.6 22.2 213.4 3.5 217.5 3.5 Q621 66 163 478 0.34 0.049 2 0.001 1 0.232 2 0.005 0 0.034 3 0.000 4 153.8 51.8 212.0 4.1 217.3 2.4 Q622 1 211 3 457 3 097 1.12 0.049 9 0.000 5 0.234 8 0.002 6 0.034 1 0.000 2 190.8 24.1 214.1 2.1 216.0 1.6 Q623 613 1 573 3 649 0.43 0.049 6 0.000 4 0.233 2 0.002 6 0.034 2 0.000 3 176.0 20.4 212.8 2.1 216.6 1.6 Q624 432 1 044 4 195 0.25 0.049 7 0.000 5 0.235 4 0.003 4 0.034 4 0.000 4 189.0 22.2 214.6 2.8 217.9 2.7 Q625 1 177 3 447 3 225 1.07 0.050 3 0.000 6 0.236 3 0.003 4 0.034 1 0.000 3 209.3 23.1 215.4 2.8 216.0 1.8 Q626 329 903 1 349 0.67 0.049 8 0.000 6 0.235 0 0.003 3 0.034 3 0.000 4 187.1 25.0 214.3 2.7 217.1 2.5 Q627 166 444 1 472 0.30 0.049 6 0.001 0 0.234 8 0.006 4 0.034 3 0.000 7 176.0 52.8 214.1 5.3 217.6 4.1 Q628 583 1 448 3 608 0.40 0.051 1 0.000 5 0.242 1 0.002 8 0.034 4 0.000 2 242.7 56.5 220.1 2.3 217.8 1.5 Q629 1 635 4 808 3 597 1.34 0.049 4 0.000 5 0.234 3 0.002 9 0.034 4 0.000 3 164.9 20.4 213.7 2.4 217.8 1.7 Q630 1 505 3 648 3 991 0.91 0.049 8 0.000 5 0.237 8 0.003 2 0.034 6 0.000 3 183.4 22.2 216.6 2.6 219.2 2.0 表 3 泉水沟岩体主量元素(%)、微量元素(10-6)、稀土元素(10-6)分析结果
Table 3. Compositions of major elements (%), trace elements (10-6) and REE (10-6) of the Quanshuigou pluton
样品 花岗闪长岩 石英闪长岩 15QS01 15QS03 15QS04 15QS05 15QS06 15QS07 15QS08 SiO2 67.21 67.56 68.18 68.85 58.30 59.38 58.83 TiO2 0.42 0.42 0.38 0.40 0.64 0.63 0.75 Al2O3 15.65 15.31 15.37 14.97 16.46 15.87 16.69 Fe2O3 0.74 0.77 0.64 0.61 1.96 1.03 1.50 FeO 3.12 3.07 2.94 3.04 5.25 6.33 5.43 MnO 0.09 0.09 0.08 0.09 0.22 0.21 0.19 MgO 1.52 1.52 1.41 1.42 3.40 3.84 3.58 CaO 3.52 3.26 3.41 3.21 6.38 5.78 5.70 Na2O 2.97 2.80 2.92 2.83 2.90 2.87 2.87 K2O 3.58 3.96 3.50 3.53 2.06 2.16 2.31 P2O5 0.15 0.14 0.13 0.14 0.16 0.17 0.20 烧失量 0.98 1.05 0.84 0.86 2.18 1.65 1.88 总和 99.95 99.95 99.80 99.95 99.91 99.92 99.93 K2O+Na2O 6.55 6.76 6.42 6.36 4.96 5.03 5.18 K2O/Na2O 1.21 1.41 1.20 1.25 0.71 0.75 0.80 TFeO/MgO 2.49 2.48 2.49 2.53 2.06 1.89 1.89 δ 1.98 1.62 1.65 0.93 1.67 1.64 1.70 A/CNK 1.03 1.03 1.04 1.05 0.88 0.90 0.95 A/NK 1.79 1.72 1.79 1.77 2.35 2.25 2.31 Mg# 46.48 46.88 46.09 45.43 53.58 51.95 54.03 AI 0.56 0.58 0.56 0.57 0.43 0.44 0.43 Pb < 0.01 < 0.01 < 0.01 < 0.01 0.18 0.09 < 0.01 Zn < 0.01 < 0.01 < 0.01 < 0.01 0.02 0.04 0.01 Cr 16.00 12.80 12.70 11.40 14.60 27.20 30.30 Ni 7.19 6.28 6.35 6.22 7.44 10.10 14.30 Co 13.20 10.20 10.60 10.60 19.40 19.70 20.00 Rb 41.50 59.40 122.00 58.50 77.60 79.50 67.80 Sr 145.00 134.00 247.00 161.00 242.00 216.00 223.00 Ba 441.00 448.00 518.00 444.00 344.00 243.00 363.00 V 66.20 65.40 64.50 62.20 212.00 144.00 171.00 Sc 12.30 15.10 16.10 13.20 31.20 23.50 22.50 Nb 9.42 9.24 8.84 9.02 10.70 7.63 8.93 Ta 1.04 1.09 1.07 1.24 1.08 0.80 0.92 Zr 106.00 114.00 132.00 112.00 63.50 127.00 104.00 Hf 3.42 3.49 