Origin of Magmatic Rocks from Xishan Copper Polymetallic Deposit, Geermu City, Qinghai Province: Insights from Zircon U-Pb Dating and Geochemical Characteristics
-
摘要: 格尔木西山铜多金属矿的成矿岩体为似斑状二长花岗岩,位于昆中断裂与昆北断裂之间的秦祁昆晚加里东造山系内,其理论研究工作十分薄弱.以岩石地球化学、同位素年代学为手段进行研究,表明岩体属于高钾钙碱性系列过铝质花岗岩类.稀土、微量元素特征为轻稀土富集型,右倾式,具强负铕异常,富集大离子亲石元素(Th、U、K),明显亏损高场强元素(如P、Ti),相对于Rb和Th明显亏损Ba.岩浆为地壳来源,具弱分离结晶花岗岩特征.在似斑状二长花岗岩中获得岩浆锆石LA-ICP-MS U-Pb加权平均年龄(267.5±3.4 Ma)与谐和年龄(267.0±2.9 Ma)的数据,表明岩体形成于中二叠世的同时,也约束了成矿作用的下限.矿床类型应为与花岗质岩浆活动有关的构造热液型多金属矿.Abstract: The magmatic rock of porphyroid monzonitic granite of Xishan copper polymetallic deposit, Geermu City, is located in the Late Caledonian Qinling-Qilian-Kulun orogen between the Central and North Kunlun fault, and the research work is still very poor. Based on the rock geochemistry and isotope chronology, this paper shows that the magmatic rocks belong to high potassium calc-alkaline series and peraluminous granites. The chondrite-normalized rare earth element (REE) distribution patterns of the magmatic rocks are enriched in the light REE (LREE) and display strong negative Eu anomalies. The magmatic rocks are enriched in large ion lithophile elements (Th, U, K), while depleted in high field strength elements (e.g., P, Ti) and in Ba relative to Rb and Th. The magma is the source of the crust and has the characteristics of weakly separated crystalline granite. The U-Pb weighted age (average 267.5±3.4 Ma) and concordant age (267.0±2.9 Ma) acquired in zircon from porphyritic monzonitic granite show that the rock mass formed in middle Permian, which thus constrainted the lower limit of mineralization. The origin of the deposit should be polymetallic tectonic hydrothermal type, which was related to granitic magmatism.
-
表 1 西山地区似斑状二长花岗岩主量元素含量(%)
Table 1. Contents of major elements of porphyroid monzonitic granite from Xishan area(%)
样号 SiO2 Al2O3 Fe2O3 FeO CaO MgO K2O Na2O TiO2 P2O5 MnO 灼失量 总计 K2O/Na2O A/CNK 14XSH01 76.29 12.37 0.98 0.28 0.92 0.14 4.42 3.25 0.10 0.02 0.04 1.19 100.00 1.36 1.05 14XSH02 76.98 12.29 1.03 0.15 0.55 0.09 4.41 3.49 0.09 0.01 0.03 0.89 100.01 1.26 1.07 14XSH03 76.48 11.19 1.37 0.17 1.73 0.11 3.95 3.01 0.08 0.01 0.06 1.83 99.99 1.31 0.90 14XSH04 76.77 12.08 1.08 0.15 0.81 0.08 4.55 3.23 0.08 0.01 0.05 1.11 100.00 1.41 1.03 14XSH05 76.94 12.19 1.05 0.22 0.62 0.07 4.36 3.48 0.08 0.01 0.04 0.92 99.98 1.25 1.05 表 2 西山地区似斑状二长花岗岩微量和稀土元素含量(10-6)
Table 2. Contents of trace and rare earth elements of porphyroid monzonitic granite from Xishan area (10-6)
