Petrological Classification of Ancient Deep-Marine Siliceous-Argillaceous-Carbonate Rock Series (SAC)
-
摘要: 古代深海硅质岩-粘土岩-碳酸盐岩系列(SAC)是沉积在远洋或深海的硅质岩、粘土岩和碳酸盐岩及其过渡岩石类型的统称.在借鉴现有相关分类的基础上,提出了基于三端元矿物组成的SAC岩石系列的三角图分类新方案.以碳酸盐矿物-粘土矿物-石英作为三端元组分,按照"纯"(>90%)、"主"(50%~90%)、"质"(50%~25%)、"含"(< 25%)的定量分类标准,并利用等边三角形中线,将SAC岩石系列划分为4大类21类.利用新的分类方案,将下扬子地区寒武统SAC岩石系列划分出硅质岩大类、碳酸盐岩大类和混合泥岩大类,描述了它们的岩石学特征.该SAC岩石系列体现了自下而上由硅质岩端元向碳酸盐岩端元混合沉积演化的趋势.对国内外典型SAC岩石系列重新分类的结果表明,新的分类方案能够清晰反映端元矿物之间混合沉积演化的趋势.SAC岩石系列的分类和命名是定量描述古代深海或远洋沉积作用的基础,也是探索其沉积环境演变的重要依据.Abstract: Ancient deep-marine siliceous-argillaceous-carbonate rock series (SAC) are general name of silicalite, argillite, carbonate rock and their mixed deposit rocks which are all pelagic and hemipelagic sediments. In this paper, it proposes a new mineralogy-based classification scheme of the SAC rock series based on existing classifications. According to quantitative classification standard["pure (>90%)", "dominate(50%-90%)", "rich(50%-25%)", "bearing (< 25%)"] and using triangular midlines of the ternary plot, the SAC rock series are divided into 4 primary classes and 21 classes. By using the new classification, silicalite, carbonate rock and mixed mudstone primary classes are present in the Lower-Middle Cambrian in the Lower Yangtze region and their petrological features are described by optical microscope observation. The SAC rock series of the Lower-Middle Cambrian show the sedimentary evolution trend from siliceous end to carbonate end. The results of classification of three typical SAC rock series indicate that the new classification scheme clearly reflects the mixed sedimentary evolution trend among three terminal minerals. The classification of the SAC rock series may help provide a significant foundation to quantitative description of the ancient pelagic and hemipelagic sedimentation, and also provide an important basis for exploring the evolution of sedimentary environment.
-
Key words:
- silicalite /
- argillite /
- carbonate rock /
- mixed mudstone /
- rock
-
图 1 下扬子地区下-中寒武统硅质矿物镜下照片
a, b.大陈岭组(样号17-37-07),深度2 512.43 m,絮状隐晶质石英(Opa),微晶石英颗粒(mic-Qtz),海绵骨针化石(Sp);c, d.大陈岭组(样号15-35-01),深度2 425.81 m,微晶石英(mic-Qtz)集合体构成海绵骨针化石(Sp),隐晶质石英(Opa);e, f.荷塘组(样号18-33-12),深度2 842.91 m,纤维状玉髓(Cln),絮状蛋白石(Opa)全消光,微晶石英颗粒(mic-Qtz)
Fig. 1. Thin section photographs of the siliceous minerals of the Middle-Lower Cambrian in the Lower Yangtze region
图 3 下扬子地区下-中寒武统(纯)硅质岩(S)镜下照片
a.薄片扫描,荷塘组(样号21-39-45),深度2 555.91 m,块状构造,大颗粒为硅质海绵骨针(Sp);b.单偏光,大量絮状蛋白石(Opa),微晶石英(mic-Qtz);c.正交,蛋白石(Opa)全消光,微晶石英颗粒(mic-Qtz),柱状云母(Ms);d.正交,微晶石英集合体(Qtz),放射状玉髓(Cln)环绕黄铁矿(Py)晶体;e.正交,放射虫(R)横截面,微晶石英(mic-Qtz),局部被方解石(Cal)交代;f.单偏光,由微晶石英(mic-Qtz)构成的硅质海绵骨针化石(Sp)
Fig. 3. Thin section photographs of silicalites of the Lower-Middle Cambrian in the Lower Yangtze region
图 4 下扬子地区下-中寒武统含粘土硅质岩(A-S)镜下照片
a.薄片扫描,荷塘组(样号20-36-01),深度2 606.91 m;块状构造,漂浮的颗粒为海绵骨针化石(Sp);b, c.微晶石英透镜状条带(mic-Qtz),隐晶质石英(Opa),自形黄铁矿(Py);d.单偏光,微晶石英集合体的海绵骨针(mic-Qtz),絮状蛋白石(Opa);e.正交,硅质海绵骨针(Sp)横切面,可见局部被方解石(Cal)交代;f.放射状结构的玉髓(Cln),柱状云母(Ms)
