Documentation of Early Paleozoic Mafic Dykes in the Dahongshan Region, Northern Yangze Block and Its Geological Significance
-
摘要: 扬子北缘大洪山地区广泛出露北西-南东向基性岩脉,脉体主要侵位于区内前南华系基底砂板岩、白云岩中,而南华系及上覆盖层中少见.长期以来,这套基性侵入岩的形成时代和背景都存在疑问.通过对七里冲、姚家咀、姚家冲、刘关4个地区的基性岩脉进行锆石LA-ICP-MS U-Pb测年,获得成岩年龄分别为433.7 Ma、435.6 Ma、433.4 Ma、436.4 Ma,这些年龄值在误差范围内一致,同属于早志留世,为大洪山地区这期基性岩脉提供了精确的同位素年代学依据.地球化学方面,大洪山地区基性岩脉表现为亚碱性系列的特点,较高∑REE含量,轻、重稀土存在分异,富集LILEs而亏损HFSEs,Zr > 100×10-6,TiO2 > 2%,Zr/Y > 3.5,指示其形成于大陆伸展环境.首次在扬子地块北缘识别出一套早古生代晚期代表大陆伸展环境的基性岩脉,为扬子地块北缘大洪山地区存在早古生代近北东向的区域伸展提供强有力的证据.研究表明,早古生代秦岭-大别南缘和扬子地块北缘虽然在沉积上地层存在差异,但可能同属于扬子北缘陆缘裂谷拉张环境.Abstract: NE-SW mafic dykes are widespread in the Dahongshan region, northern Yangtze block. They mainly emplaced the pre-Nanhua basement rock, e.g. dolomite, sandstone and slate, and scarcely found in Nanhuan system and its overlying strata. It has been controversial for their formation age and background of the mafic dykes for a long time. In this paper, LA-ICP-MS zircon dating for 4 mafic dykes from Qilichong, Yaojiaju, Yaojiachong and Liuguan yield U-Pb ages of 433.7 Ma, 435.6 Ma, 433.4 Ma and 436.4 Ma respectively. All the ages belong to the Early Silurian and are consistent within measuring errors, and offer precise isotope chronology to the mafic dykes in the Dahongshan region. The mafic dykes in the Dahongshan region are characterized by subalkalic series, high ∑REE content, medium differentiation between LREE and HREE, enriched LILEs and depleted HFSEs, Zr > 100×10-6, TiO2 > 2%, and Zr/Y > 3.5. Accordingly, it is suggested that they may have formed in a continental extension environment. We have discerned Early Paleozoic mafic dykes swarm indicative of continental extension in the northern Yangtze block for the first time. It provides powerful evidence that the Dahongshan region in the northern Yangtze block shows NE regional extension. Additionally, we tentatively thought that the south Qinling-Dabie mountain and the north Yangtze block belong to same extensional epicontinental rift environment although different sedimentary strata appeared between them in Early Paleozoic.
-
Key words:
- northern Yangze block /
- mafic dykes /
- Early Paleozoic /
- zircon U-Pb dating /
- geochemistry
-
图 6 大洪山地区基性岩脉分类图解
a.TAS图解,据Irvine and Baragar(1971)、Le Bas et al.(1986);b.Nb/Y-Zr×10-4/TiO2,据Winchester and Floyd(1977)、Pearce(2014);兰家畈玄武岩数据摘自董云鹏等(1998a),下文一致
Fig. 6. Classification diagrams of the mafic dykes from the Dahongshan region
图 7 基性岩脉球粒陨石标准化稀土元素配分图(a)和原始地幔标准化蛛网图(b)
Fig. 7. Chondrite-normalized REE distribution patterns (a) and primitive mantle-normalized spidergrams (b) for the mafic dykes
图 8 大洪山地区基性岩脉构造环境判别图解
a.Zr-Zr/Y图解,据Pearce(1982);b.Zr-TiO2图解,据Pearce(1982)
Fig. 8. Discrimination diagrams for the mafic dykes from Dahongshan region
表 1 大洪山地区典型基性岩脉特征统计
Table 1. Statistical table of the features for typical mafic dykes in the Dahongshan region
编号 地点 GPS 产状 描述(脉体和围岩特征) 北部 1 南风垭公路边 E112°59′25″
N31°28′47″60°∠85° 辉绿岩脉宽约2.5 m,内部基本未发生变形,围岩为白云质、硅质砾岩,围岩发生一定蚀变,接触界面有错动,边部片理化强烈. 2 南坡公路边 E112°58′16″
N31°29′09″98°∠44° 辉绿岩脉宽约1.5 m,内部基本未发生变形,围岩为白云岩,白云岩产状与接触界面近平行,围岩发生一定褐铁矿化,接触界面无错动. 3 南坡公路边 E112°58′12″
N31°29′08″62°∠64° 辉绿岩脉宽约4 m,片理化强烈,片理产状90°∠48°,围岩为白云岩,白云岩层理产状345°∠70°,围岩发生一定蚀变,接触界面基本无错动,边部片理化强烈. 4 白龙池边 E112°57′40″
N31°28′59″72°∠76° 辉绿岩脉宽1~3 m,基本未发生变形,围岩为泥质条带白云岩,产状5°∠66°,围岩发生一定蚀变,且岩脉中可见白云岩包体,脉体与围岩接触界面无错动. 5 白龙池边 E112°57′41″
N31°28′58″67°∠24° 辉绿岩脉宽约0.5 m,围岩为白云岩,围岩发育宽约3 cm的蚀变带,脉体与围岩接触界面基本无错动,但都发生强烈片理化,片理产状123°∠45°. 6 白龙池边 E112°57′41″
N31°28′58″76°∠42° 辉绿岩脉宽约2 m,围岩为白云岩,蚀变带发育,脉体与围岩接触界面基本无错动,但都发生强烈片理化. 7 白龙池边 E112°57′44″
N31°28′59″61°∠44° 辉绿岩脉宽约3.5 m,围岩为白云岩,蚀变带发育,层理产状25°∠70°,脉体与围岩接触界面基本无错动,但都发生强烈片理化. 8 灵官垭 E112°56′43″
N31°29′08″60°∠45° 辉绿岩脉宽约6 m,围岩为白云岩,蚀变带发育,层理产状0°∠84°,脉体与围岩接触界面基本无错动. 9 灵官垭 E112°58′11″
N31°29′12″105°∠84° 辉绿岩脉宽约10 m,围岩为紫红色白云岩,层理产状155°∠66°,脉体与围岩之间略有错动. 10 七里冲 E112°58′12″
N31°29′13″8°∠55° 辉绿岩脉宽约5 m,脉体破碎,围岩为粉砂岩,层理产状355°∠10°,脉体与围岩之间略有错动. 11 七里冲 E112°57′30″
N31°29′35″25°∠74° 辉绿岩脉宽约2.5 m,脉体破碎,围岩为砂岩、粉砂岩,鲍马序列发育,脉体与围岩之间略有错动. 12 七里冲 E112°57′08″
N31°30′20″73°∠86° 辉绿岩脉宽约6 m,围岩为中-细粒杂砂岩、白云质砂岩,层理产状70°∠54°,脉体与围岩之间基本无错动,围岩发育烘烤边,片理化强烈,片理产状50°∠70°. 南部 13 罗家咀 E113°05′15″
N31°22′01″265°∠82° 辉绿岩脉宽约0.8 m,脉体片理化强烈,片理产状与脉体产状基本一致,围岩为白云岩,层理产状284°∠35°,脉体与围岩之间基本无错动. 14 罗家咀 E113°05′16″
N31°22′11″67°∠72° 辉绿岩脉宽约4 m,脉体片理化强烈,片理产状25°∠70°,围岩为硅质条带白云岩,脉体与围岩之间基本无错动. 15 姚家冲 E113°06′28″
N31°23′16″75°∠75° 辉绿岩脉宽2~4 m,脉体有一定片理化,围岩为刀砍纹白云岩,脉体与围岩之间基本无错动,蚀变带发育. 16 观音咀 E113°08′36″
N31°20′55″64°∠80° 辉绿岩脉宽2~3 m,脉体发生劈理化,围岩为中-粗粒杂砂岩,脉体近直立,与围岩之间基本无错动. 17 罗汉岭 E113°07′03″
N31°19′37″72°∠64° 辉绿岩脉宽约2 m,围岩为含硅质泥质板岩,板理产状:262°∠78°,脉体与围岩之间略有错动. 18 唐关 E113°07′02″
N31°30′21″64°∠82° 辉绿岩脉宽约11 m,围岩为碎裂白云岩,刀砍纹发育,脉体与围岩呈切层关系,之间基本无错动. 19 仙人岭 E113°07′37″
N31°18′20″76°∠74° 辉绿岩脉宽2~7 m不等,由下往上逐渐变窄,围岩为白云岩,切层明显,脉体与围岩接触部位发育红色褐铁矿化,白云岩围岩发育强烈大理岩化. 20 晏家咀 E113°09′43″
N31°14′16″50°∠73° 辉绿岩脉宽约1.5 m,脉体破碎强烈,围岩为微晶白云岩,表明发育刀砍纹,二者之间有错动. 21 刘关 E113°09′29″
N31°14′11″45°∠80° 辉绿岩脉宽约5 m,风化破碎严重,围岩为粉砂质板岩,片理产状32°∠50°,二者之间有错动. 表 2 基性岩脉锆石U-Pb测年结果
Table 2. U-Pb zircon data for the mafic dykes
分析
点号含量(10-6) Th/
