Numerical Studies on Continental Lithospheric Breakup in Response to the Extension Induced by Subduction Direction Inversion
-
摘要: 为了更好的探究大洋板块运动方向反转与大陆岩石圈张裂之间的动力学关系,以数值模拟为手段来正演大洋板块的反向俯冲,同时考虑光滑洋壳、海山链、海底高原、薄弱带等构造单元加入先期俯冲时对大陆岩石圈张裂的影响.结果显示:大陆岩石圈在大洋板块反向俯冲的过程中会被拉伸减薄,并出现局部岩石圈的颈缩直至张裂、同时伴随有软流圈地幔的上涌和减压熔融等现象.此外,含有不同构造单元的洋壳参与先期俯冲会对陆缘造成不同程度的破坏,从而影响拖曳过程中大陆岩石圈的应变集中,并导致大陆岩石圈在不同时间、不同位置出现张裂.模拟结果可用于对比南海陆缘在新生代张裂中表现的穿时等特征,亦可为其他被动陆缘张裂的动力学研究提供借鉴.Abstract: In order to investigate how the extension induced by subduction direction inversion affects the continental breakup, we conduct numerical simulation to represent the subduction process in the early stage and the extension induced by subduction direction inversion in the later stage. Meanwhile, different geological bodies, such as oceanic plate with smooth surface, seamount chains, oceanic plateau and weak zone, are added in the model during the early subduction stage. Results show that the extension induced by subduction direction inversion would cause lithospheric thinning, necking and breakup, being accompanied by asthenospheric upwelling and partial melting due to decompression. In addition, the margin deforms to different degrees once the geological bodies enter the early subduction, exerting influence on the strain localization in the subsequent extension, leading to the lithospheric breakup at various locations and start timings. Our results are compatible with the characteristics of timing migration of breakup unconformity in the South China Sea margin, and also offer reference for the geodynamic studies in other passive margins.
-
图 1 被动拉伸模式示意图
图a为回撤模式, 改自Leng and Gurnis(2011);图b为侧向走滑模式改自Petrunin and Sobolev(2008)
Fig. 1. Sketch map of passive stretch
图 2 华南陆缘中生代晚期至新生代构造演化
数据来自Hall(2002)和Morley(2012).白色箭头为俯冲方向,L1和L2指示构造剖面位置(无比例)
Fig. 2. Sketch evolution maps of South China margin from the Late Mesozoic to Cenozoic
图 11 南海陆缘破裂不整合时间统计
数据来自Hutchison(2004),孙珍等(2011),黄奇瑜等(2012),Barckhousen et al.(2014)
Fig. 11. Timing of breakup unconformity for the South China Sea margin
表 1 模型采用的流变参数
Table 1. Material parameters used in the numerical experiments
物质 ρ0 (kg/m3) sin(φ) AD (MPa-ns-1) n V (J/(MPa·mol)) E (kJ/mol) QL (kJ/kg) Hr (μW/m3) T固 (K) T液 (K) k (W/(mK)) 沉积物(湿石英) 2 700 0.03 3.2e-4 2.3 0 154 300 2 889+17 900/(P+54)+20 200/(P+54)2,P<1 200 MPa;831+0.06P,P>1 200 MPa 1 262+0.09P [0.64+807/(T+77)]exp(0.000 04PMPa) 上陆壳 2 800 0.2 1 上洋壳 3 200 0.03 0.25 下洋壳(斜长石An75) 3 200 0.2 3.3e-4 3.2 0 238 380 0.25 973-70 400/(P+354)+77 800 000/(P+354)2,P<1 600 MPa;935+0.003 5P+0.000 006 2P2,P>1 600 MPa 1 423+0.105P [1.18+474/(T+77)]exp(0.000 04PMPa) 下陆壳 2 900 岩石圈地幔(干橄榄)软流圈地幔 3 300 0.6 2.5e+4 3.5 10 532 400 0.022 1 394+0.132 899P-0.000 005 104P2,P<100 00 MPa;2 212+0.030 819(P-10 000),P>10 000 MPa 2 073+0.114P [0.73+1 293/(T+77)]exp(0.000 04PMPa) 水化地幔(湿地幔) 3 300 0.03 2.0e+3 4.0 10 471 400 0.022 1 240+49 800/(P+323),P<2 400 MPa;1 266-0.011 8P+0.000 003 5P2,P>2 400 MPa 2 073+0.114P [0.73+1 293/(T+77)]exp(0.000 04PMPa) 参考文献 1,2 11 11 11 10,11 11 1,2 1 4,5,6,7,8 4 3,9 注:符号所代表的的含义参见文字部分.参数值Cp=1 000 J·kg-1K-1,α=3×10-5 K-1,β=1×10-11 Pa-1.参考文献:1.Turcotte and Schubert, 2002;2.Bittner and Schmeling, 1995;3.Clauser and Huenges, 1995;4.Schmidt and Poli, 1998;5.Hess, 1989;6.Hirschmann, 2000;7.Johannes, 1985;8.Poli and Schmidt, 2002;9.Hofmeister, 1999;10.Turcotte and Schubert, 2002;11.Ranalli, 1995. -