Fig. 4. Thin section photographs of argillaceous-silicalites of the Lower-Middle Cambrian in the Lower Yangtze region
图 5 下扬子地区下-中寒武统粘土质硅质岩(AS)镜下照片
a.薄片扫描,大陈岭组(样号12-26-33),深度2 393.57 m,微弱的水平层理,漂浮颗粒为海绵骨针化石(Sp); b, c.水平层理,亮色条带为微晶石英(mic-Qtz),暗色为有机质和粘土矿物(OM+Arg);d.单偏光,絮状蛋白石(Opa), 分散状自形黄铁矿(Py);e.正交,微晶石英(mic-Qtz)、隐晶质石英(Opa)、自形石英颗粒(Qtz);f.正交,硅质海绵骨针(Sp)横截面,微晶石英(mic-Qtz),局部被泥晶方解石(Cal)交代,见微量细柱状云母(Ms)
Fig. 5. Thin section photographs of argillaceous silicalites of the Lower-Middle Cambrian in the Lower Yangtze region
图 6 下扬子地区下-中寒武统粘土质-硅质混合泥岩(A-SM)与碳酸盐质-硅质混合泥岩(C-SM)镜下照片
a.薄片扫描,大陈岭组(样号13-03-23),深度2 397.49 m,清晰的水平层理,海绵骨针化石(Sp);b.单偏光,水平层理发育,亮色条带为微晶石英集合体(mic-Qtz),暗色物质为有机质和粘土矿物(OM+Arg);c.方解石集合体(Cal)与微晶石英(Qtz)集合体,斜长石具卡氏双晶(Pl);d.薄片扫描,大陈岭组(样号12-33-14),深度2 390.49 m,可见显著的水平层理,漂浮的颗粒为海绵骨针化石(Sp);e.单偏光,方解石集合体(Cal)和黄铁矿(Py),暗色条带为粘土矿物和有机质(OM+Arg);f.正交镜,方解石集合体(Cal)含有微晶石英(mic-Qtz)和放射虫化石(R)
Fig. 6. Thin section photographs of argillaceous-siliceous mixed mudstones and carbonate-siliceous mixed mudstones of the Lower-Middle Cambrian in the Lower Yangtze region
图 7 下扬子地区下-中寒武统硅质碳酸盐岩(SC)镜下照片
a.薄片扫描,杨柳岗组(样号07-32-32),深度2 218.09 m,水平层理发育;b, c.水平层理,放射虫(R),白云石纹层(Dol),分散状黄铁矿(Py)和微晶石英颗粒(mic-Qtz);d, e.硅质海绵骨针化石(Sp),内部充填黄铁矿晶体(Py);f.泥晶白云石(Dol),零星的自形-半自形石英颗粒(Qtz),自形黄铁矿发育(Py)
Fig. 7. Thin section photographs of siliceous carbonatites of the Lower-Middle Cambrian in the Lower Yangtze region
图 9 典型的SAC岩石系列三角投图比较
JY-B井五峰-龙马溪组页岩X衍射数据吴蓝宇(2016);Barnett页岩X衍射数据引自Miliken(2012);Pearsall页岩X衍射数据引自Hackley(2012)
Fig. 9. The comparison of the ternary diagrams of typical SAC rock series
-
[1] Chalmers, G.R., Bustin, R.M., Power, I.M., 2012.Characterization of Gas Shale Pore Systems by Porosimetry, Pycnometry, Surface Area, and Field Emission Scanning Electron Microscopy/Transmission Electron Microscopy Image Analyses:Examples from the Barnett, Woodford, Haynesville, Marcellus, and Doig Units.AAPG Bulletin, 96(6):1099-1119.doi: 10.1306/10171111052 [2] Chermak, J.A., Madeline, E.S., 2014.Mineralogy and Trace Element Geochemistry of Gas Shales in the United States:Environmental Implications.International Journal of Coal Geology, 126:32-44.doi: 10.1016/j.coal.2013.12.005 [3] Fan, J.L., 2017.Lithofacies and Depositional Setting of the Lower Cambrian Organic-Rich Shale of the Lower Yangtze Region, China.Geological Science and Technology Information, 36(5):156-163(in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTotal-DZKQ201705021.htm [4] Gasparik, M., Bertier, P., Gensterblum, Y., et al., 2014.Geological Controls on the Methane Storage Capacity in Organic-Rich Shales.International Journal of Coal Geology, 123:34-51.doi: 10.1016/j.coal.2013.06.010 [5] Götze, J., Möckel, R., 2012.Quartz:Deposits, Mineralogy and Analysis.Springer Geology, 10:978-1007. http://d.old.wanfangdata.com.cn/Periodical/bqeykdxxb201504032 [6] Gross, D., Sachsenhofer, R.F., Bechtel, A., et al., 2015.Organic Geochemistry of Mississippian Shales (Bowland Shale Formation) in Central Britain:Implications for Depositional Environment, Source Rock and Gas Shale Potential.Marine and Petroleum Geology, 59:1-21.doi: 10.1016/j.marpetgeo.2014.07.022 [7] Guo, X.S., 2017.Sequence Stratigraphy and Evolution Model of the Wufeng-Longmaxi Shale in the Upper Yangtze Area.Earth Science, 42(7):1069-1082(in Chinese with English abstract). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=dqkx201707004 [8] Guo, X.S., Hu, D.F., Wen, Y.D., et al., 2014.Major Factors Controlling the Accumulation and High Productivity in Marine Shale Gas in the Lower Paleozoic of Sichuan Basin and Its Periphery:A Case Study of the Wufeng-Longmaxi Formation of Jiaoshiba Area.Geology in China, 41(3):893-901(in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTotal-DIZI201403016.htm [9] Hackley, P.C., 2012.Geological and Geochemical Characterization of the Lower Cretaceous Pearsall Formation, Maverick Basin, South Texas:A Future Shale Gas Resource?.AAPG Bulletin, 96(8):1449-1482.doi: 10.1306/11221111071 [10] Helena, G.D., Camronl, M, Richard, L., et al., 2013a.Evaluating the Impact of Mineralogy on Reservoir Quality and Completion Quality of Organic Shale Plays.Proceedings-SPE Annual Technical Conference and Exhibition, (3):2465-2481. [11] Helena, G.D., Camron, M., Richard, L., et al., 2013b.Score:A Mineralogy Based Classification Scheme for Organic Mudstones.Proceeding-SPE Annual Technical Conference and Exhibition, (3):2465-2481. http://d.old.wanfangdata.com.cn/Periodical/zgwzbjjyx201712008 [12] Hennissen, J.A.I., Hough, E., Vane, C.H., et al., 2017.The Prospectivity of a Potential Shale Gas Play:An Example from the Southern Pennine Basin (Central England, UK).Marine and Petroleum Geology, 86:1047-1066.doi: 10.1016/j.marpetgeo.2017.06.033 [13] Hou, H.H., Shao, L.Y., Li, Y.H., et al., 2017.Geochemistry, Reservoir Characterization and Hydrocarbon Generation Potential of Lacustrine Shales:A Case of YQ-1 Well in the Yuqia Coalfield, Northern Qaidam Basin, NW China.Marine and Petroleum Geology, 88:458-471.doi: 10.1016/j.marpetgeo.2017.08.030 [14] Hu, J., Chen, Z., Xue, Y.S., et al., 2002.Sponge Spicules in Early Cambrian Hetang Formation, Xiuning, Southern Anhui.Acta Micropalaeontologica Sinica, 19(1):53-62(in Chinese with English abstract). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=wtgswxb200201004 [15] Jarvie, D.M., Hill, R.J., Ruble, T.E., et al., 2007.Unconventional Shale-Gas Systems:The Mississippian Barnett Shale of North-Central Texas as One Model for Thermogenic Shale-Gas Assessment.AAPG Bulletin, 91(4):475-499.doi: 10.1306/12190606068 [16] Jiang, S., Tang, X.L., Osborne, S., et al., 2017.Enrichment Factors and Current Misunderstanding of Shale Oil and Gas:Case Study of Shale in U.S., Argentina and China.Earth Science, 42(7):1083-1091(in Chinese with English