U比值 年龄(Ma) Pb Th U 207Pb/206Pb 1σ 207Pb/235U 1σ 206Pb/238U 1σ 207Pb/206Pb 1σ 208Pb/232Th 1σ 206Pb/238U 1σ D5076-1 01 37.46 160.0 482 0.33 0.064 5 0.002 0 0.588 7 0.017 7 0.065 9 0.000 6 767 60 470 11 412 4 02 28.56 123.0 359 0.34 0.061 9 0.001 8 0.586 1 0.016 5 0.068 4 0.000 6 672 61 468 11 427 4 03 33.29 239.0 430 0.56 0.067 9 0.003 6 0.569 1 0.021 4 0.061 8 0.001 0 865 109 457 14 386 6 04 39.50 229.0 508 0.45 0.059 9 0.001 9 0.541 4 0.016 2 0.065 7 0.000 8 600 101 439 11 410 5 05 29.54 203.0 355 0.57 0.055 6 0.001 8 0.535 5 0.017 3 0.069 7 0.000 8 435 72 435 11 435 5 06 31.28 141.0 394 0.36 0.055 5 0.001 7 0.538 7 0.017 2 0.070 0 0.000 9 435 69 438 11 436 5 07 35.86 165.0 458 0.36 0.055 5 0.001 7 0.534 8 0.016 6 0.069 7 0.000 8 432 69 435 11 434 5 08 53.40 258.0 654 0.39 0.057 6 0.001 5 0.558 8 0.014 0 0.070 2 0.000 7 522 56 451 9 437 4 09 31.60 225.0 372 0.60 0.057 3 0.001 7 0.548 0 0.016 2 0.069 5 0.000 7 502 67 444 11 433 4 10 33.42 242.0 393 0.62 0.059 4 0.001 7 0.569 9 0.016 1 0.069 6 0.000 7 583 68 458 10 434 4 11 35.94 121.0 397 0.30 0.057 4 0.001 5 0.682 5 0.021 3 0.086 3 0.001 5 506 53 528 13 534 9 12 34.89 146.0 429 0.34 0.056 6 0.001 7 0.570 6 0.018 1 0.073 5 0.001 1 476 65 458 12 457 7 13 99.70 289.0 1 288 0.22 0.057 5 0.001 3 0.553 4 0.013 2 0.069 6 0.000 6 522 50 447 9 434 4 14 15.87 87.5 190 0.46 0.060 9 0.002 2 0.584 9 0.021 3 0.070 4 0.001 0 635 78 468 14 438 6 15 50.75 203.0 645 0.31 0.054 3 0.001 2 0.526 5 0.012 6 0.070 1 0.000 7 383 52 430 8 437 4 16 42.82 92.4 552 0.17 0.058 9 0.001 4 0.570 5 0.014 3 0.070 0 0.000 8 565 54 458 9 436 5 17 42.05 155.0 534 0.29 0.054 0 0.001 5 0.521 1 0.014 1 0.069 8 0.000 8 372 63 426 9 435 5 18 33.49 151.0 409 0.37 0.061 6 0.001 9 0.594 5 0.018 0 0.069 8 0.000 8 661 66 474 11 435 5 19 35.77 137.0 453 0.30 0.056 3 0.001 7 0.538 5 0.016 6 0.068 7 0.000 8 465 67 437 11 428 5 20 45.08 203.0 563 0.36 0.057 4 0.001 6 0.544 5 0.015 1 0.068 7 0.000 7 506 63 441 10 428 4 21 32.41 134.0 421 0.32 0.068 3 0.002 1 0.617 4 0.019 8 0.065 0 0.000 7 880 64 488 12 406 4 22 36.90 166.0 450 0.37 0.056 2 0.001 5 0.543 3 0.013 9 0.070 1 0.000 7 461 27 441 9 437 4 23 46.14 215.0 639 0.34 0.063 1 0.003 4 0.512 4 0.015 1 0.061 1 0.000 9 722 121 420 10 382 5 24 35.65 113.0 343 0.33 0.069 1 0.002 2 0.820 3 0.028 8 0.085 1 0.001 2 902 65 608 16 526 7 PM07-26-1 01 32.98 144.0 400 0.36 0.057 0 0.001 7 0.550 4 0.016 6 0.070 2 0.000 9 494 67 445 11 437 6 02 37.23 152.0 454 0.34 0.056 4 0.001 5 0.549 9 0.015 9 0.070 1 0.000 8 478 59 445 10 437 5 03 76.00 245.0 929 0.26 0.054 5 0.001 1 0.531 4 0.011 6 0.070 6 0.001 0 394 44 433 8 440 6 04 45.29 168.0 557 0.30 0.054 7 0.001 4 0.528 2 0.014 0 0.070 0 0.000 9 467 57 431 9 436 5 05 27.64 118.0 323 0.36 0.054 7 0.001 7 0.525 2 0.016 5 0.069 6 0.000 7 467 75 429 11 434 4 06 35.82 105.0 416 0.25 0.054 1 0.001 7 0.540 1 0.017 0 0.072 6 0.001 1 376 69 438 11 452 7 07 30.50 203.0 336 0.60 0.054 7 0.002 1 0.515 9 0.019 6 0.068 9 0.000 9 398 87 422 13 429 5 08 41.65 221.0 459 0.48 0.057 7 0.002 1 0.561 4 0.024 4 0.069 6 0.000 9 517 81 452 16 434 6 09 45.60 324.0 463 0.70 0.058 2 0.001 8 0.566 9 0.017 7 0.070 3 0.000 8 539 64 456 11 438 5 10 49.92 197.0 569 0.35 0.055 5 0.001 3 0.541 8 0.014 3 0.070 0 0.000 8 432 54 440 9 436 5 11 24.86 76.8 254 0.30 0.061 7 0.002 2 0.692 0 0.027 3 0.080 1 0.001 1 665 78 534 16 497 6 12 100.70 253.0 1 243 0.20 0.056 2 0.001 5 0.535 2 0.014 6 0.068 4 0.000 7 461 61 435 10 426 4 13 33.80 115.0 299 0.38 0.065 8 0.002 0 0.833 1 0.027 9 0.090 4 0.001 4 1 200 60 615 15 558 8 14 18.98 93.9 215 0.44 0.062 1 0.002 4 0.595 3 0.020 3 0.070 2 0.001 1 676 81 474 13 437 7 15 42.25 73.3 228 0.32 0.087 6 0.002 3 1.818 4 0.045 7 0.149 9 0.001 7 1 374 55 1 052 16 900 10 16 129.00 178.0 332 0.54 0.107 2 0.001 9 4.454 6 0.080 3 0.298 3 0.002 7 1 754 32 1 723 15 1 683 13 17 36.70 221.0 417 0.53 0.059 6 0.001 6 0.582 8 0.015 8 0.070 2 0.000 7 587 56 466 10 438 4 18 36.94 140.0 447 0.31 0.059 0 0.001 6 0.574 9 0.015 9 0.070 4 0.000 9 565 61 461 10 438 5 19 47.20 168.0 551 0.30 0.057 8 0.001 6 0.585 3 0.015 4 0.073 1 0.000 9 520 64 468 10 455 5 20 24.08 143.0 265 0.54 0.057 2 0.001 9 0.595 1 0.020 9 0.075 1 0.001 2 498 69 474 13 467 7 21 32.85 152.0 384 0.39 0.059 0 0.001 8 0.575 0 0.017 2 0.070 5 0.001 0 565 67 461 11 439 6 22 45.42 180.0 548 0.33 0.058 1 0.001 4 0.564 3 0.014 0 0.069 9 0.000 7 532 54 454 9 435 4 23 55.60 340.0 641 0.53 0.058 1 0.001 4 0.568 7 0.013 8 0.070 4 0.000 7 600 52 457 9 438 4 24 36.64 146.0 442 0.33 0.057 1 0.001 4 0.557 1 0.013 9 0.070 2 0.000 8 494 54 450 9 438 5 D5021-5 01 99.0 583 475 1.23 0.058 3 0.002 1 0.441 1 0.012 8 0.054 9 0.000 6 543 75.9 371 9.0 345 3.5 02 41.0 179 115 1.55 0.086 5 0.003 6 0.841 1 0.035 8 0.070 4 0.001 0 1 350 75.0 620 19.8 439 6.2 03 21.4 49 245 0.20 0.055 4 0.002 1 0.518 8 0.018 3 0.068 2 0.000 9 428 91.7 424 12.3 425 5.2 04 278.0 135 316 0.43 0.143 6 0.002 2 10.117 2 0.181 3 0.507 9 0.006 2 2 272 21.3 2 446 16.6 2 648 26.5 05 38.0 111 361 0.31 0.058 2 0.001 9 0.570 9 0.017 6 0.070 5 0.001 0 600 74.1 459 11.4 439 6.0 06 40.0 105 435 0.24 0.055 6 0.001 4 0.530 3 0.014 2 0.068 9 0.000 7 435 52.8 432 9.4 430 4.5 07 22.0 320 597 0.54 0.051 8 0.001 8 0.127 6 0.004 6 0.017 9 0.000 3 276 79.6 122 4.1 114 1.8 08 25.6 228 232 0.98 0.055 5 0.002 2 0.276 6 0.010 5 0.036 4 0.000 5 432 87.0 248 8.3 230 3.0 09 15.7 286 361 0.79 0.051 0 0.002 4 0.113 7 0.005 3 0.016 3 0.000 2 243 111.1 109 4.8 105 1.4 10 168.0 610 809 0.75 0.070 1 0.001 3 0.825 4 0.015 2 0.085 4 0.000 9 931 34.3 611 8.4 528 5.5 11 310.0 300 414 0.73 0.117 9 0.002 2 4.931 6 0.102 8 0.301 4 0.003 6 1 924 33.3 1 808 17.6 1 698 18.0 12 51.0 215 310 0.69 0.059 2 0.002 6 0.554 1 0.020 3 0.068 9 0.001 3 576 93.4 448 13.3 430 8.1 13 14.8 122 353 0.34 0.051 4 0.002 2 0.184 5 0.007 9 0.025 9 0.000 3 257 100.0 172 6.7 165 2.1 14 20.1 67 163 0.41 0.063 8 0.002 3 0.627 1 0.024 3 0.070 6 0.000 8 744 77.8 494 15.2 440 4.9 15 22.2 124 206 0.60 0.059 5 0.002 2 0.383 7 0.013 9 0.046 9 0.000 6 583 79.6 330 10.2 295 3.7 16 53.0 43 39 1.10 0.158 6 0.003 5 8.850 5 0.224 9 0.402 8 0.006 3 2 440 38.7 2 323 23.2 2 182 28.9 17 227.0 2 042 1 844 1.11 0.056 0 0.001 2 0.285 7 0.006 3 0.036 7 0.000 4 454 46.3 255 5.0 233 2.2 18 35.5 53 338 0.16 0.073 0 0.002 4 0.709 2 0.025 6 0.069 6 0.000 9 1 013 66.7 544 15.2 434 5.5 19 30.1 60 97 0.62 0.068 8 0.002 2 1.322 8 0.043 2 0.139 8 0.002 1 892 66.7 856 18.9 844 11.8 20 26.7 62 338 0.18 0.054 0 0.001 4 0.523 3 0.013 9 0.069 9 0.000 7 372 54.6 427 9.2 436 4.3 21 113.0 1 191 2 069 0.58 0.055 1 0.001 6 0.203 