样号 La Ce Pr Nd Sm Eu Gd Tb Dy Ho 14XSH01 23.8 52.7 6.78 25.8 5.82 0.34 5.86 0.97 6.13 1.26 14XSH02 28.2 64.3 7.80 28.9 6.12 0.26 6.13 1.02 6.46 1.40 14XSH03 29.1 64.6 8.27 30.8 6.55 0.32 6.55 1.08 6.80 1.48 14XSH04 28.6 64.8 8.06 30.3 6.18 0.31 5.80 0.93 5.76 1.19 14XSH05 30.5 69.0 8.53 31.8 6.43 0.26 6.18 1.01 6.60 1.45 样号 Er Tm Yb Lu Y ΣREE LREE/HREE δEu δCe LaN/YbN 14XSH01 3.67 0.56 3.65 0.54 34.1 137.88 5.09 0.18 1.02 4.68 14XSH02 4.06 0.62 4.12 0.61 37.5 160.00 5.55 0.13 1.06 4.91 14XSH03 4.24 0.65 4.42 0.64 40.7 165.50 5.40 0.15 1.02 4.72 14XSH04 3.35 0.51 3.35 0.50 30.9 159.64 6.46 0.16 1.05 6.12 14XSH05 4.23 0.66 4.35 0.64 37.7 171.64 5.83 0.13 1.05 5.03 样号 Rb Ba Th U Ta Nb Sr P Zr Hf 14XSH01 173.00 540.00 18.60 4.06 0.93 11.50 61.40 87.32 93.20 4.35 14XSH02 177.00 470.00 23.50 4.48 1.20 14.40 31.10 43.66 106.00 5.15 14XSH03 159.00 572.00 18.50 4.25 0.98 12.40 55.70 43.66 92.10 4.20 14XSH04 175.00 508.00 19.50 4.53 0.91 11.40 35.20 43.66 95.10 4.39 14XSH05 174.00 463.00 24.00 4.73 1.44 16.80 28.50 43.66 112.00 5.45 表 3 似斑状二长花岗岩LA-ICP-MS锆石测年结果
Table 3. LA-ICP-MS isotopic data of zircon from porphyroid monzonitic granite
样品编号 元素含量(10-6) 同位素比值 同位素年龄(Ma) 232Th 238U 207Pb/206Pb 1σ 207Pb/235U 1σ 206Pb/238U 1σ 207Pb/206Pb 1σ 207Pb/235U 1σ 206Pb/238U 1σ 131XS01 208.60 431.51 0.051 88 0.001 31 0.299 92 0.009 11 0.041 93 0.001 16 280.1 56.73 266.3 7.12 264.8 7.18 131XS02 227.09 462.84 0.053 95 0.001 69 0.317 11 0.011 02 0.042 63 0.001 23 368.9 68.90 279.7 8.50 269.1 7.61 131XS03 333.28 486.43 0.052 80 0.001 57 0.307 07 0.010 33 0.042 19 0.001 20 320.1 66.36 271.9 8.03 266.4 7.44 131XS04 57.44 154.05 0.051 83 0.001 78 0.300 71 0.011 18 0.042 09 0.001 23 277.7 76.58 267.0 8.73 265.8 7.61 131XS05 182.27 370.66 0.051 20 0.001 33 0.298 26 0.009 23 0.042 26 0.001 17 249.9 58.81 265.0 7.22 266.8 7.25 131XS06 83.28 228.95 0.051 51 0.001 49 0.302 09 0.009 99 0.042 54 0.001 20 263.9 65.08 268.0 7.79 268.6 7.42 131XS07 215.61 301.14 0.053 82 0.001 76 0.315 38 0.011 28 0.042 52 0.001 24 363.3 71.99 278.3 8.71 268.4 7.66 131XS08 224.99 384.52 0.051 60 0.001 30 0.300 53 0.009 11 0.042 26 0.001 17 267.8 56.95 266.8 7.11 266.8 7.23 131XS09 244.12 354.72 0.052 47 0.001 44 0.310 12 0.009 88 0.042 89 0.001 20 305.8 61.16 274.3 7.66 270.7 7.43 131XS10 153.85 304.64 0.053 62 0.001 63 0.310 30 0.010 55 0.041 99 0.001 20 355.1 67.15 274.4 8.17 265.2 7.44 131XS11 145.92 424.36 0.052 64 0.001 88 0.308 35 0.011 72 0.042 51 0.001 26 313.5 79.10 272.9 9.10 268.4 7.81 131XS12 501.89 544.31 0.053 37 0.001 30 0.309 90 0.009 20 0.042 14 0.001 16 344.4 54.44 274.1 7.13 266.1 7.18 131XS13 103.90 292.55 0.053 19 0.001 58 