[1] Barckhausen, U., Engels, M., Franke, D., et al., 2015. Reply to Chang et al., 2014, Evolution of the South China Sea: Revised Ages for Breakup and Seafloor Spreading. Marine and Petroleum Geology, 59: 679-681. [2] Bittner, D., Schmeling, H., 1995.Numerical Modelling of Melting Processes and Induced Diapirism in the Lower Crust.Geophysical Journal International, 123(1):59-70. https://doi.org/10.1111/j.1365-246x.1995.tb06661.x [3] Bohm, M., Lüth, S., Echtler, H., et al., 2002.The Southern Andes between 36° and 40°S Latitude:Seismicity and Average Seismic Velocities.Tectonophysics, 356(4):275-289. https://doi.org/10.1016/s0040-1951(02)00399-2 [4] Briais, A., Patriat, P., Tapponnier, P., 1993.Updated Interpretation of Magnetic Anomalies and Seafloor Spreading Stages in the South China Sea:Implications for the Tertiary Tectonics of Southeast Asia.Journal of Geophysical Research:Solid Earth, 98(B4):6299-6328. https://doi.org/10.1029/92jb02280 [5] Burg, J.P., Gerya, T.V., 2005.The Role of Viscous Heating in Barrovian Metamorphism of Collisional Orogens:Thermomechanical Models and Application to the Lepontine Dome in the Central Alps.Journal of Metamorphic Geology, 23(2):75-95. https://doi.org/10.1111/j.1525-1314.2005.00563.x [6] Clauser, C., Huenges, E., 1995.Thermal Conductivity of Rocks and Minerals.American Geophysical Union Ref Shelf, 3:105-126. http://d.old.wanfangdata.com.cn/OAPaper/oai_doaj-articles_e2ce5dab39806e7267488f0fc84ec3d7 [7] Clift, P., Lin, J., Barckhausen, U., 2002.Evidence of Low Flexural Rigidity and Low Viscosity Lower Continental Crust during Continental Break-Up in the South China Sea.Marine and Petroleum Geology, 19(8):951-970. https://doi.org/10.1016/s0264-8172(02)00108-3 [8] Cullen, A., Reemst, P., Henstra, G., et al., 2010.Rifting of the South China Sea:New Perspectives.Petroleum Geoscience, 16(3):273-282. https://doi.org/10.1144/1354-079309-908 [9] Ding, W.W., Li, J.B., Li, M.B, 2011.Seismic Stratigraphy, Tectonic Structure and Extension Model across the Reed Bank Basin in the South Margin of South China Sea:Evidence from NH973-2 Multichannel Seismic Profile.Earth Science, 36(5):895-904(in Chinese with English abstract). https://doi.org/10.3799/dqkx.2011.094 [10] Dominguez, S., Lallemand, S.E., Malavieille, J., et al., 1998.Upper Plate Deformation Associated with Seamount Subduction.Tectonophysics, 293(3-4):207-224. https://doi.org/10.1016/s0040-1951(98)00086-9 [11] Dong, D.D., Wu, S.G., Li, J.B., et al., 2014.Tectonic Contrast between the Conjugate Margins of the South China Sea and the Implication for the Differential Extensional Model.Science China:Earth Sciences, 44(5):1059-1070 (in Chinese with English abstract). http://www.cnki.com.cn/Article/CJFDTotal-JDXG201406027.htm [12] Duretz, T., Gerya, T.V., May, D.A., 2011.Numerical Modelling of Spontaneous Slab Breakoff and Subsequent Topographic Response.Tectonophysics, 502(1-2):244-256. https://doi.org/10.1016/j.tecto.2010.05.024 [13] Faccenda, M., Minelli, G., Gerya, T.V., 2009.Coupled and Decoupled Regimes of Continental Collision:Numerical Modeling.Earth and Planetary Science Letters, 278(3-4):337-349. https://doi.org/10.1016/j.epsl.2008.12.021 [14] Franke, D., Savva, D., Pubellier, M., et al., 2014.The Final Rifting Evolution in