7 0.004 6 0.027 1 0.000 5 413 64.8 188 3.9 172 3.0 22 29.0 404 350 1.15 0.051 6 0.002 3 0.153 7 0.007 0 0.022 1 0.000 5 333 102 145 6.2 141 2.9 23 236.0 663 1 759 0.38 0.057 0 0.000 9 0.659 4 0.012 0 0.083 4 0.001 0 494 35.2 514 7.3 517 6.2 24 122.0 86 90 0.95 0.155 0 0.002 9 9.419 8 0.217 1 0.436 9 0.006 8 2 402 32.9 2 380 21.2 2 337 30.3 D5024-5 01 78.0 191 554 0.35 0.063 6 0.001 4 0.721 3 0.021 8 0.081 7 0.001 8 728 46.3 551 12.9 506 11.0 02 42.0 156 242 0.65 0.052 0 0.002 1 0.520 6 0.019 5 0.070 6 0.001 0 287 92.6 426 13.0 440 6.2 03 65.0 319 258 1.24 0.055 0 0.001 5 0.531 0 0.015 1 0.069 8 0.000 7 413 61.1 432 10.0 435 4.2 04 109.0 381 684 0.56 0.056 0 0.001 2 0.588 0 0.014 4 0.076 2 0.000 9 454 17.6 470 9.2 473 5.2 05 119.0 538 570 0.94 0.053 7 0.001 3 0.524 0 0.015 0 0.070 5 0.000 6 361 55.6 428 10.0 439 3.5 06 75.0 336 349 0.96 0.057 7 0.001 6 0.556 5 0.017 8 0.070 3 0.000 8 520 67.6 449 11.6 438 4.8 07 214.0 647 1 937 0.33 0.060 9 0.001 3 0.546 1 0.015 0 0.064 9 0.000 6 635 48.1 442 9.9 406 3.6 08 163.0 736 999 0.74 0.061 7 0.001 7 0.571 5 0.017 3 0.067 7 0.000 8 665 57.4 459 11.2 422 5.0 09 309.0 101 439 0.23 0.163 3 0.002 5 10.586 1 0.210 8 0.468 3 0.004 5 2 490 25.8 2 487 18.6 2 476 19.7 10 109.0 372 643 0.58 0.061 7 0.001 2 0.599 2 0.013 3 0.070 3 0.000 8 665 43.4 477 8.4 438 4.7 11 289.0 158 235 0.67 0.162 3 0.002 3 10.902 7 0.178 3 0.484 2 0.004 9 2 480 24.1 2 515 15.3 2 546 21.2 12 213.0 140 221 0.63 0.156 7 0.002 7 8.592 5 0.186 9 0.393 8 0.005 8 2 420 29.8 2 296 19.8 2 141 26.9 13 53.0 192 267 0.72 0.087 1 0.002 2 1.080 2 0.039 7 0.088 5 0.002 2 1 365 48.5 744 19.4 547 12.8 14 213.0 402 502 0.80 0.074 6 0.001 6 1.743 1 0.030 5 0.169 4 0.001 7 1 057 42.6 1 025 11.3 1 009 9.2 15 112.0 215 448 0.48 0.070 8 0.001 5 1.255 5 0.025 6 0.127 8 0.001 0 954 42.6 826 11.6 776 5.8 16 142.0 337 635 0.53 0.062 7 0.001 2 0.763 0 0.018 0 0.087 5 0.001 2 698 43.5 576 10.4 541 7.4 17 39.0 45 101 0.44 0.084 2 0.002 0 2.460 3 0.060 6 0.211 4 0.002 5 1 298 45.8 1 260 17.8 1 236 13.3 18 71.0 277 399 0.69 0.058 4 0.001 9 0.584 9 0.030 4 0.070 4 0.001 1 543 70.4 468 19.4 439 6.7 19 70.0 170 158 1.08 0.063 5 0.001 7 1.177 8 0.030 8 0.135 0 0.001 7 724 61.3 790 14.4 816 9.6 20 23.7 98 144 0.68 0.051 5 0.001 9 0.494 3 0.018 6 0.069 6 0.000 8 265 85.2 408 12.6 434 4.9 21 44.0 157 231 0.68 0.052 7 0.002 4 0.548 9 0.017 8 0.069 7 0.001 3 322 105.5 444 11.7 434 7.6 22 63.0 192 345 0.56 0.060 2 0.001 4 0.676 5 0.016 0 0.082 0 0.001 3 613 50.0 525 9.7 508 8.0 23 50.0 385 704 0.55 0.051 9 0.001 4 0.238 6 0.006 5 0.033 3 0.000 4 280 61.1 217 5.4 211 2.4 24 70.0 290 473 0.61 0.054 1 0.001 5 0.519 0 0.012 9 0.069 3 0.000 7 376 56.5 425 8.6 432 4.0 表 3 大洪山地区基性岩脉主量、微量元素数据
Table 3. Data of major and trace elements of the mafic dykes in the Dahongshan region
编号 D4013-2 D4021-4 D4024-1 D5017-4 D5017-9 D5019-2 D5020-2 D5072-1 D5073-1 D5074-1 D5076-1 主量元素(%) SiO2 48.76 53.29 47.57 56.84 49.94 50.61 49.27 45.05 48.04 52.31 47.94 TiO2 2.35 2.03 2.90 3.70 2.28 2.71 2.80 2.59 2.84 2.15 1.44 Al2O3 12.32 12.26 12.06 13.97 18.34 14.04 19.85 12.74 18.64 12.24 15.79 Fe2O3 2.76 3.79 10.02 10.19 2.27 6.99 3.69 5.62 2.24 3.15 3.25 FeO 10.6 7.25 6.9 2.92 9.13 7.95 10.88 7.65 7.55 9.05 7.70 MnO 0.24 0.12 0.25 0.01 0.11 0.17 0.10 0.09 0.01 0.15 0.22 MgO 5.71 4.01 5.46 5.02 7.81 4.11 4.76 6.46 4.63 5.26 6.91 CaO 9.83 4.83 4.42 1.37 4.41 7.87 2.80 6.10 1.79 4.39 7.53 Na2O 2.50 0.65 3.50 0.80 4.00 3.33 3.49 0.12 0.12 3.15 2.21 K2O 0.36 3.79 0.23 4.33 1.32 1.71 1.86 3.73 7.80 0.28 2.94 P2O5 0.22 0.45 0.48 0.85 0.38 0.50 0.49 0.50 1.19 0.92 0.14 LOI 2.97 6.57 5.26 3.73 6.83 7.18 5.41 8.34 4.02 5.81 2.78 FeOT 13.09 10.66 15.91 12.09 11.17 14.24 14.21 12.71 9.56 11.88 10.63 Na2O+K2O 0.57 4.24 0.70 5.18 1.70 2.22 2.35 4.23 8.99 1.20 3.08 Mg# 43.75 40.14 37.94 42.52 55.49 33.94 37.42 47.52 46.31 44.10 53.69 微量元素(10-6) Sc 42.80 24.34 38.08 39.33 40.54 33.88 44.54 33.72 28.88 25.86 40.06 Cr 59.81 9.85 31.56 26.24 219.6 27.80 215.9 41.77 15.17 4.35 215.6 Co 42.93 20.26 38.79 58.40 65.35 41.77 71.79 28.94 44.08 11.01 43.83 Ni 34.67 9.92 15.83 45.98 77.39 15.90 61.79 18.88 42.27 1.43 49.90 Rb 11.29 65.89 7.13 69.15 17.90 22.14 19.04 84.35 61.40 2.44 71.09 Sr 159.8 58.69 120.8 25.42 107.3 194.3 56.95 81.59 20.29 86.52 266.0 Y 47.55 63.27 49.23 45.50 31.10 38.42 41.16 42.28 77.29 70.43 32.19 Nb 4.77 8.69 4.58 6.48 5.20 5.96 5.54 6.65 8.21 9.68 2.84 Zr 169.9 378.0 196.2 227.3 140.8 186.9 169.7 205.5 401.5 432.5 93.40 Ba 347.8 136.0 481.5 176.2 563.2 272.2 150.5 134.9 1463 221.2 1084 Th 1.31 3.36 0.75 1.12 0.59 2.43 0.83 1.38 2.87 2.24 0.51 U 0.27 0.76 0.20 0.52 0.73 0.60 0.48 0.32 1.17 0.51 0.16 La 12.20 34.88 24.53 17.42 15.24 22.36 15.49 20.72 35.45 46.54 5.18 Ce 27.91 76.26 51.01 39.13 33.09 49.52 36.59 46.80 96.03 107.2 13.39 Nd 20.47 45.58 34.57 32.10 23.47 29.82 24.43 30.31 66.15 69.85 12.09 Sm 6.04 11.06 8.76 8.71 5.88 7.21 6.54 7.68 15.78 16.69 3.83 Tb 1.41 2.01 1.65 1.51 1.02 1.20 1.27 1.33 2.42 2.41 0.85 Hf 5.8 8.6 6.0 4.45 3.56 4.36 3.74 4.01 7.12 10.24 2.14 Ta 0.54 0.63 0.41 0.50 0.47 0.49 0.52 0.59 0.42 0.56 0.31 Pb 1.64 6.34 7.15 4.10 3.83 7.00 6.67 6.33 5.56 2.17 2.09 V 444.2 290.0 513.8 438.2 352.8 397.1 404.2 402.8 221.6 88.91 275.6 La 12.20 34.88 24.53 17.42 15.24 22.36 15.49 20.72 35.45 46.54 5.18 Ce 27.91 76.26 51.01 39.13 33.09 49.52 36.59 46.80 96.03 107.2 13.39 Pr 4.28 10.68 7.79 6.65 5.12 6.86 5.43 6.87 14.79 15.60 2.39 Nd 20.47 45.58 34.57 32.10 23.47 29.82 24.43 30.31 66.15 69.85 12.09 Sm 6.04 11.06 8.76 8.71 5.88 7.21 6.54 7.68 15.78 16.69 3.83 Eu 2.00 2.78 2.56 2.42 1.75 1.99 1.95 2.07 3.96 5.01 1.42 Gd 7.00 10.90 8.95 9.79 6.36 7.56 7.72 8.35 15.94 16.14 4.93 Tb 1.41 2.01 1.65 1.51 1.02 1.20 1.27 1.33 2.42 2.41 0.85 Dy 8.71 11.94 9.68 8.81 6.27 7.52 7.84 8.52 14.53 14.11 5.73 Ho 1.77 2.37 1.89 1.67 1.19 1.43 1.52 1.65 2.88 2.64 1.16 Er 5.05 6.58 5.10 4.35 3.10 4.10 4.31 4.41 7.94 7.50 3.44 Tm 0.78 1.03 0.80 0.55 0.40 0.58 0.59 0.60 1.12 1.05 0.48 Yb 4.92 6.82 4.76 3.28 2.28 3.38 3.59 3.59 6.45 6.30 2.83 Lu 0.68 0.89 0.62 0.44 0.34 0.51 0.54 0.51 0.98 0.97 0.42 Zr/Y 3.57 5.97 3.99 5.00 4.53 4.86 4.12 4.86 5.19 6.14 2.90 ∑REE 103.21 223.78 162.67 136.83 105.51 144.02 117.80 143.40 284.41 312.00 58.14 LREE/HREE 2.40 4.26 3.86 3.50 4.04 4.48 3.30 3.95 4.44 5.10 1.93 (La/Yb)N 1.78 3.67 3.69 3.81 4.79 4.75 3.09 4.14 3.94 5.30 1.31 δEu 0.87 0.71 0.81 0.75 0.81 0.76 0.78 0.73 0.70 0.85 0.93 δCe 0.94 0.96 0.90 0.89 0.91 0.97 0.98 0.96 1.03 0.97 0.93 注:主量元素数据已经换算成干体系,FeOT=FeO+0.899 8×Fe2O3,Mg#=(MgO/40.31)×100/(MgO/40.31+FeOT/71.85). -