0.307 93 0.010 31 0.042 02 0.001 20 336.8 66.00 272.6 8.00 265.3 7.40 131XS14 181.29 320.34 0.051 91 0.001 44 0.303 29 0.009 74 0.042 41 0.001 19 281.3 62.41 269.0 7.59 267.8 7.36 131XS15 228.50 462.06 0.054 00 0.001 32 0.311 00 0.009 22 0.041 81 0.001 15 370.7 54.41 275.0 7.14 264.0 7.12 131XS16 434.82 562.34 0.051 88 0.001 34 0.301 59 0.009 22 0.042 20 0.001 17 280.3 57.96 267.6 7.19 266.5 7.24 131XS17 327.60 544.79 0.054 02 0.001 85 0.310 59 0.011 42 0.041 75 0.001 23 371.6 75.01 274.6 8.85 263.7 7.60 131XS18 450.16 562.76 0.051 08 0.001 21 0.297 41 0.008 68 0.042 27 0.001 16 244.5 53.88 264.4 6.79 266.9 7.16 131XS19 101.41 169.90 0.053 45 0.001 91 0.310 86 0.011 82 0.042 23 0.001 25 347.9 78.67 274.9 9.16 266.6 7.75 131XS20 467.42 567.96 0.052 24 0.001 28 0.306 92 0.009 11 0.042 66 0.001 17 295.7 55.07 271.8 7.08 269.3 7.26 131XS21 290.25 467.84 0.051 37 0.001 26 0.300 77 0.008 93 0.042 52 0.001 17 257.2 55.43 267.0 6.97 268.4 7.23 131XS22 190.03 357.58 0.053 28 0.001 84 0.311 84 0.011 56 0.042 51 0.001 25 340.6 76.29 275.6 8.95 268.3 7.74 131XS23 388.80 563.21 0.049 36 0.001 31 0.290 21 0.009 05 0.042 69 0.001 18 165.2 61.00 258.7 7.12 269.5 7.32 131XS24 160.36 348.87 0.051 72 0.001 38 0.301 46 0.009 38 0.042 33 0.001 18 273.2 59.81 267.5 7.32 267.2 7.28 131XS25 66.14 221.35 0.053 88 0.001 62 0.311 53 0.010 47 0.041 99 0.001 20 366.1 66.15 275.4 8.11 265.2 7.39 -
[1] Chen, S.J., Li, R.S., Ji, W.H., et al., 2006.Study of the Late Maokouan (Permian) Hiatus in Northern Qinghai-Tibet Plateau.Journal of Stratigraphy, 30(3):231-236 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-DCXZ200603004.htm [2] Dostal, J., Chatterjee, A.K., 1995.Origin of Topaz-Bearing and Related Peraluminous Granites of the Late Devonian Davis Lake Pluton, Nova Scotia, Canada:Crystal versus Fluid Fractionation.Chemical Geology, 123(1-4):67-88. https://doi.org/10.1016/0009-2541(95)00047-p [3] Feng, C.Y., Li, D.S., Qu, W.J., et al., 2009.Re-Os Isotopic Dating of Molybdenite from the Suolajier Skarn-Type Copper-Molybdenum Deposit of Qimantage Mountain in Qinghai Province and Its Geological Significance.Rock and Mineral Analysis, 28(3):223-227 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-YKCS200903012.htm [4] Feng, C.Y., Wang, S., Li, G.C., et al., 2012.Middle to Late Triassic Granitoids in the Qimantage Area, Qinghai Province, China:Chronology, Geochemistry and Metallogenic Significances.Acta Petrologica Sinica, 28(2):665-678(in Chinese with English abstract). http://d.old.wanfangdata.com.cn/Periodical/ysxb98201202024 [5] Feng, C.Y., Wang, X.P., Shu, X.F., et al., 2011.Isotopic Chronology of the Hutouya Skarn Lead-Zinc Polymetallic Ore District in Qimantage Area of Qinghai Province and Its Geological Significance.Journal of Jilin University(Earth Science Edition), 41(6):1806-1817 (in Chinese with English abstract). https://doi.org/10.13278/j.cnki.jjuese.2011.06.013 [6] Gelman, S.E., Deering, C.D., Bachmann, O., et al., 2014.Identifying the Crystal Graveyards Remaining after Large Silicic Eruptions.Earth and Planetary Science Letters, 403:299-306. https://doi.org/10.1016/j.epsl.2014.07.005 [7] Green, T.H., 1995.Significance of Nb/Ta as an Indicator of Geochemical Processes in the Crust-Mantle System.Chemical Geology, 120(3-4):347-359. https://doi.org/10.1016/0009-2541(94)00145-x [8] Gu, F.B., 1994.Geological Characteristics of East Kunlun and Tectonic Evolution in Late Palaezoic-Mesozoic Era.Qinghai Geology, (1):4-14 (in Chinese with English abstract). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=QK199400114892 [9] Ji, W.H., Chen, S.J., Li, R.S., et al., 2014.Characteristics of Paleozoic Tectonics and Evolution of Lithofacies and Palaeogeography of the Qinghai-Tibet Plateanu and Its Adjacent Areas.China University of Geosciences Press, Wuhan, 302-305(in Chinese). [10] Lee, C.T.A., Morton, D.M., 2015.High Silica Granites:Terminal Porosity and Crystal Settling in Shallow Magma Chambers.Earth and Planetary Science Letters, 409:23-31. https://doi.org/10.1016/j.epsl.2014.10.040 [11] Li, Y.G., Wang, S.S., Liu, M.B., et al., 2015.U-Pb Dating Study of Baddeleyite by LA-ICP-MS:Technique and Application.Acta Geologica Sinica, 89(12):2400-2418 (in Chinese with English abstract). http://www.cnki.com.cn/Article/CJFDTotal-DZXE201512015.htm [12] Liu, Y.H., Mo, X.X., Yu, X.H., et al., 2006.Zircon SHRIMP U-Pb Dating of the Jingren Granite, Yemaquan Region of the East Kunlun and Its Geological Significance.Acta Petrologica Sinica, 22(10):2457-2463 (in Chinese with English abstract). [13] Ludwig, K.R., 2003.ISOPLOT 3.00: A Geochronological Toolkit for Microsoft Excel.Berkeley Geochronology Center, Berkeley. [14] Luo, M.F., Mo, X.X., Yu, X.H., et al., 2015.Zircon U-Pb Geochronology, Petrogenesis and Implication of the Later Permian Granodiorite from the Wulonggou Area in East Kunlun, Qinghai Province.Earth Science Frontiers, 22(5):182-195 (in Chinese with English abstract). https://doi.org/10.13745/j.esf.2015.05.015 [15] Luo, Z.H., Deng, J.F., Cao, Y.Q., et al., 1999.On Late Paleozoic-Early Mesozoic Volcanism and Regional Tectonic Evolution of Eastern Kunlun, Qinghai Province.Geoscience, 13(1):51-56(in Chinese with English abstract). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=QK199900703938 [16] Luo, Z.H., Ke, S., Cao, Y.Q., et al., 2002.Late Indosinian Mantel-Derived Magmatism in the East Kunlun.Geolocical Bulletin of China, 21(6):292-297(in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-ZQYD200206002.htm [17] McCarthy, T.S., Hasty, R.A., 1976.Trace Element Distribution Patterns and Their Relationship to the Crystallization of Granitic Melts.Geochimica et Cosmochimica Acta, 40(11):1351-1358. https://doi.org/10.1016/0016-7037(76)90125-3 [18] McKenzie, D., 1989.Some Remarks on the Movement of Small Melt Fractions in the Mantle.Earth and Planetary Science Letters, 95(1-2):53-72. https://doi.org/10.1016/0012-821x(89)90167-2 [19] Miller, C.F., Mittlefehldt, D.W., 1982.Depletion of Light Rare-Earth Elements in Felsic Magmas.Geology, 10(3):129.https://doi.org/10.1130/0091-7613(1982)10<129:dolrei>2.0.co;2 doi: 10.1130/0091-7613(1982)10<129:dolrei>2.0.co;2 [20] Mo, X.X., Luo, Z.H., Deng, J.F., et al., 2007.Granitoids and Crustal Growth in the East-Kunlun Orogenic Belt.Geological Journal of China Universities, 13(3):403-414 (in Chinese with English abstract). http://adsabs.harvard.edu/abs/2011AGUFM.T51D2370M [21] Pan, T., Wang, B.Z., Li, D.S., et al., 2016.Metallogenic Environment and Regularity and Prospecting Direction of East Kunlun in Qinghai Province.Geological Publishing House, Beijing, 64 (in Chinese). [22] Rudnick, R.L., Fountain, D.M., 1995.Nature and Composition of the Continental Crust:A Lower Crustal Perspective.Reviews of Geophysics, 33(3):267. https://doi.org/10.1029/95rg01302 [23] She, H.Q., Zhang, D.Q., Jing, X.Y., et al., 2007.Geological Characteristics and Genesis of the Ulan Uzhur Porphyry Copper Deposit in Qinghai.Geology in China, 34(2):306-314 (in Chinese with English abstract). [24] Song, Z.B., Jia, Q.Z., Zhang, Z.Y., et al., 2010.Study on Gelogical Feature and Origin of Yemaquan Fe-Cu Deposit in Qimantage Area, Eastern Kunlun.Northwestern Geology, 43(4):209-217(in Chinese with English abstract). http://en.cnki.com.cn/article_en/cjfdtotal-xbdi201004031.htm [25] Song, Z.B., Zhang, Y.L., Chen, X.Y., et al., 2013.Geochemical Characteristics of Harizha Granite Diorite-Porphyry in East Kunlun and Their Geological Implications.Mineral Deposits, 32(1):157-168(in Chinese with English abstract). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=kcdz201301011 [26] Sun, S.S., McDonough, W.F., 1989.Chemical and Isotopic Systematics of Oceanic Basalts:Implications for Mantle Composition and Processes.Geological Society, London, Special Publications, 42(1):313-345. https://doi.org/10.1144/gsl.sp.1989.042.01.19 [27] Tao, G., Zhu, L.D., Li, Z.W., et al., 2017.Petrogenesis and Geological Significance of the North Liuhuangkuang Granodiorite in the West Sement of the Qilian Terrane:Evidences from Geochronology, Geochemistry, and Hf Isotopes.Earth Science, 42(12):2258-2275 (in Chinese with English abstract). https://doi.org/10.3799/dqkx.2017.614 [28] Taylor, S.R., McLennan, S.M., 1995.The Geochemical Evolution of the Continental Crust.Reviews of Geophysics, 33(2):241. https://doi.org/10.1029/95rg00262 [29] van Achterbergh, E., Ryan, C.G., Jackson, S.E., et al., 2001.Data Reduction Software for LA-ICP-MS.In: Sylvester, P., ed., Laser Ablation-ICPMS in the Earth Sciences: Principles and Applications.Mineralogical Association of Canada, Ottwa, 239-243. [30] Wang, S., Feng, C.Y., Li, S.J., et al., 2009.Zircon SHRIMP U-Pb Dating of Granodiorite in the Kaerqueka Polymetallic Ore Deposit, Qimantage Mountain, Qinghai Province, and Its Geological Implications.Geology in China, 36(1):74-84 (in Chinese with English abstract). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=zgdizhi200901005 [31] Wu, F.Y., Liu, X.C., Ji, W.Q., et al., 2017.Highly Fractionated Granites:Recognition and Research.Science in China (Series D:Earth Sciences), 47(7):745-765 (in Chinese). http://d.old.wanfangdata.com.cn/Periodical/dizhixb201708010 [32] Xu, Q.L., Sun, F.Y., Li, B.L., et al., 2014.Geochronological Dating, Geochemical Characteristics and Tectonic Setting of the Granite-Porphyry in the Mohexiala Silver Polymetallic Deposit, Eastern Kunlun Orogenic Belt.Geotectonica et Metallogenia, 38(2):421-433 (in Chinese with English abstract). https://doi.org/10.16539/j.ddgzyckx.2014.02.020 [33] Yuan, W.M., Mo, X.X., Yu, X.H., et al., 2000.The Record of Indosinian Tectonic Setting from the Granotoid of Eastern Kunlun Mountains.Geological Review, 46(2):203-211 (in Chinese with English abstract). https://doi.org/10.16509/j.georeview.2000.02.013 [34] Zhang, W., Zhou, H.W., Zhu, Y.H., et al., 2016.The Evolution of Triassic Granites Associated with Mineralization within East Kunlun Orogenic Belt:Evidence from the Petrology, Geochemistry and Zircon U-Pb Geochronology of the Mohexiala Pluton.Earth Science, 41(8):1334-1348 (in Chinese with English abstract). https://doi.org/10.3799/dqkx.2016.520 [35] 陈守建, 李荣社, 计文化, 等, 2006.青藏高原北部茅口晚期地层缺失研究.地层学杂志, 30(3):231-236. doi: 10.3969/j.issn.0253-4959.2006.03.005 [36] 丰成友, 李东生, 屈文俊, 等, 2009.