3.87 3.61 2.08 3.71 2.98 Cs 5.26 5.66 6.96 7.98 6.23 5.26 7.32 U 1.99 1.80 2.13 1.69 4.48 2.58 2.08 Th 13.90 19.20 18.80 13.20 1.70 6.73 8.66 La 23.40 34.20 33.70 16.20 7.34 13.20 21.00 Ce 34.20 52.30 65.50 34.20 21.20 35.30 49.20 Pr 5.65 7.99 7.61 4.80 3.46 5.32 6.32 Nd 23.20 31.60 29.20 20.30 19.80 26.10 27.10 Sm 4.90 6.13 6.22 4.63 7.33 7.68 7.56 Eu 1.12 1.15 1.28 1.09 1.10 1.25 1.18 Gd 4.47 5.36 5.44 4.50 8.78 7.58 7.38 Tb 0.65 0.76 0.80 0.68 1.37 1.12 1.12 Dy 3.56 4.22 4.21 3.91 8.80 6.62 6.45 Ho 0.72 0.82 0.83 0.84 1.86 1.40 1.33 Er 2.05 2.32 2.37 2.45 5.30 3.83 3.62 Tm 0.32 0.35 0.36 0.37 0.78 0.56 0.54 Yb 2.01 2.22 2.34 2.41 5.12 3.71 3.56 Lu 0.29 0.32 0.35 0.35 0.69 0.51 0.48 Y 20.80 24.00 24.40 24.80 49.30 40.80 39.40 Rb/Ba 0.09 0.13 0.24 0.13 0.23 0.33 0.19 Rb/Sr 0.29 0.44 0.49 0.36 0.32 0.37 0.30 Nb/Ta 9.06 8.48 8.26 7.27 9.91 9.54 9.71 Zr/Hf 30.99 32.66 34.11 31.02 30.53 34.23 34.90 ∑REE 106.54 149.74 160.21 96.73 92.93 114.18 136.84 LREE 92.47 133.37 143.51 81.22 60.23 88.85 112.36 HREE 14.07 16.37 16.70 15.51 32.70 25.33 24.48 LREE/HREE 6.57 8.15 8.59 5.24 1.84 3.51 4.59 (La/Yb)N 8.35 11.05 10.33 4.82 1.03 2.55 4.23 δEu 0.73 0.61 0.67 0.73 0.42 0.50 0.48 δCe 0.73 0.78 1.00 0.95 1.03 1.03 1.05 注:A/CNK = Al2O3/(CaO+Na2O+K2O)(mol); A/NK=Al2O3/(Na2O+K2O) (mol); AI= (Na2O+K2O)/Al2O3 (mol); δEu=(EuN)/$ \sqrt {{\rm{(S}}{{\rm{m}}_{\rm{N}}}{\rm{)}} \times {\rm{(G}}{{\rm{d}}_{\rm{N}}}{\rm{)}}} $; δCe=(CeN)/$\sqrt {{\rm{(L}}{{\rm{a}}_{\rm{N}}}{\rm{)}} \times {\rm{(P}}{{\rm{r}}_{\rm{N}}}{\rm{)}}} $. -
[1] Altherr, R., Holl, A., Hegner, E., et al., 2000.High-Potassium, Calc-Alkaline I-Type Plutonism in the European Variscides:Northern Vosges (France) and Northern Schwarzwald (Germany).Lithos, 50(1-3):51-73. https://doi.org/10.1016/s0024-4937(99)00052-3 [2] Barbarin, B., 1999.A Review of the Relationships between Granitoid Types, Their Origins and Their Geodynamic Environments.Lithos, 46(3):605-626. https://doi.org/10.1016/s0024-4937(98)00085-1 [3] Chappell, B.W., 1999.Aluminium Saturation in I-and S-Type Granites and the Characterization of Fractionated Haplogranites.Lithos, 46(3):535-551. https://doi.org/10.1016/s0024-4937(98)00086-3 [4] Chappell, B.W., White, A.J.R., 1992.I-and S-Type Granites in the Lachlan Fold Belt.Transactions of the Royal Society of Edinburgh:Earth Sciences, 83(1-2):1-26. https://doi.org/10.1017/s0263593300007720 [5] Chen, H.Y., Sun, Y., Bao, P., et al., 2014.Petrogenesis and Geological Significance of Shangqimugan Plutons in Western Kunlun:Evidence from Geochemistry and U-Pb Chronology.Acta Petrologica et Mineralogica, 33(4):657-670(in Chinese with English abstract). http://www.en.cnki.com.cn/Article_en/CJFDTOTAL-YSKW201404005.htm [6] Cui, C.L., Fan, F.P., Li, Y., et al., 2009.Simple Research for Characteristics of Geochemical and Structural Environment in the Qia Erlong Region of West Kunlun.Journal of Southwest University of Science and Technology, 24(1):48-55 (in Chinese with English abstract). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=xngxyxb200901010 [7] Ding, D.G., Wang, D.X., Liu, W.X., 1996.Orogenic Belt and Basin in West Kunlun.Geological Publishing House, Beijing, 205-208(in Chinese). [8] Eby, G.N., 1990.The A-Type Granitoids:A Review of Their Occurrence and Chemical Characteristics and Speculations on Their Petrogenesis.Lithos, 26(1-2):115-134. https://doi.org/10.1016/0024-4937(90)90043-z [9] Fang, A.M., Li, J.L., Liu, X.H, et al., 2003.Tectonic Settings of the Basic Igneous Rocks in the Kudi Ophiolite Zone of West Kunlun Mountains, Xinjiang.Acta Petrologica Sinica, 19(3):409-417 (in Chinese with English abstract). http://www.oalib.com/paper/1471645 [10] Fang, X.L., Wang, Y.Z., 1990.Preliminary Discussion on Caledonian Granites in Western Kunlun Mountains.Xinjiang Geology, 8(2):153-158 (in Chinese with English abstract). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=QK000004780624 [11] Gao, S., Luo, T.C., Zhang, B.R., et al., 1998.Chemical Composition of the Continental Crust as Revealed by Studies in East China.Geochimica et Cosmochimica Acta, 62(11):1959-1975. https://doi.org/10.1016/s0016-7037(98)00121-5 [12] Han, B.F., 2007.Diverse Post-Collisional Granitoids and Their Tectonic Setting Discrimination.Earth Science Frontiers, 14(3):64-72(in Chinese with English abstract). http://d.old.wanfangdata.com.cn/Periodical/dxqy200703006 [13] Han, F.L., 2006.Tectonic Evolution and Mineralization of the Western Kunlun Accretion-Type Orogeny(Dissertation).China University of Geosciences, Beijing, 141-160 (in Chinese with English abstract). [14] Harris, N.B.W., Inger, S., 1992.Trace Element Modelling of Pelite-Derived Granites.Contributions to Mineralogy and Petrology, 110(1):46-56. https://doi.org/10.1007/bf00310881 [15] Jiang, C.F., Wang, Z.Q., Li, J.Y., 2000.The Opening-Closing Tectonics of Central Orogenic Belt.Geological Publishing House, Beijing, 7-13 (in Chinese). [16] Jiang, Y.H., Jia, R.Y., Liu, Z., et al., 2013.Origin of Middle Triassic High-K Calc-Alkaline Granitoids and Their Potassic Microgranular Enclaves from the Western Kunlun Orogen, Northwest China:A Record of the Closure of Paleo-Tethys.Lithos, 156-159:13-30. https://doi.org/10.1016/j.lithos.2012.10.004 [17] Jiang, Y.H., Rui, X.J., Guo, K.Y., et al., 2000.Tectonic Environments of Granitoids in the West Kunlun Orogenic Belt.Acta Geoscientia Sinica, 21(1):23-25(in Chinese with English abstract). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=hsdzykc200101001 [18] Jiang, Y.H., Zhou, X.R., 1999.Petrology and Tectonic Magma Dynamics of Granitoids in the West Kunlun Orogenic Belt.Geoscience, 13(4):378(in Chinese). [19] Jung, S., Pfänder, J.A., 2007.Source Composition and Melting Temperatures of Orogenic Granitoids:Constraints from CaO/Na2O, Al2O3/TiO2 and Accessory Mineral Saturation Thermometry.European Journal of Mineralogy, 19(6):859-870. https://doi.org/10.1127/0935-1221/2007/0019-1774 [20] Kang, L., Xiao, P.X., Gao, X.F., et al., 2012.LA-ICP-MS U-Pb Dating of the Zircon from Muztagata Pluton in Western Kunlun Orogenic Belt:Constraints on the Time of Paleotethys' Collision.Geological Review, 58(4):763-774 (in Chinese with English abstract). [21] Li, B.Q., 2007.Discussing the Evolutive Process of the Mazha-Kangxiwa-Subashi Suture Zone in West Kunlun Orogen by Stratigraphical Way (Dissertation).Chinese Academy of Geological Sciences, Beijing, 121-134 (in Chinese with English abstract). [22] Li, R.S., Ji, W.H., Yang, Y.C., et al., 2008.Kunlun Mountain and Its Adjacent Area Geology.Geological Publishing House, Beijing, 1-206 (in Chinese). [23] Li, Y.W., Wei, Q.R., Wang, C., et al., 2017.Zircon U-Pb Dating and Geochemistry of Late Triassic Intermediate Dykes in Suyingdi, Eastern Section of West Kunlun and Their Geological Significance.Earth Science, 42(6):909-926(in Chinese with English abstract). http://www.en.cnki.com.cn/Article_en/CJFDTOTAL-DQKX201706005.htm [24] Liu, X.M., Gao, S., Yuan, H.L., et al., 2002.Analysis of 42 Major and Trace Elements in Glass Standard Reference Materials by 193 nm LA-ICP-MS.Acta Petrologica Sinica, 18(3):408-418(in Chinese with English abstract). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=ysxb98200203017 [25] Maniar, P.D., Piccoli, P.M., 1989.Tectonic Discrimination of Granitoids.Geological Society of America Bulletin, 101(5):635-643.https://doi.org/10.1130/0016-7606(1989)101<0635:tdog>2.3.co;2 doi: 10.1130/0016-7606(1989)101<0635:tdog>2.3.co;2 [26] Matte, P., 1996.Tectonics of Western Tibet, between the Tarim and the Indus.Earth and Planetary Science Letters, 142(3-4):311-330. https://doi.org/10.1016/0012-821x(96)00086-6 [27] Pan, Y.S., Wang, Y., Matte, P.H., et al., 1994.Tectonic Evolution along the Geotraverse from Yecheng to Shiquanhe.Acta Geologica Sinica, 68(4):295-307(in Chinese with English abstract). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=QK199400057176 [28] Pan, Y.S., Zhou, W.M., Xu, R.H, et al., 1996.The Geological Characteristics and Evolvement of the Kunlun Mountains in Early Paleozoic.Science in China (Series D:Earth Sciences), 26(4):302-307 (in Chinese). http://www.cnki.com.cn/Article/CJFDTotal-JDXK199604002.htm [29] Pearce, J.A., Harris, N.B.W., Tindle, A.G., 1984.Trace Element Discrimination Diagrams for the Tectonic Interpretation of Granitic Rocks.Journal