[1] Bureau of Regional Geology Surveying, 1982. 1︰200 000 Regional Geology Survey of Yicheng (H-49-V) and Suixian (H-49-M). Hubei Geological Survey, Wuhan (in Chinese). [2] Cao, L., Zhang, Q., Hu, S.J., et al., 2015.LA-ICP-MS Zircon U-Pb Age of Diabase Porphyry from the Donghe Area, Fangxian in South Daba Mountain and Its Tectonic Significance.Acta Geologica Sinica, 89(12):2314-2322 (in Chinese with English abstract). https://doi.org/10.3969/j.issn.0001-5717.2015.12.009 [3] Cao, Q., Liu, J.J., Li, L.Y., et al., 2015.Zircon U-Pb Age of Ore-Bearing Rock in the Qiaomaichong Gold Deposits on the Southern Margin of the Qinling Orogenic Belt and Its Geological Significance.Geology in China, 42(5):1303-1323 (in Chinese with English abstract). https://doi.org/10.3969/j.issn.1000-3657.2015.05.010 [4] Chen, C., Mao, X.W., Hu, Z.X., et al., 2017a.Discovery of~817 Ma Oceanic Island Basalts in the Dahongshan Region, Northern Hubei Province and Its Significance.Geological Science and Technology Information, 36(6):22-31 (in Chinese with English abstract). https://doi.org/10.19509/j.cnki.dzkq.2017.0603 [5] Chen, C., Xiong, B.C., Hu, Z.X., et al., 2017b.A Rustic Opinion of Neoproterozoic Ocean-Continent Coversion Events on the Northern Margin of Yangtze Block.Resources Environment & Engineering, 31(6):659-668 (in Chinese with English abstract). https://doi.org/10.16536/j.cnki.issn.1671-1211.2017.06.001 [6] Chen, J.L., Xu, X.Y., Wang, Z.Q., et al., 2008.Geological Features and SHRIMP U-Pb Zircon Age of the Yanwan-Yinggezui Ophiolitic Mélange in the Taibai Area, West Qinling, China.Geological Bulletin of China, 27(4):500-509 (in Chinese). https://doi.org/10.3969/j.issn.1671-2552.2008.04.007 [7] Chen, G.X., Jin, J.W., 1996.Multiple Classification and Correlation of the Stratigraphy of China-Stratigraphy (Lithostatic) of Hubei Province.China University of Geosciences Press, Wuhan (in Chinese). [8] Chen, C., Zhou, T., Hu, W.Y., et al., 2016.LA-ICP-MS Zircon U-Pb Dating, Geochemical Characteristics of Volcanic Rocks in Jianshui, Southeast Yunnan and Their Geological Implications.Geotectonica et Metallogenia, 40(1):161-173 (in Chinese with English abstract). https://doi.org/10.16539/j.ddgzyckx.2016.01.014 [9] Deng, H., Kusky, T.M., Polat, A., et al., 2013.Geochemistry of Neoarchean Mafic Volcanic Rocks and Late Mafic Dikes in the Zanhuang Complex, Central Orogenic Belt, North China Craton:Implications for Geodynamic Setting.Lithos, 175-176:193-212. https://doi.org/10.13039/501100001809 [10] Dilek, Y., Furnes, H., 2009.Structure and Geochemistry of Tethyan Ophiolites and Their Petrogenesis in Subduction Rollback Systems.Lithos, 113(1/2):1-20. https://doi.org/10.1016/j.lithos.2009.04.022 [11] Dong, Y.P., Zhou, D.W., Zhang, G.W., et al., 1998a.Geochemistry of the Caledonian Basic Volcanic Rocks in the South Margin of Qinling Orogenic Belt and Their Tectonic Implications.Geochimica, 27(5):432-441 (in Chinese with English abstract). doi: 10.1007/BF02831064.pdf [12] Dong, Y.P., Zhang, G.W., Liu, X.M., et al., 1998b.Disintegration of the Huashan Group in the Dahongshan Mountain Area, Northern Hubei.Regional Geology of China, 17(4):371-376 (in Chinese with English abstract). http://documents.worldbank.org/curated/pt/729331468217792134/RP5660RP0REPLA1P1English12007107-29.doc [13] Dong, Y.P., Zhang, G.W., Hauzenberger, C., et al., 2011b.Palaeozoic Tectonics and Evolutionary History of the Qinling Orogen:Evidence from Geochemistry and Geochronology of Ophiolite and Related Volcanic Rocks.Lithos, 122(1/2):39-56. https://doi.org/10.13039/501100001809 [14] Dong, Y.P., Zhang, G.W., Neubauer, F., et al., 2011a.Tectonic Evolution of the Qinling Orogen, China:Review and Synthesis.Journal of Asian Earth Sciences, 41(3):213-237. https://doi.org/10.1016/j.jseaes.2011.03.002 [15] Dong, Y.P., Zhou, D.W., Zhang, G.W., et al., 1999.Geochemistry of the Caledonian Basic Volcanic Rocks at the South Margin of the Qinling Orogenic Belt, and Its Tectonic Implications.Chinese Journal of Geochemistry, 18(3):193-200. https://doi.org/10.1007/bf02831064 [16] Hastie, A.R., Kerr, A.C., Pearce, J.A., et al., 2007.Classification of Altered Volcanic Island Arc Rocks Using Immobile Trace Elements:Development of the Th-Co Discrimination Diagram.Journal of Petrology, 48(12):2341-2357. https://doi.org/10.1093/petrology/egm062 [17] He, W.H., Tang, T.T., Yue, M.L., et al., 2014.Sedimentary and Tectonic Evolution of Nanhuan-Permian in South China.Earth Science, 39(8):929-953 (in Chinese with English abstract). https://doi.org/10.3799/dqkx.2014.087 [18] Hu, Z.X., Chen, C., Mao, X.W., et al., 2015.Documentation of Jingningian Island-Arc Volcanic Rocks and Accretionary Complexes in the Dahongshan Region, Northern Hubei and Its Tectonic Significance.Resources Environment & Engineering, 29(6):757-766 (in Chinese with English abstract). https://doi.org/10.16536/j.cnki.issn.1671-1211.201506001 [19] Hu, Z.X., Chen, C., Mao, X.W., et al., 2017.The Qingbaikouan Tumen