abstract). http://www.en.cnki.com.cn/Article_en/CJFDTOTAL-DQKX201707004.htm [17] Jiang, Z.X., 2003.Sedimentology.Petroleum Industry Press, Beijing (in Chinese). [18] Loucks, R.G., Ruppel, S.C., 2007.Mississippian Barnett Shale:Lithofacies and Depositional Setting of a Deep-Water Shale-Gas Succession in the Fort Worth Basin, Texas.AAPG Bulletin, 91(4):579-601.doi: 10.1306/11020606059 [19] Macquaker, J.H.S., Adams, A.E., 2003.Maximizing Information from Fine-Grained Sedimentary Rocks:An Inclusive Nomenclature for Mudstones.Journal of Sedimentary Research, 73(5):735-744.doi: 10.1306/012203730735 [20] Miliken, K.L, Stirrat, R.J.D., Papazis, P.K., et al., 2012.Carbonate Lithologies of the Mississipian Barnett Shale, Fort Worth Basin, Texas.Shale Reservoirs-Giant Resources for the 21st Century.AAPG Memoir, 97:290-321. [21] Ross, D.J.K., Bustin, R.M., 2008.Characterizing the Shale Gas Resource Potential of Devonian-Mississippian Strata in the Western Canada Sedimentary Basin:Application of an Integrated Formation Evaluation.AAPG Bulletin, 92(1):87-125.doi: 10.1306/09040707048 [22] Shipboard Scientific Party, 1984.Introduction and Explanatory Notes.In: Hay, W.W., Sibuet, J.C., eds.Initial Reports Deep Sea Drilling Project, 75(1): 3-25. [23] Stow, D.A.V., 2005.Sedimentary Rocks in the Field:A Color Guide.Elsevier Academic Press, Burlington. [24] Tian, H., Pan, L., Xiao, X.M., et al., 2013.A Preliminary Study on the Pore Characterization of Lower Silurian Black Shales in the Chuandong Thrust Fold Belt, Southwestern China Using Low Pressure N2 Adsorption and FE-SEM Methods.Marine and Petroleum Geology, 48:8-19.doi: 10.1016/j.marpetgeo.2013.07.008 [25] Wang, G.C., Carr, T.R., 2012a.Marcellus Shale Lithofacies Prediction by Multiclass Neural Network Classification in the Appalachian Basin.Mathematical Geosciences, 44(8):975-1004.doi: 10.1007/s11004-012-9421-6 [26] Wang, G.C., Carr, T.R., 2012b.Methodology of Organic-Rich Shale Lithofacies Identification and Prediction:A Case Study from Marcellus Shale in the Appalachian Basin.Computers & Geosciences, 49:151-163.doi: 10.1016/j.cageo.2012.07.011 [27] Wang, G.C., Carr, T.R., 2013.Organic-Rich Marcellus Shale Lithofacies Modeling and Distribution Pattern Analysis in the Appalachian Basin.AAPG Bulletin, 97(12):2173-2205.doi: 10.1306/05141312135 [28] Wang, G.C., Carr, T.R., Ju, Y.W., et al., 2014.Identifying Organic-Rich Marcellus Shale Lithofacies by Support Vector Machine Classifier in the Appalachian Basin.Computers & Geosciences, 64:52-60.doi: 10.1016/j.cageo.2013.12.002 [29] Wang, P.F., Jiang, Z.X., Yin, L.S., et al., 2017.Lithofacies Classification and Its Effect on Pore Structure of the Cambrian Marine Shale in the Upper Yangtze Platform, South China:Evidence from FE-SEM and Gas Adsorption Analysis.Journal of Petroleum Science and Engineering, 156:307-321.doi: 10.1016/j.petrol.2017.06.011 [30] Wang, Y., Wang, L.H., Wang, J.Q., et al., 2018.Characterization of Organic Matter