of Petrology, 25(4):956-983. https://doi.org/10.1093/petrology/25.4.956 [30] Pitcher, W.S., 1987.Granites and yet More Granites Forty Years on.Geologische Rundschau, 76(1):51-79. https://doi.org/10.1007/bf01820573 [31] Qiao, G.B., Wang, P., Zhao, X.J., 2016.Petrogenesis of the Buziwandaban Pluton in Western Kunlun:Constraints from LA-ICP-MS Zircon U-Pb Geochronology and Geochemical Characteristics.Chinese Journal of Geology, 51(4):1114-1136(in Chinese with English abstract). http://cn.bing.com/academic/profile?id=eb7b891975d6d58161431c25899fc792&encoded=0&v=paper_preview&mkt=zh-cn [32] Qiao, G.B., Zhang, H.D., Wu, Y.Z., et al., 2015.Petrogenesis of the Dahongliutan Monzogranite in Western Kunlun:Constraints from SHRIMP Zircon U-Pb Geochronology and Geochemical Characteristics.Acta Geologica Sinica, 89(7):1180-1194 (in Chinese with English abstract). http://www.en.cnki.com.cn/Article_en/CJFDTotal-DZXE201507003.htm [33] Qiu, J.S., Xiao, E., Hu, J., et al., 2008.Petrogenesis of Highly Fractionated I-Type Granites in the Coastal Area of Northeastern Fujian Province:Constraints from Zircon U-Pb Geochronology, Geochemistry and Nd-Hf Isotopes.Acta Petrologica Sinica, 24(11):2468-2484(in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-YSXB200811003.htm [34] Rapp, R.P., Watson, E.B., Miller, C.F., 1991.Partial Melting of Amphibolite/Eclogite and the Origin of Archean Trondhjemites and Tonalites.Precambrian Research, 51(1-4):1-25. https://doi.org/10.1016/0301-9268(91)90092-o [35] Ren, J.S., 1999.Chinese Geotectonics from a Global Angle (Geotectonic Map of China and Adjacent Areas).Geological Publishing House, Beijing, 1-15(in Chinese). [36] Sun, S.S., McDonough, W.F., 1989.Chemical and Isotopic Systematics of Oceanic Basalts:Implications for Mantle Composition and Processes.Geological Society, London, Special Publications, 42(1):313-345. https://doi.org/10.1144/gsl.sp.1989.042.01.19 [37] Wang, C., Liu, L., He, S.P., et al., 2013.Early Paleozoic Magmatism in the West Kunlun:Constraints from Geochemical and Zircon U-Pb-Hf Isotopic Studies of the Bulong Granite.Chinese Journal of Geology, 48(4):997-1041(in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTotal-DZKX201304004.htm [38] Wang, C., Liu, L., Korhonen, F., et al., 2015a.Origins of Early Mesozoic Granitoids and Their Enclaves from West Kunlun, NW China:Implications for Evolving Magmatism Related to Closure of the Paleo-Tethys Ocean.International Journal of Earth Sciences, 105(3):941-964. https://doi.org/10.1007/s00531-015-1220-0 [39] Wang, C., Liu, L., Wang, Y.H., et al., 2015b.Recognition and Tectonic Implications of an Extensive Neoproterozoic Volcano-Sedimentary Rift Basin along the Southwestern Margin of the Tarim Craton, Northwestern China.Precambrian