the South China Sea.Marine and Petroleum Geology, 58:704-720. https://doi.org/10.1016/j.marpetgeo.2013.11.020 [15] Gerya, T.V., Fossati, D., Cantieni, C., et al., 2009.Dynamic Effects of Aseismic Ridge Subduction:Numerical Modelling.European Journal of Mineralogy, 21(3):649-661. https://doi.org/10.1127/0935-1221/2009/0021-1931 [16] Gerya, T.V., Yuen, D.A., 2003.Characteristics-Based Marker-In-Cell Method with Conservative Finite-Differences Schemes for Modeling Geological Flows with Strongly Variable Transport Properties.Physics of the Earth and Planetary Interiors, 140(4):293-318. https://doi.org/10.1016/j.pepi.2003.09.006 [17] Hall, R., 2001.Cenozoic reconstructions of SE Asia and the SW Pacific: Changing Patterns of Land and Sea.In: Metcalfe, I., Smith, J.M.B., Morwood, M., eds., Faunal and Floral Migrations and Evolution in SE Asia-Australasia, Swets Zeitlinger, Lisse, 35-56. [18] Hall, R., 2002.Cenozoic Geological and Plate Tectonic Evolution of SE Asia and the SW Pacific:Computer-Based Reconstructions, Model and Animations.Journal of Asian Earth Sciences, 20(4):353-431. https://doi.org/10.1016/s1367-9120(01)00069-4 [19] Hall, R., van Hattum, M.W.A., Spakman, W., 2008.Impact of India-Asia Collision on SE Asia:The Record in Borneo.Tectonophysics, 451(1-4):366-389. https://doi.org/10.1016/j.tecto.2007.11.058 [20] Hao, T.Y., Xu, Y., Sun, F.L., et al., 2011.Integrated Geophysical Research on the Tectonic Attribute of Conjugate Continental Margins of South China Sea.Chinese Journal of Geophysics, 54(12):3098-3116(in Chinese with English abstract). doi: 10.1002/cjg2.1679/full [21] Hess, P.C., 1989.Origin of Igneous Rocks.Harvard University Press, London. [22] Hilde, T.W.C., Lee, C.S., 1984.Origin and Evolution of the West Philippine Basin:A New Interpretation.Tectonophysics, 102(1-4):85-104. https://doi.org/10.1016/0040-1951(84)90009-x [23] Hirschmann, M.M., 2000.Mantle Solidus:Experimental Constraints and the Effects of Peridotite Composition.Geochemistry, Geophysics, Geosystems, 1(10):1042-1026. https://doi.org/10.1029/2000gc000070 [24] Hofmeister, A.M., 1999.Mantle Values of Thermal Conductivity and the Geotherm from Phonon Lifetimes.Science, 283(5408):1699-1706. https://doi.org/10.1126/science.283.5408.1699 [25] Holloway, N., 1981.The North Palawan Block, Philippines:Its Relation to the Asian Mainland and Its Role in the Evolution of the South China Sea.Geological Society of Malaysia Bulletin, 14:19-58. https://ci.nii.ac.jp/naid/80001344480 [26] Holloway, N., 1982.North Palawan Block, Philippines-Its Relation to Asian Mainland and Role in Evolution of South China Sea.AAPG Bulletin, 66(9):1355-1383. https://doi.org/10.1306/03b5a7a5-16d1-11d7-8645000102c1865d [27] Huang, Q.Y., Yan, Y., Zhao, Q.H., et al., 2012.Cenozoic Stratigraphy of Taiwan:Window into Rifting, Stratigraphy and Paleoceanography of South China Sea.Chinese Science Bulletin, 57(20):1842-1862(in Chinese with English abstract). doi: 10.1007/s11434-012-5349-y [28] Hutchison, C.S., 1996.The 'Rajang Accretionary Prism' and 'Lupar Line' Problem of Borneo.Geological Society, London, Special Publications, 106(1):247-261. https://doi.org/10.1144/gsl.sp.1996.106.01.16 [29] Hutchison, C.S., 2004.Marginal Basin Evolution:The Southern South China Sea.Marine and Petroleum Geology, 