Formation-Complex Island Arc Volcanic-Clastic Rocks on the Northern Margin of Yangtze Block and Its Significance.Journal of Stratigraphy, 41(3):304-317 (in Chinese with English abstract). [20] Huang, Y.H., Ren, Y.X., Xia, L.Q., et al., 1992.Early Palaeozoic Bimodal Igneous Suite on Northern Daba Mountains Gaotan Diabase and Haoping Trachyte as Examples.Acta Petrologica Sinica, 8(3):243-256 (in Chinese with English abstract). doi: 10.1007/BF02883254.pdf [21] Irvine, T.N., Baragar, W.R.A., 1971.A Guide to the Chemical Classification of the Common Volcanic Rocks.Canadian Journal of Earth Sciences, 8(5):523-548. https://doi.org/10.1139/e71-055 [22] Kong, L.Y., Mao, X.W., Chen, C., et al., 2017.Chronological Study on Detrital Zircons and Its Geological Significance from Mesoproterozoic Dagushi Group in the Dahongshan Area, North Margin of the Yangtze Block.Earth Science, 42(4):485-501 (in Chinese with English abstract). https://doi.org/10.3799/dqkx.2017.039 [23] Le Bas, M.J., Maitre, R.W.L., Streckeisen, A., et al., 1986.A Chemical Classification of Volcanic Rocks Based on the Total Alkali-Silica Diagram.Journal of Petrology, 27(3):745-750. https://doi.org/10.1093/petrology/27.3.745 [24] Li, F. J., 2009. The Rock Geochemistry Characteristics and Tectonic Implications of Mafic Dyke Swarms and Syenite PorPhyry Veins in Zhenba Eastern Area, the South of Shaanxi Province (Dissertation). Chang'an University, Xi'an (in Chinese with English abstract). [25] Li, H.B., Zhang, Z.C., Lü, L.S., et al., 2012.Petrological, Geochemical and Geometric Characteristics of Dyke Swarms and Their Tectonic Significance.Acta Petrologica et Mineralogica, 31(1):91-103 (in Chinese with English abstract). http://cn.bing.com/academic/profile?id=b457fd276ba58588f118c252600c7090&encoded=0&v=paper_preview&mkt=zh-cn [26] Li, H.K., Tian, H., Zhou, H.Y., et al., 2016.Correlation between the Dagushi Group in the Dahongshan Area and the Shennongjia Group in the Shennongjia Area on the Northern Margin of the Yangtze Craton:Constraints from Zircon U-Pb Ages and Lu-Hf Isotopic Systematics.Earth Science Frontiers, 23(6):186-201 (in Chinese with English abstract). https://doi.org/10.13745/j.esf.2016.06.013 [27] Li, H.K., Zhang, C.L., Xiang, Z.Q., et al., 2013.Zircon and Baddeleyite U-Pb Geochronology of the Shennongjia Group in the Yangtze Craton and Its Tectonic Significance.Acta Petrologica Sinica, 29(2):673-697 (in Chinese with English abstract). http://cn.bing.com/academic/profile?id=cd7e00b3ab40b75cd4a8c9798a47d012&encoded=0&v=paper_preview&mkt=zh-cn [28] Liao, M.F., Xie, Y.B., Li, L.J., et al., 2016.Discussion about Genesis and Formation Age of Sanligang Pluton in the Dahongshan Region, Hubei.Resources Environment & Engineering, 30(2):143-150, 158 (in Chinese with English abstract). https://doi.org/10.16536/j.cnki.issn.1671-1211.2016.02.004 [29] Liu, H., Xu, D.L., Wei, Y.X., et al., 2017.Depositional Age of the Dagushi Group in the Dahong Mountain, Hubei Province:Evidence from U-Pb Ages of Detrital Zircons.Geological Bulletin of China, 36(5):715-725 (in Chinese with English abstract). [30] Liu, Y.S., Gao, S., Hu, Z.C., et al., 2009.Continental and Oceanic Crust Recycling-Induced Melt-Peridotite Interactions in the Trans-North China Orogen:U-Pb Dating, Hf Isotopes and Trace Elements in Zircons from Mantle Xenoliths.Journal of Petrology, 51(1/2):537-571. https://doi.org/10.1093/petrology/egp082 [31] Long, J.S., Zhang, G.S., Han, W.H., et al., 2016.Geochemical Characteristics and Zircon U-Pb Dating of the Syenite Porphyry Dike Swarms in the Ziyang Area in the Northern Daba Mountains.Bulletin of Mineralogy, Petrology and Geochemistry, 35(4):681-691 (in Chinese). https://doi.org/10.3969/j.issn.1007-2802.2016.04.009 [32] Lu, S.N., Yu, H.F., Li, H.K., et al., 2006.Early Paleozoic Suture Zones and Tectonic Divisions in the "Central China Orogen".Geological Bulletin of China, 25(12):1368-1380 (in Chinese with English abstract). https://doi.org/10.3969/j.issn.1671-2552.2006.12.004 [33] Lu, Y.F., 2004.GeoKit-A Geochemical Toolkit for Microsoft Excel.Geochimica, 33(5):459-464 (in Chinese with English abstract). http://cn.bing.com/academic/profile?id=c25894a80b17abd27fad37df802a738f&encoded=0&v=paper_preview&mkt=zh-cn [34] Ludwig, K. R., 2003. User's Manual for Isoplot 3. 00: A Geochronological Toolkit for Microsoft Excel. Berkeley Geochronology Center, Berkeley. [35] Luo, K.L., Duanmu, H.S., 2001.Timing of Early Paleozoic Basic Igneous Rocks in the Daba Mountains.Regional Geology of China, 20(3):262-266 (in Chinese with English abstract). http://cn.bing.com/academic/profile?id=66028b78d63a9dec52305affc42ed2af&encoded=0&v=paper_preview&mkt=zh-cn [36] Ma, C.Q., She, Z.B., Xu, P., et al., 2004.Silurian A-type Granitoids in the Southern Margin of the Tongbai-Dabieshan:Evidence from SHRIMP Zircon Geochronology and Geochemistry.Science in China (Series D), 34(12):1100-1110 (in Chinese with English abstract). http://cn.bing.com/academic/profile?id=c2fe372d54e5548d1f4dabc4fe685764&encoded=0&v=paper_preview&mkt=zh-cn [37] Ma, T.F., Li, X.L., Chen, Y.J., et al., 2011.Interchangeable Analysis of Method on the X-Ray Fluorescence Spectrometry.Rock and Mineral Analysis, 30(4):486-490 (in Chinese with English abstract). http://cn.bing.com/academic/profile?id=d8bc0a9a5896b6a781cc28228719954a&encoded=0&v=paper_preview&mkt=zh-cn [38] Ni, S. Z., Yang, D. L., Yang, Z. Q., et al., 1994. Paleozoic Strata and Sedimentary Facies of the Southern Belt in the Eastern Section of East Qinling Mountains. China University of Geosciences Press, Wuhan, 1-80 (in Chinese). [39] Pearce, J. A., 1982. Trace Element Characteristics of Lavas from Destructive Plate Boundaries. In: Thorpe, R. S. ed., Andesites: Orogenic Andesites and