Research, 257:65-82. https://doi.org/10.1016/j.precamres.2014.11.022 [40] Wang, C., Zhang, J.H., Li, M., et al., 2015c.Generation of ca.900-870 Ma Bimodal Rifting Volcanism along the Southwestern Margin of the Tarim Craton and Its Implications for the Tarim-North China Connection in the Early Neoproterozoic.Journal of Asian Earth Sciences, 113:610-625. https://doi.org/10.1016/j.jseaes.2015.08.002 [41] Wang, Y., Wang, X.L., Wang, Y., 2016.Discussion on Age of "Sailiyakedaban Group" in Southern Yecheng, South Xinjiang, NW China.Earth Science, 41(7):1099-1109(in Chinese with English abstract). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=dqkx201607002 [42] Wang, Z.G., Yu, X.Y., Zhao, Z.H., 1989.Rare Earth Element Geochemistry.Science Press, Beijing, 223-224(in Chinese). [43] Wei, X.P., Wang, H., Hu, J., et al., 2017.Geochemistry and Geochronology of the Dahongliutan Two-Mica Granite Pluton in Western Kunlun Orogen:Geotectonic Implications.Geochimica, 46(1):66-80(in Chinese with English abstract). http://www.en.cnki.com.cn/Article_en/CJFDTotal-DQHX201701006.htm [44] Whalen, J.B., Currie, K.L., Chappell, B.W., 1987.A-Type Granites:Geochemical Characteristics, Discrimination and Petrogenesis.Contributions to Mineralogy and Petrology, 95(4):407-419. https://doi.org/10.1007/bf00402202 [45] Wu, F.Y., Li, X.H., Yang, J.H., et al., 2007.Discussions on the Petrogenesis of Granites.Acta Petrologica Sinica, 23(6):1217-1238(in Chinese with English abstract). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=ysxb98200706001 [46] Wolf, M.B., London, D., 1994.Apatite Dissolution into Peraluminous Haplogranitic Melts:An Experimental Study of Solubilities and Mechanisms.Geochimica et Cosmochimica Acta, 58(19):4127-4145. https://doi.org/10.1016/0016-7037(94)90269-0 [47] Xiao, W.J., Windley, B.F., Fang, A.M., et al., 2001.Palaeozoic-Early Mesozoic Accretionary Tectonics of the Western Kunlun Range, NW China.Gondwana Research, 4(4):826-827. https://doi.org/10.1016/s1342-937x(05)70611-0 [48] Xu, X.S., Qiu, J.S., 2010.Igneous Petrology.Science Press, Beijing, 210-311(in Chinese). [49] Yu, X.F., Sun, F.Y., Li, B.L., et al., 2011.Caledonian Diagenetic and Metallogenic Events in Datong District in the Western Kunlun:Evidences from LA-ICP-MS Zircon U-Pb Dating and Molybdenite Re-Os Dating.Acta Petrologica Sinica, 27(6):1770-1778(in Chinese with English abstract). http://www.cnki.com.cn/Article/CJFDTotal-YSXB201106016.htm [50] Yuan, C., Sun, M., Li, J.L., 1999.Two Granitic Plutons in Central Western Kunlun Belt:Their Ages and Possible Sources.Chinese Science Bulletin, 44(5):534-538 (in Chinese). http://kns.cnki.net/KCMS/detail/detail.aspx?filename=JXTW199919016&dbname=CJFD&dbcode=CJFQ [51] Yuan, C., Sun, M., Zhou, H., et al., 2003.Arkarz