青海祁漫塔格索拉吉尔矽卡岩型铜钼矿床辉钼矿铼-锇同位素定年及其地质意义.岩矿测试, 28(3):223-227. doi: 10.3969/j.issn.0254-5357.2009.03.006 [37] 丰成友, 王松, 李国臣, 等, 2012.青海祁漫塔格中晚三叠世花岗岩:年代学、地球化学及成矿意义.岩石学报, 28(2):665-678. http://d.old.wanfangdata.com.cn/Periodical/ysxb98201202024 [38] 丰成友, 王雪萍, 舒晓峰, 等, 2011.青海祁漫塔格虎头崖铅锌多金属矿区年代学研究及地质意义.吉林大学学报(地球科学版), 41(6):1806-1817. http://d.old.wanfangdata.com.cn/Periodical/cckjdxxb201106015 [39] 古凤宝, 1994.东昆仑地质特征及晚古生代-中生代构造演化.青海地质, (1):4-14. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=QK199400114892 [40] 计文化, 陈守建, 李荣社, 等, 2014.青藏高原及邻区古生代构造-岩相古地理综合研究.武汉:中国地质大学出版社, 302-305. [41] 李艳广, 汪双双, 刘民武, 等, 2015.斜锆石LA-ICP-MS U-Pb定年方法及应用.地质学报, 89(12):2400-2418. doi: 10.3969/j.issn.0001-5717.2015.12.015 [42] 刘云华, 莫宣学, 喻学惠, 等, 2006.东昆仑野马泉地区景忍花岗岩锆石SHRIMP U-Pb定年及其地质意义.岩石学报, 22(10):2457-2463. http://d.old.wanfangdata.com.cn/Periodical/ysxb98200610006 [43] 罗明非, 莫宣学, 喻学惠, 等, 2015.东昆仑五龙沟晚二叠世花岗闪长岩LA-ICP-MS锆石U-Pb定年、岩石成因及意义.地学前缘, 22(5):182-195. http://d.old.wanfangdata.com.cn/Periodical/dxqy201505015 [44] 罗照华, 邓晋福, 曹永清, 等, 1999.青海省东昆仑地区晚古生代-早中生代火山活动与区域构造演化.现代地质, 13(1):51-56. doi: 10.1038-ajg.2011.100/ [45] 罗照华, 柯珊, 曹永清, 等, 2002.东昆仑印支晚期幔源岩浆活动.地质通报, 21(6):292-297. doi: 10.3969/j.issn.1671-2552.2002.06.003 [46] 莫宣学, 罗照华, 邓晋福, 等, 2007.东昆仑造山带花岗岩及地壳生长.高校地质学报, 13(3):403-414. doi: 10.3969/j.issn.1006-7493.2007.03.010 [47] 潘彤, 王秉璋, 李东生, 等, 2016.青海东昆仑成矿环境成矿规律与找矿方向.北京:地质出版社, 64. [48] 佘宏全, 张德全, 景向阳, 等, 2007.青海省乌兰乌珠尔斑岩铜矿床地质特征与成因.中国地质, 34(2):306-314. doi: 10.3969/j.issn.1000-3657.2007.02.013 [49] 宋忠宝, 贾群子, 张占玉, 等, 2010.东昆仑祁漫塔格地区野马泉铁铜矿床地质特征及成因探讨.西北地质, 43(4):209-217. doi: 10.3969/j.issn.1009-6248.2010.04.025 [50] 宋忠宝, 张雨莲, 陈向阳, 等, 2013.东昆仑哈日扎含矿花岗闪长斑岩LA-ICP-MS锆石U-Pb定年及地质意义.矿床地质, 32(1):157-168. doi: 10.3969/j.issn.0258-7106.2013.01.011 [51] 陶刚, 朱利东, 李智武, 等, 2017.祁连地块西段硫磺矿北花岗闪长岩的岩石成因及其地质意义:年代学、地球化学及Hf同位素证据.地球科学, 42(12):2258-2275. http://earth-science.net/WebPage/Article.aspx?id=3700 [52] 王松, 丰成友, 李世金, 等, 2009.青海祁漫塔格卡尔却卡铜多金属矿区花岗闪长岩锆石SHRIMP U-Pb测年及其地质意义.中国地质, 36(1):74-84. http://d.old.wanfangdata.com.cn/Periodical/zgdizhi200901005 [53] 吴福元, 刘小驰, 纪伟强, 等, 2017.高分异花岗岩的识别与研究.中国科学(D辑:地球科学), 47(7):745-765. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=QKC20172017071200021563 [54] 许庆林, 孙丰月, 李碧乐, 等, 2014.东昆仑莫河下拉银多金属矿床花岗斑岩年代学、地球化学特征及其构造背景.大地构造与成矿学, 38(2):421-433. http://d.old.wanfangdata.com.cn/Periodical/ddgzyckx201402021 [55] 袁万明, 莫宣学, 喻学惠, 等, 2000.东昆仑印支期区域构造背景的花岗岩记录.地质论评, 46(2):203-211. doi: 10.3321/j.issn:0371-5736.2000.02.012 [56] 张炜, 周汉文, 朱云海, 等, 2016.东昆仑与成矿有关的三叠纪花岗岩演化:基于莫河下拉岩体岩石学、地球化学和锆石U-Pb年代学的证据.地球科学, 41(8):1334-1348. http://earth-science.net/WebPage/Article.aspx?id=3341