Related Rocks. John Wiley and Sons, New York, 525-548. [40] Pearce, J.A., 2008.Geochemical Fingerprinting of Oceanic Basalts with Applications to Ophiolite Classification and the Search for Archean Oceanic Crust.Lithos, 100(1-4):14-48. https://doi.org/10.1016/j.lithos.2007.06.016 [41] Pearce, J.A., 2014.Immobile Element Fingerprinting of Ophiolites.Elements, 10(2):101-108. https://doi.org/10.2113/gselements.10.2.101 [42] Peng, S.B., Liu, S.F., Lin, M.S., et al., 2016a.Early Paleozoic Subduction in Cathaysia (Ⅰ):New Evidence from Nuodong Ophiolite.Earth Science, 41(5):765-778 (in Chinese with English abstract). https://doi.org/10.3799/dqkx.2016.065 [43] Peng, S.B., Liu, S.F., Lin, M.S., et al., 2016b.Early Paleozoic Subduction in Cathaysia (Ⅱ):New Evidence from the Dashuang High Magnesian-Magnesian Andesite.Earth Science, 41(6):931-947 (in Chinese with English abstract). https://doi.org/10.3799/dqkx.2016.079 [44] Qin, X.F., Wang, Z.Q., Hu, G.A., et al., 2013.Geochronology and Geochemistry of Hudong Gneissic Composite Pluton in the Junction of Guangdong and Guangxi Provinces:Implications for Early Paleozoic Tectono-Magmatism along the Northern Margin of Yunkai Massif.Acta Petrologica Sinica, 29(9):3115-3130 (in Chinese with English abstract). http://ccfs.mq.edu.au/Publications/Publications.html [45] Qin, X.F., Wang, Z.Q., Wang, T., et al., 2015.The Reconfirmation of Age and Tectonic Setting of the Volcanic Rocks of Yingyangguan Group in the Eastern Guangxi:Constraints on the Structural Pattern of the Southwestern Segment of Qinzhou-Hangzhou Joint Belt.Acta Geoscientica Sinica, 36(3):283-292 (in Chinese with English abstract). [46] Shi, Y.R., Liu, D.Y., Zhang, Z.Q., et al., 2007.SHRIMP Zircon U-Pb Dating of Gabbro and Granite from the Huashan Ophiolite, Qinling Orogenic Belt, China:Neoproterozoic Suture on the Northern Margin of the Yangtze Craton.Acta Geologica Sinica, 81(2):239-243. https://doi.org/10.1111/j.1755-6724.2007.tb00947.x [47] Sun W.D., Li S.G., Sun Y., et al., 1996.Chronology and Geochemistry of a Lava Pillow in the Erlangping Group at Xixia in the North Qinling Mountains.Geological Review, 42(2):144-153 https://doi.org/10.16509/j.georeview.1996.02.007 (in Chinese with English abstract). [48] Sun, S.S., McDonough, W.F., 1989.Chemical and Isotopic Systematics of Oceanic Basalts:Implications for Mantle Composition and Processes.Geological Society, London, Special Publications, 42(1):313-345. https://doi.org/10.1144/gsl.sp.1989.042.01.19 [49] Wan, J., Liu, C.X., Yang, C., et al., 2016.Geochemical Characteristics and LA-ICP-MS Zircon U-Pb Age of the Trachytic Volcanic Rocks in Zhushan Area of Southern Qinling Mountains and Their Significance.Geological Bulletin of China, 35(7):1134-1143 (in Chinese with English abstract). http://yrg.sci.kumamoto-u.ac.jp/references/ref for HP.xls [50] Wang, J.R., Pan, Z.J., Zhang, Q., et al., 2016.Intra-Continental Basalt Data Mining:the Diversity of Their Constituents and the Performance in Basalt Discrimination Diagrams.Acta Petrologica Sinica, 32(7):1919-1933 (in Chinese with English abstract). https://www.researchgate.net/publication/306138109_Intra-continental_basalt_data_mining_The_diversity_of_their_constituents_and_the_performance_in_basalt_discrimination_diagrams [51] Williams, H., Turner, S., Kelley, S., et al., 2001.Age and Composition of Dikes in Southern Tibet:New Constraints on the Timing of East-West Extension and Its Relationship to Postcollisional Volcanism.Geology, 29(4):339. https://doi.org/10.1130/0091-7613(2001)029-0339 [52] Winchester, J.A., Floyd, P.A., 1977.Geochemical Discrimination of Different Magma Series and Their Differentiation Products Using Immobile Elements.Chemical Geology, 20:325-343. https://doi.org/10.1016/0009-2541(77)90057-2 [53] Xia, L.Q., Xia, Z.C., Xu, X.Y., 2007.The Discrimination between Continental Basalt and Island Arc Basalt Based on Geochemical Method.Acta Petrologica et Mineralogica, 26(1):77-89 (in Chinese with English abstract). https://doi.org/10.3969/j.issn.1000-6524.2007.01.011 [54] Xiang, Z.J., Yan, Q.R., Song, B., et al., 2016.New Evidence for the Ages of Ultramafic to Mafic Dikes and Alkaline Volcanic Complexes in the North Daba Mountains and Its Geological Implication.Acta Geologica Sinica, 90(5):896-916 (in Chinese with English abstract). http://cn.bing.com/academic/profile?id=d97efb8f2367aefa2a026e831b66fb33&encoded=0&v=paper_preview&mkt=zh-cn [55] Xu, X.B., Tang, S., Li, Y., et al., 2015.Characteristics of Neoproterozoic-Early Mesozoic Multiphase Orogenic Activities of Eastern Jiangnan Orogen.Geology in China, 42(1):33-50 (in Chinese with English abstract). https://doi.org/10.3969/j.issn.1000-3657.2015.01.004 [56] Xu, C., Campbell, I.H., Allen, C.M., et al., 2008.U-Pb Zircon Age, Geochemical and Isotopic Characteristics of Carbonatite and Syenite Complexes from the Shaxiongdong, China.Lithos, 105(1/2):118-128. https://doi.org/10.1016/j.lithos.2008.03.002 [57] Xu, Y., Yang, K.G., Polat, A., et al., 2016.The~860 Ma Mafic Dikes and Granitoids from the Northern Margin of the Yangtze Block, China:A Record of Oceanic Subduction in the Early Neoproterozoic.Precambrian Research, 275:310-331. https://doi.org/10.13039/501100001809 [58] Xue, H.M., Ma, F., 2005.Mineral Chemistry and Geochemistry of Troctolitic Dyke(Sill) Swarms on the Southern Piedmont of the Tongbai Orogenic Belt and Their Genetic Implications.Acta Petrologica et Mineralogica, 24(5):409-417 (in Chinese with English abstract). https://doi.org/10.3969/j.issn.1000-6524.2005.05.009 [59] Yan, Q.R., Wang, Z.Q., Chen, J.L., et al., 2007.Tectonic Setting and SHRIMP Age of Volcanic Rocks in the Xieyuguan and Caotangou Groups:Implications for the North Qinling Orogenic Belt.Acta Geologica Sinica, 