Pores in Typical Marine and Terrestrial Shales, China.Journal of Natural Gas Science and Engineering, 49:56-65.doi: 10.1016/j.jngse.2017.11.002 [31] Wei, Z.F., Wang, Y.L., Wang, G., et al., 2018.Pore Characterization of Organic-Rich Late Permian Da-Long Formation Shale in the Sichuan Basin, Southwestern China.Fuel, 211:507-516.doi: 10.1016/j.fuel.2017.09.068 [32] Wu, L.Y., Hu, D.F., Lu, Y.C., et al., 2016.Advantageous Shale Lithofacies of Wufeng Formation-Longmaxi Formation in Fuling Gas Field of Sichuan Basin, SW China.Petroleum Exploration and Development, 43(2):189-197(in Chinese with English abstract). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=syktykf201602004 [33] Xiao, S.H., Hu, J., Yuan, X.L., et al., 2005.Articulated Sponges from the Lower Cambrian Hetang Formation in Southern Anhui, South China:Their Age and Implications for the Early Evolution of Sponges.Palaeogeography, Palaeoclimatology, Palaeoecology, 220(1/2):89-117.doi: 10.1016/j.palaeo.2002.02.001 [34] Yang, F., Ning, Z.F., Wang, Q., et al., 2016.Pore Structure of Cambrian Shales from the Sichuan Basin in China and Implications to Gas Storage.Marine and Petroleum Geology, 70:14-26.doi: 10.1016/j.marpetgeo.2015.11.001 [35] Yu, S.Y., He, J.Y, 1989.Sedimentary Petrology.China University of Geosciences Press, Wuhan (in Chinese). [36] Zhang, L., Danelian, T., Feng, Q.L., et al., 2013.On the Lower Cambrian Biotic and Geochemical Record of the Hetang Formation (Yangtze Platform, South China):Evidence for Biogenic Silica and Possible Presence of Radiolaria.Journal of Micropalaeontology, 32(2):207-217.doi: 10.1144/jmpaleo2013-003 [37] Zhou, C.M., Jiang, S.Y., 2009.Palaeoceanographic Redox Environments for the Lower Cambrian Hetang Formation in South China:Evidence from Pyrite Framboids, Redox Sensitive Trace Elements, and Sponge Biota Occurrence.Palaeogeography, Palaeoclimatology, Palaeoecology, 271(3-4):279-286.doi: 10.1016/j.palaeo.2008.10.024 [38] Zhu, X.M., 2008.Sedimentology (Fourth Edition).Petroleum Industry Press, Beijing (in Chinese). [39] 樊佳莉, 2017.下扬子地区下寒武统富有机质页岩的岩相与沉积环境.地质科技情报, 36(5):156-163. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=QKC20172017110900024723 [40] 郭旭升, 2017.上扬子地区五峰组-龙马溪组页岩层序地层及演化模式.地球科学, 42(7):1069-1082. http://www.earth-science.net/WebPage/Article.aspx?id=3610 [41] 郭旭升, 胡东风, 文冶东, 等, 2014.四川盆地及周缘下古生界海相页岩气富集高产主控因素:以焦石坝地区五峰组-龙马溪组为例.中国地质, 41(3):893-901. doi: 10.3969/j.issn.1000-3657.2014.03.016 [42] 胡杰, 陈哲, 薛耀松, 等, 2002.皖南早寒武世荷塘组海绵骨针化石.微体古生物学报, 19(1):53-62. doi: 10.3969/j.issn.1000-0674.2002.01.004 [43] 蒋恕, 唐相路, Steve, O., 等, 2017.页岩油气富集的主控因素及误辩:以美国、阿根廷和中国典型页岩为例.地球科学, 42(7):1083-1091. http://www.earth-science.net/WebPage/Article.aspx?id=3609 [44] 姜在兴, 2003.沉积学.北京:石油工业出版社. [45] 吴蓝宇, 胡东风, 陆永潮, 等, 2016.四川盆地涪陵气田五峰组-龙马溪组优势岩相.石油勘探与开发, 43(2):189-197. http://d.wanfangdata.com.cn/Periodical/syktykf201602004 [46] 余素玉, 何镜宇, 1989.沉积岩石学.武汉:中国地质大学出版社. [47] 朱筱敏, 2008.沉积岩石学(第四版).北京:石油工业出版社.