Shan Intrusive Complex, Western Kunlun:Age, Source and Tectonic Implications.Xinjiang Geology, 21(1):37-45(in Chinese with English abstract). http://d.old.wanfangdata.com.cn/Periodical/xjdz200301006 [52] Yuan, H.L., Gao, S., Dai, M.N., et al., 2008.Simultaneous Determinations of U-Pb Age, Hf Isotopes and Trace Element Compositions of Zircon by Excimer Laser-Ablation Quadrupole and Multiple-Collector ICP-MS.Chemical Geology, 247(1-2):100-118. https://doi.org/10.1016/j.chemgeo.2007.10.003 [53] Zhang, C.L., Wang, Z.G., Shen, J.L., et al., 2003.Zircon SHRIMP Dating and Geochemistry Characteristics of Akazi Rock Mass of Western Kunlun.Acta Petrologica Sinica, 19(3):523-529 (in Chinese with English abstract). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=ysxb98200303018 [54] Zhang, C.L., Yu, H.F., Wang, A.G., et al., 2005.Dating of Triassie Granites in the Western Kunlun Mountains and Its Tectonic Significane.Acta Geologica Sinica, 79(5):645-652 (in Chinese with English abstract). [55] Zhang, C.L., Yu, H.F., Ye, H.M., et al., 2006.Aoyitake Plagiogranite in Western Tarim Block, NW China:Age, Geochemistry, Petrogenesis and Its Tectonic Implications.Science in China (Series D:Earth Sciences), 36(10):881-893(in Chinese). http://cn.bing.com/academic/profile?id=aad28c05173a825cd3572e298a74215b&encoded=0&v=paper_preview&mkt=zh-cn [56] Zhang, Y.Q., Zhu, B.Q., Xie, Y.W., et al., 1998.The Uplifting Rates for the Western Qinghai-Xizang Plateau:Interpretation of 40Ar-39Ar Dating Data for the Granites in the Area from Yecheng to Shiquanhe.Acta Petrologica Sinica, 14(1):11-21(in Chinese with English abstract). [57] 陈海云, 孙妍, 包平, 等, 2014.西昆仑上其木干岩体岩石成因及地质意义——地球化学及U-Pb年代学证据.岩石矿物学杂志, 33(4):657-670. doi: 10.3969/j.issn.1000-6524.2014.04.005 [58] 崔春龙, 范飞鹏, 李源, 等, 2009.西昆仑北坡恰尔隆一带花岗岩类地球化学特征及构造背景初论.西南科技大学学报, 24 (1):48-55. http://d.old.wanfangdata.com.cn/Periodical/xngxyxb200901010 [59] 丁道桂, 王道轩, 刘伟新, 1996.西昆仑造山带与盆地.北京:地质出版社, 205-208. [60] 方爱民, 李继亮, 刘小汉, 等, 2003.新疆西昆仑库地混杂带中基性火山岩构造环境分析.岩石学报, 19(3):409-417. http://d.old.wanfangdata.com.cn/Periodical/ysxb98200303004 [61] 方锡廉, 汪玉珍, 1990.西昆仑山加里东期花岗岩类浅识.新疆地质, 8(2):153-158. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=QK000004780624 [62] 韩宝福, 2007.后碰撞花岗岩类的多样性及其构造环境判别的复杂性.地学前缘, 14(3):64-72. doi: 10.3321/j.issn:1005-2321.2007.03.006 [63] 韩芳林, 2006.西昆仑增生造山带演化及成矿背景(博士学位论文).北京:中国地质大学, 141-160. http://cdmd.cnki.com.cn/Article/CDMD-11415-2006065295.htm [64] 姜春发, 王宗起, 李锦铁, 2000.中央造山带开合构造.北京:地质出版社, 7-13. [65] 姜耀辉, 芮行健, 郭坤一, 等, 2000.西昆仑造山带花岗岩形成的构造环境.地球学报, 21(1):23-25. doi: 10.3321/j.issn:1006-3021.2000.01.004 [66] 姜耀辉, 周珣若, 1999.西昆仑造山带花岗岩岩石学及构造岩浆动力学.现代地质, 13(4):378. http://d.old.wanfangdata.com.cn/Thesis/Y322394 [67] 康磊, 校培喜, 高晓峰, 等, 2012.西昆仑慕士塔格岩体的LA-ICP-MS锆石U-Pb定年:对古特提斯碰撞时限的制约.