81(4):488-500 (in Chinese with English abstract). https://doi.org/10.3321/j.issn:0001-5717.2007.04.007 [60] Yan, Y. X., 2005. Research on Geochemistry and Sr, Nd and Pb Isotope of the Basic Dyke Swarms in Ziyang-Langao Area, Shaanxi Province (Dissertation). Northwest University, Xi'an (in Chinese with English abstract). [61] Ying, Y., Chen, W., Lu, J., et al., 2017.In Situ U-Th-Pb Ages of the Miaoya Carbonatite Complex in the South Qinling Orogenic Belt, Central China.Lithos, 290-291:159-171. https://doi.org/10.13039/501100001809 [62] Zhang, B.R., Gao, S., Zhang, H.F., et al., 2002.Geochemistry of Qinling Orogenic Belt.Science Press, Beijing (in Chinese). [63] Zhang, C.L., Gao, S., Zhang, G.W., 2002.Geochemical and Geological Significance of Early Paleozoic Alkaline Rock Wall in South Qinling.Science in China (Series D), 32(10):819-829 (in Chinese with English abstract). https://doi.org/10.3969/j.issn.1674-7240.2002.10.005 [64] Zhang, G.S., Wen, H.J., Qiu, Y.Z., 2004.Geochemistry of the Late Mesozoic Mafic Dikes in Western Fujian Province.Geochimica, 33(3):243-253 (in Chinese with English abstract). https://doi.org/10.3321/j.issn:0379-1726.2004.03.003 [65] Zhang, G.W., Dong, Y.P., Yao, A.P., 1997.The Crustal Compositions, Structures and Tectonic Evolution of the Qinling Orogenic Belt.Geology of Shaanxi, 15(2):1-14 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-YSXB199502000.htm [66] Zhang, G.W., Zhang, Z.Q., Dong, Y.P., 1995.Nature of Main Tectono-Lithostratigraphic Units of the Qinling Orogen:Implications for the Tectonic Evolution.Acta Petrologica Sinica, 11(2):101-114 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-YSXB199502000.htm [67] Zhang, H.X., Xu, Z.F., Ma, Y.J., et al., 2001.Geochemical Features and Origin of Continental Flood Basalts.Earth Science, 26(3):261-268 (in Chinese with English abstract). https://doi.org/10.3321/j.issn:1000-2383.2001.03.008 [68] Zhang, H.Y., 2006.Structures, Evolution and Tectonic Implications of the Erlangping Group in North Qinling (Dissertation).Chinese Academy of Geological Sciences, Beijing (in Chinese with English abstract). [69] Zhang, S.M., Zhang, K.X., Jiang, G.L., et al., 2014.Evolution of Neoproterozoic-Mesozoic Sedimentary Basins in Qinling-Dabie Orogenic Belt.Earth Science, 39(8):1185-1199 (in Chinese with English abstract). https://doi.org/10.3799/dqkx.2014.103 [70] Zhang, T. L., 2014. Petrogenesis and Tectonic Implications of Early Paleozoic Alkaline Bimodal Dikes (Sills) in the Daba Mountain, South Qinling (Dissertation). China University of Geosciences, Wuhan (in Chinese with English abstract). [71] Zhao, J., Chen, D.L., Tan, Q.H., 2012.Zircon LA-ICP-MS U-Pb Dating of Basic Volcanics from Erlangping Group of the North Qinling, Eastern Qinling Mountains and Its Geological Implications.Earth Science Frontiers, 19(4):118-125 (in Chinese with English abstract). [72] Zhou, L.L., Wei, J.Q., Wang, F., 2017.Optimizationof the Working Parameters of LA-ICP-MS and Its Application to Zircon U-Pb Dating.Rock and Mineral Analysis, 36(4):350-359 (in Chinese with English abstract). https://doi.org/10.15898/j.cnki.11-2131/td.201701160007 [73] Zhu, J., Wang, L., Peng, S., et al., 2016.U-Pb Zircon Age, Geochemical and Isotopic Characteristics of the Miaoya Syenite and Carbonatite Complex, Central China.Geological Journal, 52(6):938-954. https://doi.org/10.13039/501100004613 [74] Zou, X.W., Duan, Q.F., Tang, C.Y., 2011.SHRIMP Zircon U-Pb Dating and Lithogeochemical Characteristics of Diabase from Zhenping Area in North Daba Mountain.Geology in China, 38(2):282-291 (in Chinese with English abstract). [75] 湖北省地质局区域地质测量队, 1982.1:20万宜城幅(H-49-V)、随县幅(H-49-M)区域地质调查报告.武汉:湖北省地质调查院. [76] 曹亮, 张权绪, 胡尚军, 等, 2015.大巴山南部房县东河辉绿玢岩LA-ICP-MS锆石U-Pb测年及其构造意义.地质学报, 89(12):2314-2322. doi: 10.3969/j.issn.0001-5717.2015.12.009 [77] 曹强, 刘家军, 李龙吟, 等, 2015.秦岭造山带南缘荞麦冲金矿床正长斑岩锆石U-Pb年龄及其地质意义.中国地质, 42(5):1303-1323. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=zgdizhi201505010 [78] 陈超, 毛新武, 胡正祥, 等, 2017a.鄂北大洪山地区~817 Ma洋岛玄武岩的发现及意义.地质科技情报, 36(6):22-31. [79] 陈超, 熊保成, 胡正祥, 等, 2017b.扬子北缘新元古代洋陆转换事件刍议.资源环境与工程, 31(6):659-668. http://www.ysxb.ac.cn/ysxb/ch/reader/create_pdf.aspx?file_no=20060239&journal_id=ysxb&year_id=2006 [80] 陈超, 周涛, 胡维云, 等, 2016.滇东南建水火山岩LA-ICP-MS锆石U-Pb测年、地球化学特征及地质意义.大地构造与成矿学, 40(1):161-173. http://industry.wanfangdata.com.cn/yj/Detail/Periodical?id=Periodical_ddgzyckx201601014 [81] 陈公信, 金经炜, 1996.全国地层多重划分对比研究——湖北省岩石地层.武汉:中国地质大学出版社. [82] 陈隽璐, 徐学义, 王宗起, 等, 2008.西秦岭太白地区岩湾-鹦鸽咀蛇绿混杂岩的地质特征及形成时代.地质通报, 27(4):500-509. [83] 董云鹏, 周鼎武, 张国伟, 等, 1998a.秦岭造山带南缘早古生代基性火山岩地球化学特征及其大地构造意义.地球化学, 27(5):432-441. http://www.cnki.com.cn/Article/CJFDTOTAL-DZLP201406024.htm [84] 董云鹏, 张国伟, 柳小明, 等, 1998b.鄂北大洪山地区"花山群"的解体.中国区域地质, 17(4):371-376. http://cpfd.cnki.com.cn/Article/CPFDTOTAL-ZGKD200510001016.htm [85] 何卫红, 唐婷婷, 乐明亮, 等, 2014.华南南华纪-二叠纪沉积大地构造演化.地球科学, 39(8):929-953. https://doi.org/10.3799/dqkx.2014.087 [86] 胡正祥, 陈超, 毛新武, 等, 2015.鄂北大洪山晋宁期岛弧火山岩和增生杂岩的厘定及地质意义.资源环境与工程, 29(6):757-766. http://industry.wanfangdata.com.cn/yj/Magazine?magazineId=hbdk&yearIssue=2015_6 [87] 胡正祥, 陈超, 毛新武, 等, 2017.扬子北缘青白口系土门岩组岛弧火山-碎屑岩的定义及意义.地层学杂志, 41(3):304-317. http://xueshu.baidu.com/s?wd=paperuri%3A%2862d41f839a722bc2aae3d0a8dfe14b0d%29&filter=sc_long_sign&tn=SE_xueshusource_2kduw22v&sc_vurl=http%3A%2F%2Fkns.cnki.net%2FKCMS%2Fdetail%2Fdetail.aspx%3Ffilename%3Ddcxz201703009%26dbname%3DCJFD%26dbcode%3DCJFQ&ie=utf-8&sc_us=10169316762132852022 [88] 黄月华, 任有祥, 夏林圻, 等, 1992.北大巴山早古生代双模式火成岩套:以高滩辉绿岩和蒿坪粗面岩为例.岩石学报, 8(3):243-256. http://cpfd.cnki.com.cn/Article/CPFDTOTAL-ZGKD200510001016.htm [89] 孔令耀, 毛新武, 陈超, 等, 2017.扬子北缘大洪山地区中元古代打鼓石群碎屑锆石年代学及其地质意义.地球科学, 42(4):485-501. http://earth-science.net/WebPage/Article.aspx?id=3563 [90] 李夫杰, 2009. 陕南镇巴东部地区基性岩墙群和正长斑岩脉的岩石地球化学特征及其构造意义(硕士学位论文). 