21(9):1129-1148. https://doi.org/10.1016/j.marpetgeo.2004.07.002 [30] Jahn, B.M., Auvray, B., Cornichet, J., et al., 1987.3.5 Ga Old Amphibolites from Eastern Hebei Province, China:Field Occurrence Petrography, Sm-Nd Isochron Age and REE Geochemistry.Precambrian Research, 34(3-4):311-346. https://doi.org/10.1016/0301-9268(87)90006-4 [31] Jahn, B.M., Chen, P.Y., Yen, T.P., 1976.Rb-Sr Ages of Granitic Rocks in Southeastern China and Their Tectonic Significance.Geological Society of America Bulletin, 87(5):763-776.https://doi.org/10.1130/0016-7606(1976)87<763:raogri>2.0.co;2 doi: 10.1130/0016-7606(1976)87<763:raogri>2.0.co;2 [32] Johannes, W., 1985.The Significance of Experimental Studies for the Formation of Migmatites.In: Ashworth, J., ed., Migmatites.Blackie, Glasgow, 36-85. [33] Krawcyzk, C., Team, T.S., 2003.Amphibious Seismic Survey Images Plate Interface at 1960 Chile Earthquake.Eos, Transactions American Geophysical Union, 84(32):301-305. https://doi.org/10.1029/2003eo320001 [34] Kusky, T.M., Windley, B.F., Wang, L., et al., 2014.Flat Slab Subduction, Trench Suction, and Craton Destruction:Comparison of the North China, Wyoming, and Brazilian Cratons.Tectonophysics, 630:208-221. https://doi.org/10.13039/501100001809 [35] Kusznir, N.J., Karner, G.D., 2007.Continental Lithospheric Thinning and Breakup in Response to Upwelling Divergent Mantle Flow:Application to the Woodlark, Newfoundland and Iberia Margins.Geological Society, London, Special Publications, 282(1):389-419. https://doi.org/10.1144/sp282.16 [36] Lallemand, S., Heuret, A., Boutelier, D., 2005.On the Relationships between Slab Dip Back-Arc Stress, Upper Plate Absolute Motion, and Crustal Nature in Subduction Zones.Geochemistry, Geophysics, Geosystems, 6(9):259-259. https://doi.org/10.1029/2005gc000917 [37] Lapierre, H., Jahn, B.M., Charvet, J., et al., 1997.Mesozoic Felsic Arc Magmatism and Continental Olivine Tholeiites in Zhejiang Province and Their Relationship with the Tectonic Activity in Southeastern China.Tectonophysics, 274(4):321-338. https://doi.org/10.1016/s0040-1951(97)00009-7 [38] Lei, J.S., Zhao, D.P., Steinberger, B., et al., 2009.New Seismic Constraints on the Upper Mantle Structure of the Hainan Plume.Physics of the Earth and Planetary Interiors, 173(1-2):33-50. https://doi.org/10.1016/j.pepi.2008.10.013 [39] Leng, W., Gurnis, M., 2011.Dynamics of Subduction Initiation with Different Evolutionary Pathways.Geochemistry, Geophysics, Geosystems, 12(12):12-18. https://doi.org/10.1029/2011gc003877 [40] Li, F.C., 2015.Reconstruction of the Mesozoic Subduction System and Numerical Study on the Formation of Marginal Sea Basin in the Subductive Margin(Dissertation).Graduate University of the Chinese Academy of Sciences, Guangzhou, 25-26 (in Chinese with English abstract). [41] Li, F.C., Sun, Z., Hu, D.K., et al., 2013.Crustal Structure and Deformation Associated with Seamount Subduction at the North Manila Trench Represented by Analog and Gravity Modeling.Marine Geophysical Research, 34(3-4):393-406. https://doi.org/10.1007/s11001-013-9193-5 [42] Li, F.C., Sun, Z., Yang, H.F., 2018. Possible Spatial Distribution of the Mesozoic Volcanic arc in the Present-Day South China Sea Continental Margin and Its Tectonic Implications. Journal of Geophysical Research:Solid Earth. https://doi.org/10.1029/2017JB014861 [43] Li, J.B., 2012.Evolution of Chinas Marginal Seas and Its Effect of Natural Resources.Beijing:Ocean Press, 2-8 (in Chinese). [44] Li, S, Z., Suo, Y.H., Liu, X., et al., 2012.Basic Structural Pattern and Tectonic Models of the South China Sea:Problems, Advances and Controversies.Marine Geology and Quaternary Geology, 32(6):35-53(in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-HYDZ201206009.htm [45] Li, S.T., Lin, C.S., Zhang, Q.M., et al., 1999.Episodic Rifting of Continental Marginal Basins and Tectonic Events since 10Ma in the South China Sea.Chinese Science Bulletin, 44(1):10-23. https://doi.org/10.1007/bf03182877 [46] Li, Z.X., Li, X.H., 2007.Formation of the 1300-Km-Wide Intracontinental Orogen and Postorogenic Magmatic Province in Mesozoic South China:A Flat-Slab Subduction Model.Geology, 35(2):179-182. https://doi.org/10.1130/g23193a.1 [47] Liu, S.Q., Zhang, C.M., Sun, Z., et al., 2016.Characteristics and Significances of the Geological Boundary SB21 in the Zhujiang Formation of the Liwan Sag, Pearl River Mouth Basin.Earth Science, 41(3):475-486 (in Chinese with English abstract). https://doi.org/10.3799/dqkx.2016.039 [48] Luan, X.W., Zhang, L, 2009.Tectonic Evolution Models of South China Sea:Passive Spreading under Complex Actions.Marine Geology and Quaternary Geology, 29(6):59-74 (in Chinese with English abstract). http://adsabs.harvard.edu/abs/2010MGQG...29...59L [49] Mann, P., Hempton, M.R., Bradley, D.C., et al., 1983.Development of Pull-Apart Basins.The Journal of Geology, 91(5):529-554. https://doi.org/10.1086/628803 [50] Mann, P., Taira, A., 2004.Global Tectonic Significance of the Solomon Islands and Ontong Java Plateau Convergent Zone.Tectonophysics, 389(3-4):137-190. https://doi.org/10.1016/j.tecto.2003.10.024 [51] Maruyama, S., Isozaki, Y., Kimura, G., et al., 1997.Paleogeographic Maps of the Japanese Islands:Plate Tectonic Synthesis from 750 Ma to the Present.The Island Arc, 6(1):121-142. https://doi.org/10.1111/j.1440-1738.1997.tb00043.x [52] Meng, L., Zhang, J., 2014.The Magmatic Activity Mechanism of the Fossil Spreading Center in the Southwest Sub-Basin, South China Sea.Science China:Earth Sciences, 44(2):239-249 (in Chinese with English abstract). doi: 10.1007/s11430-013-4788-x [53] Miura, S., Suyehiro, K., Shinohara, M., et al., 2004.Seismological Structure and Implications of Collision between the Ontong Java Plateau and Solomon Island Arc from Ocean Bottom Seismometer-Airgun Data.Tectonophysics, 389(3-4):191-220. https://doi.org/10.1016/j.tecto.2003.09.029 [54] Mohr, P., 1992.Nature of the Crust beneath Magmatically Active Continental Rifts.Tectonophysics, 213(1-2):269-284. https://doi.org/10.1016/0040-1951(92)90263-6 [55] Morley, C.K., 2012.Late Cretaceous-Early Palaeogene Tectonic Development of SE Asia.Earth-Science Reviews, 115(1-2):37-75. https://doi.org/10.1016/j.earscirev.2012.08.002 [56] Nagel, T.J., Buck, W.R., 2004.Symmetric Alternative to Asymmetric Rifting Models.Geology, 32(11):937-940. https://doi.org/10.1130/g20785.1 [57] Nakakuki, T., Mura, E., 2013.Dynamics of Slab Rollback and Induced Back-Arc Basin Formation.Earth and Planetary Science Letters, 361:287-297. https://doi.org/10.1016/j.epsl.2012.10.031 [58] Nikolaeva, K., Gerya, T.V., Marques, F.O., 2010.Subduction Initiation at Passive