地质论评, 58(4):763-774. doi: 10.3969/j.issn.0371-5736.2012.04.017 [68] 李博秦, 2007.从地层角度探讨西昆仑麻扎-康西瓦-苏巴什结合带的演化过程(博士学位论文).北京: 中国地质科学院, 121-134. http://cdmd.cnki.com.cn/Article/CDMD-82501-2007213352.htm [69] 李荣社, 计文化, 杨永成, 等, 2008.昆仑山及邻区地质.北京:地质出版社, 1-206. [70] 黎有为, 魏启荣, 王程, 等, 2017.西昆仑东段宿营地晚三叠世中性脉岩的锆石U-Pb定年、岩石地球化学特征及其意义.地球科学, 42(6):909-926. http://earth-science.net/WebPage/Article.aspx?id=3587 [71] 柳小明, 高山, 袁洪林, 等, 2002.193 nm LA-ICPMS对国际地质标准参考物质中42种主量和微量元素的分析.岩石学报, 18 (3):408-418. http://d.wanfangdata.com.cn/Periodical/ysxb98200203017 [72] 潘裕生, 王毅, Matte, P.H., 等, 1994.青藏高原叶城-狮泉河路线地质特征及区域构造演化.地质学报, 68(4):295-307. doi: 10.3321/j.issn:0001-5717.1994.04.007 [73] 潘裕生, 周伟明, 许荣华, 等, 1996.昆仑山早古生代地质特征与演化.中国科学(D辑:地球科学), 26(4):302-307. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=QK199600918643 [74] 乔耿彪, 王萍, 赵晓健, 2016.西昆仑布孜完达坂岩体成因:LA-ICP-MS锆石U-Pb年代学与地球化学制约.地质科学, 51(4):1114-1136. http://d.old.wanfangdata.com.cn/Periodical/dzkx201604008 [75] 乔耿彪, 张汉德, 伍跃中, 等, 2015.西昆仑大红柳滩岩体地质和地球化学特征及对岩石成因的制约.地质学报, 89(7):1180-1194. doi: 10.3969/j.issn.0001-5717.2015.07.003 [76] 邱检生, 肖娥, 胡建, 等, 2008.福建北东沿海高分异Ⅰ型花岗岩的成因:锆石U-Pb年代学、地球化学和Nd-Hf同位素制约.岩石学报, 24(11):2468-2484. http://kns.cnki.net/KCMS/detail/detail.aspx?filename=YSXB200811003&dbname=CJFD&dbcode=CJFQ [77] 任纪舜, 1999.从全球看中国大地构造(中国及邻区大地构造图).北京:地质出版社, 1-15. [78] 王超, 刘良, 何世平, 等, 2013.西昆仑早古生代岩浆作用过程:布隆花岗岩地球化学和锆石U-Pb-Hf同位素组成研究.地质科学, 48(4):997-1041. doi: 10.3969/j.issn.0563-5020.2013.04.004 [79] 王约, 王训练, 王野, 2016.新疆叶城南部"赛力亚克达坂群"及其时代的商榷.地球科学, 41(7):1099-1109. http://earth-science.net/WebPage/Article.aspx?id=3321 [80] 王中刚, 于学元, 赵振华, 1989.稀土元素地球化学.北京:科学出版社, 223-224. [81] 魏小鹏, 王核, 胡军, 等, 2017.西昆仑大红柳滩二云母花岗岩地球化学和地质年代学研究及其地质意义.地球化学, 46(1):66-80. doi: 10.3969/j.issn.0379-1726.2017.01.006 [82] 吴福元, 李献华, 杨进辉, 等, 2007.花岗岩成因研究的若干问题.岩石学报, 23(6):1217-1238. doi: 10.3969/j.issn.1000-0569.2007.06.001 [83] 徐夕生, 邱检生, 2010.火成岩岩石学.北京:科学出版社, 210-311. [84] 于晓飞, 孙丰月, 李碧乐, 等, 2011.西昆仑大同地区加里东期成岩、成矿事件:来自LA-ICP-MS锆石U-Pb定年和辉钼矿Re-Os定年的证据.岩石学报, 27(6):1770-1778. http://d.old.wanfangdata.com.cn/Periodical/ysxb98201106016 [85] 袁超, 孙敏, 李继亮, 1999.西昆仑中带两个花岗岩体的年龄和可能的源区.科学通报, 44(5):534-538. doi: 10.3321/j.issn:0023-074X.1999.05.017 [86] 袁超, 孙敏, 周辉, 等, 2003.西昆仑阿卡阿孜山岩体的年代、源区和构造意义.新疆地质, 21(1):37-45. doi: 10.3969/j.issn.1000-8845.2003.01.006 [87] 张传林, 王中刚, 沈加林, 等, 2003.西昆仑山阿卡孜岩体锆石SHRIMP定年及其地球化学特征.岩石学报, 19(3):523-529. http://d.old.wanfangdata.com.cn/Periodical/ysxb98200303018 [88] 张传林, 于海锋, 王爱国, 等, 2005.西昆仑西段三叠纪两类花岗岩年龄测定及其构造意义.地质学报, 79(5):645-652. doi: 10.3321/j.issn:0001-5717.2005.05.009 [89] 张传林, 于海峰, 叶海敏, 等, 2006.塔里木西部奥依塔克斜长花岗岩:年龄、地球化学特征、成岩作用及其构造意义.中国科学(D辑:地球科学), 36(10):881-893. http://d.old.wanfangdata.com.cn/Periodical/ysxb98200901014 [90] 张玉泉, 朱炳泉, 谢应雯, 等, 1998.青藏高原西部的抬升速率:叶城狮泉河花岗岩40Ar-39Ar年龄的地质解释.岩石学报, 14 (1):11-21. doi: 10.3321/j.issn:1000-0569.1998.01.002