西安: 长安大学. [91] 李宏博, 张招崇, 吕林素, 等, 2012.岩墙群的岩石学、地球化学和几何学特征及其大地构造意义.岩石矿物学杂志, 31(1):91-103. https://www.wenkuxiazai.com/doc/cf9b23eb84868762cbaed543.html [92] 李怀坤, 田辉, 周红英, 等, 2016.扬子克拉通北缘大洪山地区打鼓石群与神农架地区神农架群的对比:锆石SHRIMP U-Pb年龄及Hf同位素证据.地学前缘, 23(6):186-201. http://xueshu.baidu.com/s?wd=paperuri%3A%28791582b3db19c5ef3db14d77255f82ea%29&filter=sc_long_sign&tn=SE_xueshusource_2kduw22v&sc_vurl=http%3A%2F%2Fkns.cnki.net%2FKCMS%2Fdetail%2Fdetail.aspx%3Ffilename%3Ddxqy201606020%26dbname%3DCJFD%26dbcode%3DCJFQ&ie=utf-8&sc_us=5318606271385263647 [93] 李怀坤, 张传林, 相振群, 等, 2013.扬子克拉通神农架群锆石和斜锆石U-Pb年代学及其构造意义.岩石学报, 29(2):673-697. https://www.researchgate.net/profile/Zhang_Jian48/publication/286123963_Zircon_and_baddeleyite_U-Pb_geochronology_of_the_Shennongjia_Group_in_the_Yangtze_Craton_and_its_tectonic_significance/links/5682063608aebccc4e0bf21f.pdf?origin=publication_list [94] 廖明芳, 谢应波, 李琳静, 等, 2016.湖北省大洪山地区三里岗岩体成因及时代探讨.资源环境与工程, 30(2):143-150, 158. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=hbdk201602004 [95] 刘浩, 徐大良, 魏运许, 等, 2017.湖北大洪山打鼓石群沉积时限——来自碎屑锆石U-Pb年龄的证据.地质通报, 36(5):715-725. http://xueshu.baidu.com/s?wd=paperuri%3A%28d7ccad92208c6db69613a5a85dbece2f%29&filter=sc_long_sign&tn=SE_xueshusource_2kduw22v&sc_vurl=http%3A%2F%2Fkns.cnki.net%2FKCMS%2Fdetail%2Fdetail.aspx%3Ffilename%3Dzqyd201705004%26dbname%3DCJFD%26dbcode%3DCJFQ&ie=utf-8&sc_us=17025073214482804665 [96] 龙井山, 张贵山, 韩文华, 等, 2016.北大巴山紫阳地区正长斑岩岩墙地球化学特征与锆石SHRIMP U-Pb定年.矿物岩石地球化学通报, 35(4):681-691. http://cpfd.cnki.com.cn/Article/CPFDTOTAL-ZGKD200510001016.htm [97] 陆松年, 于海峰, 李怀坤, 等, 2006."中央造山带"早古生代缝合带及构造分区概述.地质通报, 25(12):1368-1380. doi: 10.3969/j.issn.1671-2552.2006.12.004 [98] 路远发, 2004.GeoKit:一个用VBA构建的地球化学工具软件包.地球化学, 33(5):459-464. http://mall.cnki.net/magazine/Article/DQHX200405003.htm [99] 雒昆利, 端木和顺, 2001.大巴山区早古生代基性火成岩的形成时代.中国区域地质, 20(3):262-266. http://www.oalib.com/paper/4899188 [100] 马昌前, 佘振兵, 许聘, 等, 2004.桐柏-大别山南缘的志留纪A型花岗岩类:SHRIMP锆石年代学和地球化学证据.中国科学(D辑), 34(12):1100-1110. http://www.cnki.com.cn/Article/CJFDTotal-HBDK198901001.htm [101] 马天芳, 李小莉, 陈永君, 等, 2011.X射线荧光光谱分析方法的共享.岩矿测试, 30(4):486-490. http://www.cqvip.com/QK/90283X/201504/664626057.html [102] 倪世钊, 杨德骊, 杨振强, 等, 1994.东秦岭东段南带古生代地层及沉积相.武汉:中国地质大学出版社, 1-80. [103] 彭松柏, 刘松峰, 林木森, 等, 2016a.华夏早古生代俯冲作用(Ⅰ):来自糯垌蛇绿岩的新证据.地球科学, 41(5):765-778. http://earth-science.net/WebPage/Article.aspx?id=3295 [104] 彭松柏, 刘松峰, 林木森, 等, 2016b.华夏早古生代俯冲作用(Ⅱ):大爽高镁-镁质安山岩新证据.地球科学, 41(6):931-947. http://earth-science.net/WebPage/Article.aspx?id=3309 [105] 覃小锋, 王宗起, 胡贵昂, 等, 2013.两广交界地区壶垌片麻状复式岩体的年代学和地球化学:对云开地块北缘早古生代构造-岩浆作用的启示.岩石学报, (9):3115-3130. http://xueshu.baidu.com/s?wd=paperuri%3A%28ac571c25cadf416ff6ee2d32a3935dcf%29&filter=sc_long_sign&tn=SE_xueshusource_2kduw22v&sc_vurl=http%3A%2F%2Fkns.cnki.net%2FKCMS%2Fdetail%2Fdetail.aspx%3Ffilename%3Dysxb201309013%26dbname%3DCJFD%26dbcode%3DCJFQ&ie=utf-8&sc_us=2058443547773491210 [106] 覃小锋, 王宗起, 王涛, 等, 2015.桂东鹰扬关群火山岩时代和构造环境的重新厘定:对钦杭结合带西南段构造格局的制约.地球学报, 36(3):282-291. http://www.oalib.com/paper/4973425 [107] 孙卫东, 李曙光, 孙勇, 等, 1996.北秦岭西峡二郎坪群枕状熔岩中一个岩枕的年代学和地球化学研究.地质论评, 42(2):144-153. http://xueshu.baidu.com/s?wd=paperuri%3A%28f804374ad90f6e388be0cc4b9ed95836%29&filter=sc_long_sign&tn=SE_xueshusource_2kduw22v&sc_vurl=http%3A%2F%2Fkns.cnki.net%2FKCMS%2Fdetail%2Fdetail.aspx%3Ffilename%3Ddzlp199602006%26dbname%3DCJFD%26dbcode%3DCJFQ&ie=utf-8&sc_us=2258404622965071774 [108] 万俊, 刘成新, 杨成, 等, 2016.南秦岭竹山地区粗面质火山岩地球化学特征、LA-ICP-MS锆石U-Pb年龄及其大地构造意义.地质通报, 35(7):1134-1143. http://cpfd.cnki.com.cn/Article/CPFDTOTAL-ZGKD200510001016.htm [109] 王金荣, 潘振杰, 张旗, 等, 2016.大陆板内玄武岩数据挖掘:成分多样性及在判别图中的表现.岩石学报, 32(7):1919-1933. http://www.doc88.com/p-207512364297.html [110] 夏林圻, 夏祖春, 徐学义, 等, 2007.利用地球化学方法判别大陆玄武岩和岛弧玄武岩.岩石矿物学杂志, 26(1):77-89. http://mall.cnki.net/magazine/Article/YSKW200701010.htm [111] 向忠金, 闫全人, 宋博, 等, 2016.北大巴山超基性、基性岩墙和碱质火山杂岩形成时代的新证据及其地质意义.地质学报, 90(5):896-916. http://industry.wanfangdata.com.cn/jt/Magazine?magazineId=dizhixb&yearIssue=2016_5 [112] 徐先兵, 汤帅, 李源, 等, 2015.江南造山带东段新元古代至早中生代多期造山作用特征.中国地质, 42(1):33-50. http://www.cnki.com.cn/Article/CJFDTotal-DIZI201501003.htm [113] 薛怀民, 马芳, 2005.桐柏山造山带南麓橄长质岩墙(床)群的矿物化学、地球化学特征与成因意义.岩石矿物学杂志, 24(5):409-417. http://www.cnki.com.cn/Article/CJFDTOTAL-DZLP201205015.htm [114] 闫全人, 王宗起, 陈隽璐, 等, 2007.北秦岭斜峪关群和草滩沟群火山岩成因的地球化学和同位素约束、SHRIMP年代及其意义.地质学报, 81(04):488-500. doi: 10.3321/j.issn:0001-5717.2007.04.007 [115] 晏云翔, 2005. 陕西紫阳-岚皋地区碱-基性岩墙群的岩石地球化学及Sr、Nd、Pb同位素地球化学研究(硕士学位论文). 西安: 西北大学. [116] 张本仁, 高山, 张宏飞, 等, 2002.秦岭造山带地球化学.北京:科学出版社. [117] 张成立, 高山, 张国伟, 等, 2002.南秦岭早古生代碱性岩墙群的地球化学及其地质意义.中国科学(D辑), 32(10):819-829. http://cpfd.cnki.com.cn/Article/CPFDTOTAL-ZGKD200510001016.htm [118] 张贵山, 温汉捷, 裘愉卓, 2004.闽西晚中生代基性岩脉的地球化学研究.地球化学, 33(3):243-253. http://www.irgrid.ac.cn/handle/1471x/178507 [119] 张国伟, 董云鹏, 姚安平, 1997.秦岭造山带基本组成与结构及其构造演化.陕西地质, 15(2):1-14. http://www.cnki.com.cn/Article/CJFDTOTAL-JBXK199509014.htm [120] 张国伟, 张宗清, 董云鹏, 1995.秦岭造山带主要构造岩石地层单元的构造性质及其大地构造意义.岩石学报, 11(2):101-114. http://www.cnki.com.cn/Article/CJFDTOTAL-DZXE200911003.htm [121] 张宏远, 2006. 北秦岭二郎坪群的结构、演化与区域构造意义(博士学位论文). 北京: 中国地质科学院. [122] 张鸿翔, 徐志方, 马英军, 等, 2001.大陆溢流玄武岩的地球化学特征及起源.地球科学, 26(3):261-268. http://earth-science.net/WebPage/Article.aspx?id=1020 [123] 张思敏, 张克信, 姜高磊, 等, 2014.秦岭-大别新元古代-中生代沉积盆地演化.地球科学, 39(8):1185-1199. http://earth-science.net/WebPage/Article.aspx?id=2926 [124] 张太乐, 2014. 南秦岭大巴山早古生代碱性双峰式岩墙(博士学位论文). 武汉: 中国地质大学(武汉). [125] 赵姣, 陈丹玲, 谭清海, 等, 2012.北秦岭东段二郎坪群火山岩锆石的LA-ICP-MS U-Pb定年及其地质意义.地学前缘, 19(4):118-125. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=dxqy201204012 [126] 周亮亮, 魏均启, 王芳, 等, 2017.LA-ICP-MS工作参数优化及在锆石U-Pb定年分析中的应用.岩矿测试, 36(4):350-359. http://www.cnki.com.cn/Article/CJFDTotal-KXTB201336003.htm [127] 邹先武, 段其发, 汤朝阳, 等, 2011.北大巴山镇坪地区辉绿岩锆石SHRIMP U-Pb定年和岩石地球化学特征.中国地质, 38(2):282-291. http://cpfd.cnki.com.cn/Article/CPFDTOTAL-ZGKD200510001016.htm