Margins:Numerical Modeling.Journal of Geophysical Research, 115(B3):803-804. https://doi.org/10.1029/2009jb006549 [59] Petrunin, A.G., Sobolev, S.V., 2008.Three-Dimensional Numerical Models of the Evolution of Pull-Apart Basins.Physics of the Earth and Planetary Interiors, 171(1-4):387-399. https://doi.org/10.1016/j.pepi.2008.08.017 [60] Phinney, E.J., Mann, P., Coffin, M.F., et al., 2004.Sequence Stratigraphy, Structural Style, and Age of Deformation of the Malaita Accretionary Prism (Solomon Arc-Ontong Java Plateau Convergent Zone).Tectonophysics, 389(3-4):221-246. https://doi.org/10.1016/j.tecto.2003.10.025 [61] Poli, S., Schmidt, M.W., 2002.Petrology of Subducted Slabs.Annual Review of Earth and Planetary Sciences, 30(1):207-235. https://doi.org/10.1146/annurev.earth.30.091201.140550 [62] Qiu, N., Wang, Z.F., Xie, H., et al., 2013.Geophysical Investigations of Crust-Scale Structural Model of the Qiongdongnan Basin, Northern South China Sea.Marine Geophysical Research, 34(3-4):259-279. https://doi.org/10.1007/s11001-013-9182-8 [63] Rahe, B., Ferrill, D.A., Morris, A.P., 1998.Physical Analog Modeling of Pull-Apart Basin Evolution.Tectonophysics, 285(1-2):21-40. https://doi.org/10.1016/s0040-1951(97)00193-5 [64] Ranalli, G., 1995.Rheology of the Earth, 2nd Edition.Chapman & Hall, London. [65] Rangin, C., Spakman, W., Pubellier, M., et al., 1999.Tomographic and Geological Constraints on Subduction along the Eastern Sundaland Continental Margin (South-East Asia).Bulletin de la Societe Geologique de France, 170:775-788. http://bsgf.geoscienceworld.org/content/170/6/775 [66] Ren, J.Y., Lei, C., 2011.Tectonic Stratigraphic Framework of the Yinggehai-Qiongdongnan Basins and Its Implication for Tectonics Province Division in South China Sea.Chinese Journal of Geophysics, 54(12):3303-3314 (in Chinese with English abstract). http://europepmc.org/abstract/MED/13666374 [67] Replumaz, A., Tapponnier, P., 2003.Reconstruction of the Deformed Collision Zone between India and Asia by Backward Motion of Lithospheric Blocks.Journal of Geophysical Research:Solid Earth, 108(B6):22-25. https://doi.org/10.1029/2001jb000661 [68] Schlüter, H.U., Hinz, K., Block, M., 1996.Tectono-Stratigraphic Terranes and Detachment Faulting of the South China Sea and Sulu Sea.Marine Geology, 130(1-2):39-78. https://doi.org/10.1016/0025-3227(95)00137-9 [69] Schmidt, M.W., Poli, S., 1998.Experimentally Based Water Budgets for Dehydrating Slabs and Consequences for Arc Magma Generation.Earth and Planetary Science Letters, 163(1-4):361-379. https://doi.org/10.1016/s0012-821x(98)00142-3 [70] Sewell, R.J., Campbell, S.D.G., 1997.Geochemistry of Coeval Mesozoic Plutonic and Volcanic Suites in Hong Kong.Journal of the Geological Society, 154(6):1053-1066. https://doi.org/10.1144/gsjgs.154.6.1053 [71] Song, H.B., Hao, T.Y., Jiang, W.W., 1998.Discussion on Type and Formation Mechanism of the Northern Margin of the South China Sea.Cundan Collected Papers in Honour of the 50 Years' Work of Academician Liu Guangding, Beijing:Science Press, 1-10 (in Chinese with English abstract). [72] Stern, R.J., 2004.Subduction Initiation:Spontaneous and Induced.Earth and Planetary Science Letters, 226(3-4):275-292. https://doi.org/10.1016/j.epsl.2004.08.007 [73] Stern, R.J., Bloomer, S.H., 1992.Subduction Zone Infancy:Examples from the Eocene Izu-Bonin-Mariana and Jurassic California Arcs.Geological Society of America Bulletin, 104(12):1621-1636.https://doi.org/10.1130/0016-7606(1992)104<1621:szieft>2.3.co;2 doi: 10.1130/0016-7606(1992)104<1621:szieft>2.3.co;2 [74] Sun, W.D., Ling, M.X., Wang, F.Y., et al., 2008.Pacific Plate Subduction and Mesozoic Geological Event in Eastern China.Bulletin of Mineralogy, Petrology and Geochemistry, 27(3):218-225 (in Chinese with English abstract). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=kwysdqhxtb200803002 [75] Sun, Z., Zhao, Z.X., Li, J.B., et al., 2011.Tectonic Analysis of the Breakup and Collision Unconformities in the Nansha.Chinese Journal of Geophysics, 54(12):3196-3209(in Chinese with English abstract). doi: 10.1002/cjg2.1685/full [76] Sun, Z., Zhong, Z.H., Zhou, D., et al., 2006.Research on the Dynamics of the South China Sea Opening:Evidence from Analogue Modeling.Science in China(Series D), 36(9):797-810. https://doi.org/10.1007/s11430-006-1053-6 [77] Sun, Z., Zhong, Z.H., Keep, M., et al., 2009.3D Analogue Modeling of the South China Sea:A Discussion on Breakup Pattern.Journal of Asian Earth Sciences, 34(4):544-556. https://doi.org/10.1016/j.jseaes.2008.09.002 [78] Taylor, B., Hayes, D.E., 1980.The Tectonic Evolution of the South China Basin.Geophysical Monograph Series, 23:89-104. http://d.old.wanfangdata.com.cn/Periodical/hyxb201805007 [79] Taylor, B., Hayes, D.E., 1983.Origin and History of the South China Sea Basin.The Tectonic and Geologic Evolution of Southeast Asian Seas and Islands:Part 2, 23-56. doi: 10.1029/GM027p0023/pdf [80] Turcotte, D.L., Schubert, G., 1982.Geodynamics:Application of Continuum Physics to Geological Problems.John Wiley, New York. [81] Turcotte, D.L., Schubert, G., 2002.Geodynamics-2nd Edition.John Wiley, New York. [82] Wada, I., Wang, K.L., 2009.Common Depth of Slab-Mantle Decoupling:Reconciling Diversity and Uniformity of Subduction Zones.Geochemistry, Geophysics, Geosystems, 10(10):155-166. https://doi.org/10.1029/2009gc002570 [83] Weaver, S.D., Storey, B.C., Pankhurst, R.J., et al., 1994.Antarctica-New Zealand Rifting and Marie Byrd Land Lithospheric Magmatism Linked to Ridge Subduction and Mantle Plume Activity.Geology, 22(9):811-814.https://doi.org/10.1130/0091-7613(1994)022<0811:anzram>2.3.co;2 doi: 10.1130/0091-7613(1994)022<0811:anzram>2.3.co;2 [84] Xu, H.H., Ma, H., Song, H.B., et al., 2011.Numerical Simulation of Eastern South China Sea Basin Expansion.Chinese Journal of Geophysics, 54(12):3070-3078 (in Chinese with English abstract). http://d.old.wanfangdata.com.cn/Periodical/dqwlxb201112008 [85] Yan, Q.S., Shi, X.F., 2007.Hainan Mantle Plume and the Formation and Evolution of the South China Sea.Geological Journal of China Universities, 13(2):311-322 (in Chinese with English abstract). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=gxdzxb200702014 [86] Ye, Q., Shi, H.S., Mei, L.F., et al., 2017.Post-Rift Faulting Migration, Transition and Dynamics in Zhu Ⅰ Depression, Pearl River Mouth Basin.Earth Science, 42(1):105-118 (in Chinese with English abstract). https://doi.org/10.3799/dqkx.2017.008 [87] Zhang, J.Y., 2014.Analysis of Mesozoic Tectonic Deformation in the Chaoshan Depression of Pearl River Mouth Basin (Dissertation).Graduate University of the Chinese Academy of Sciences, Guangzhou, 15-16 (in Chinese with English abstract). [88] Zhou, D., Wu, S.M., Chen, H.Z., 2005.Some Remarks on the Tectonic Evolution of Nansha and Its Adjacent Regions in Southern South China Sea.Geotectonica et Metallogenia, 29(3):339-345 (in Chinese with English abstract). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=ddgzyckx200503008 [89] Zhou, D., Ru, K., Chen, H.Z., 1995.Kinematics of Cenozoic Extension on the South China Sea Continental Margin and Its Implications for the Tectonic Evolution of the Region.Tectonophysics, 251(1-4):161-177. https://doi.org/10.1016/0040-1951(95)00018-6 [90] Zhou, X.M., Li, W.X., 2000.Origin of Late Mesozoic Igneous Rocks in Southeastern China:Implications for Lithosphere Subduction and Underplating of Mafic Magmas.Tectonophysics, 326(3-4):269-287. https://doi.org/10.1016/s0040-1951(00)00120-7 [91] Ziegler, P.A., Cloetingh, S., 2004.Dynamic Processes Controlling Evolution of Rifted Basins.Earth-Science Reviews, 64(1-2):1-50. https://doi.org/10.1016/s0012-8252(03)00041-2 [92] 丁巍伟, 李家彪, 黎明碧, 2011.南海南部陆缘礼乐盆地新生代的构造-沉积特征及伸展机制:来自NH973-2多道地震测线的证据.地球科学, 36(5):895-904. https://doi.org/10.3799/dqkx.2011.094 [93] 董冬冬, 吴时国, 李家彪, 等., 2014.南海共轭大陆边缘的构造对比及差异伸展模式.中国科学:地球科学, 44(5):1059-1070. http://d.old.wanfangdata.com.cn/Conference/9218919 [94] 郝天珧, 徐亚, 孙福利, 等, 2011.南海共轭大陆边缘构造属性的综合地球物理研究.地球物理学报, 54(12):3098-3116. doi: 10.3969/j.issn.0001-5733.2011.12.011 [95] 黄奇瑜, 闫义, 赵泉鸿, 等, 2012.台湾新生代层序:反映南海张裂, 层序和古海洋变化机制.科学通报, 57(20):1842-1862. http://kns.cnki.net/KCMS/detail/detail.aspx?filename=KXTB201220005&dbname=CJFD&dbcode=CJFQ [96] 李付成, 2015.南海中生代俯冲构造恢复及俯冲背景下边缘海盆形成的数值模拟博士学位论文.广州:中国科学院研究生院(南海海洋研究所), 25-26. [97] 李家彪, 2012.中国边缘海形成演化与资源效应.北京:海洋出版社. [98] 李三忠, 索艳慧, 刘鑫, 等, 2012.南海的基本构造特征与成因模型:问题与进展及论争.海洋地质与第四纪地质, 32(6):35-53. http://kns.cnki.net/KCMS/detail/detail.aspx?filename=HYDZ201206009&dbname=CJFD&dbcode=CJFQ [99] 刘思青, 张翠梅, 孙珍, 等, 2016.珠江口盆地荔湾凹陷珠江组关键地质界面sb21的识别及地质意义.地球科学, 41(3), 475-486. https://doi.org/10.3799/dqkx.2016.039 [100] 栾锡武, 张亮, 2009.南海构造演化模式:综合作用下的被动扩张.海洋地质与第四纪地质, 29(6):59-74. http://d.old.wanfangdata.com.cn/Periodical/dqwlxb201112003 [101] 孟林, 张健, 2014.南海西南海盆残余洋脊岩浆活动机制的热模拟研究.中国科学:地球科学, 44(2):239-249. http://d.old.wanfangdata.com.cn/Conference/7863418 [102] 任建业, 雷超, 2011.莺歌海-琼东南盆地构造-地层格架及南海动力变形分区.地球物理学报, 54(12):3303-3314. doi: 10.3969/j.issn.0001-5733.2011.12.028 [103] 宋海滨, 郝天珧, 江为为, 1998.南海北部张裂边缘的类型及其形成机制探讨.寸丹集——庆贺刘光鼎院士工作50周年学术论文集.北京:科学出版社, 1-10. [104] 孙卫东, 凌明星, 汪方跃, 等, 2008.太平洋板块俯冲与中国东部中生代地质事件.矿物岩石地球化学通报, 27(3):218-225. doi: 10.3969/j.issn.1007-2802.2008.03.002 [105] 孙珍, 赵中贤, 李家彪, 等, 2011.南沙地块内破裂不整合与碰撞不整合的构造分析.地球物理学报, 54(12):3196-3209. doi: 10.3969/j.issn.0001-5733.2011.12.019 [106] 孙珍, 钟志洪, 周蒂, 等, 2006.南海的发育机制研究:相似模拟证据.中国科学(D辑), 36(9):797-810. http://d.old.wanfangdata.com.cn/Periodical/zgkx-cd200609002 [107] 许鹤华, 马辉, 宋海斌, 等, 2011.南海东部海盆扩张过程的数值模拟.地球物理学报, 54(12):3070-3078. doi: 10.3969/j.issn.0001-5733.2011.12.008 [108] 鄢全树, 石学法, 2007.海南地幔柱与南海形成演化.高校地质学报, 13(2):311-322. doi: 10.3969/j.issn.1006-7493.2007.02.014 [109] 叶青, 施和生, 梅廉夫, 等, 2017.珠江口盆地珠一坳陷裂后期断裂作用:迁移、转换及其动力学.地球科学, 42(1):105-118. https://doi.org/10.3799/dqkx.2017.008 [110] 张江阳, 2014.珠江口盆地潮汕坳陷构中生代构造变形分析(硕士学位论文).广州:中国科学院研究生院(南海海洋研究所), 15-16. [111] 周蒂, 吴世敏, 陈汉宗, 2005.南沙海区及邻区构造演化动力学的若干问题.大地构造与成矿学, 29(3):339-345. doi: 10.3969/j.issn.1001-1552.2005.03.008