Current Status and Challenges for Three-Dimensional Deep Seismic Survey in the South China Sea
-
摘要: 获取深部速度结构是认识南海形成演化模式的基础.海底地震仪(OBS)二维与三维深地震探测技术是获取深部速度结构最成功的方法之一.OBS三维探测结果揭示:西南次海盆横跨残留扩张脊两侧洋壳不对称增生的速度结构特征;东部次海盆具有4种不同洋壳类型的速度结构;珍贝-黄岩海山链是在海盆停止扩张后6~10 Ma岩浆活动形成的;东沙隆起区显示了张裂期后的岩浆活动及其上涌通道;南海东北部马尼拉俯冲带前缘是受到张裂期后岩浆活动影响的减薄陆壳.IODP367-368钻探区实施的OBS三维探测将以建立南海洋陆转换带(COT)张裂-破裂机制模型为科学目标.OBS三维探测方法在南海各向异性、岩浆活动、形成演化等方面将继续发挥着不可替代的作用.Abstract: The deep velocity structures are the basis for building the formation and revolution of the South China Sea (SCS). Two-dimensional (2D) and three-dimensional (3D) OBS surveys are successful technique to acquire the deep seismic structures. The results from 3D OBS surveys in the SCS have enhanced the knowledge for theoretical concepts. In the Southwest sub-basin, the asymmetrical velocity structures have been presented across the extinct spreading ridge (ESR) due to the development of detachment faults. In the central part of the east sub-basin, four types of crust have been defined:thin oceanic crust (< 5 km); typical oceanic crust (5-6 km); thick oceanic crust hosting post-spreading volcanoes ( > 6 km) with significant intrusive roots; and thick oceanic crust with enhanced spreading features ( > 6 km) but without significant roots. The post-spreading volcanoes (Zhenbei-Huangyan seamounts chain) were formed 6-10 Ma ago during a N-S tensional episode, several millions of years after seafloor spreading ceased in the SCS, and emplaced where the crust was the weakest, might have been influenced by the Hainan plume activity through a buoyancy-driven partial melting mechanism. The study on Dongsha uplift highlights magmatic activities through upwelling channels after rifting ceasing. The velocity structure in the Manila subduction zone (northeastern SCS) shows the nature of the crust and its relationship with the Manila subduction slab. A 3D OBS survey will be carried out in 2018 in the area of the IODP Legs 367-368, aiming at building a model of lithospheric rifting and breakup mechanism in the continent-ocean-transition (COT) zone of the SCS. The joint 2D and 3D survey method will play a major role in the understanding of the SCS geodynamics by integrating IODP drilling results with information on the deep structures.
-
图 2 南海西南次海盆OBS三维深地震探测图(a),T1测线二维速度结构模型(b)及地质解释模型(c)
图a对应于图 1中的红色方框1, 红色圆圈为OBS台站,白色为丢失OBS台站,黑色线段为放炮测线.图c据Zhang et al.(2016)修改
Fig. 2. The three-dimensional deep seismic survey carried out in the southwestern subbasin of the SCS (a), the two-dimensional velocity model along T1 seismic line (b) and its geological model reference (c)
图 3 南海东部次海盆OBS三维深地震探测图(a)及横穿珍贝-黄岩海山链的三维速度切片解释模型(b)
图a对应于图 1中的红色方框2,红色圆圈为OBS台站,白色为丢失OBS台站,黄色为没有数据台站,黑色线段为放炮测线; 图b据Wang et al.(2016)修改,图中白色五角星为IODP349航次U1431站位,PSVR代表扩张停止后岩浆活动岩脊
Fig. 3. The three-dimensional deep seismic survey carried out in the eastern sub-basin of the SCS (a), and the slice interpretation extracted from three-dimensional velocity model across Zhenbei-Huangyan seamounts chain (b)
图 4 南海东沙隆起区OBS三维深地震探测图(a)及东沙陆坡海山分布(b)
图a对应于图 1中的方框3, 红色圆圈为OBS台站,黑色线段为放炮测线; 图b中红色椭圆表明海山椭圆的底部,黑色线表明东沙陆坡上的4条海山链,据Fan et al.(2017a, 2017b)修改
Fig. 4. The three-dimensional deep seismic survey carried out in 2014 in the Dongsha Uplift of the northeaster SCS (a) and the seamounts identified in the Dongsha slope (b)
图 5 南海巴士海峡OBS三维深地震探测位置
对应于图 1中的红色方框4, 白色圆圈为OBS台站,黄色线段为放炮测线.图中红色线段为2015年采集的二维深地震测线OBS2015-2
Fig. 5. The three-dimensional deep seismic survey carried out in the front of Manila subduction slab
图 6 南海IODP367-368钻探区OBS三维深地震探测部署
对应于图 1中的红色方框IODP, 图中红色方框为OBS三维探测区,黄色圆圈为四分量OBS站位,黑色线为项目实施的放炮测线,其中L1、L2和H1、H2为4条二维主测线,各布置13台OBS,其余为辅助放炮测线;粉红色线和橘色方框为中海油采集的长缆深反射剖面(包括2002DSRP测线)和三维反射工作区;红色五角星为IODP367-368航次钻探站位(1499,1500,1501,1502和1504);橘色方块为ODP184和IODP349航次站位
Fig. 6. The three-dimensional deep seismic survey (red square) will be carried out in the IODP area of Legs 367-368
-
[1] Briais, A., Patriat, P., Tapponnier, P., 1993.Updated Interpretation of Magnetic Anomalies and Seafloor Spreading Stages in the South China Sea:Implications for the Tertiary Tectonics of Southeast Asia.Journal of Geophysical Research:Solid Earth, 98(B4):6299-6328. https://doi.org/10.1029/92jb02280 [2] Christensen, N.I., 1996.Poisson's Ratio and Crustal Seismology.Journal of Geophysical Research:Solid Earth, 101(B2):3139-3156. https://doi.org/10.1029/95jb03446 [3] Ding, W.W., Li, J.B., 2016.Propagated Rifting in the Southwest Sub-Basin, South China Sea:Insights from Analogue Modelling.Journal of Geodynamics, 100:71-86. doi: 10.1016/j.jog.2016.02.004 [4] Ding, W.W., Li, J.B., Clift, P.D., 2016.Spreading Dynamics and Sedimentary Process of the Southwest Sub-Basin, South China Sea:Constraints from Multi-Channel Seismic Data and IODP Expedition 349.Journal of Asian Earth Sciences, 115:97-113. doi: 10.1016/j.jseaes.2015.09.013 [5] Eakin, D.H., McIntosh, K.D., van Avendonk, H.J.A., et al., 2014.Crustal-Scale Seismic Profiles across the Manila Subduction Zone:The Transition from Intraoceanic Subduction to Incipient Collision.Journal of Geophysical Research:Solid Earth, 119(1):1-17. https://doi.org/10.1002/2013jb010395 [6] Expedition 349 Scientists, 2014.South China Sea tectonics:Opening of the South China Sea and Its Implications for Southeast Asian Tectonics, Climates, and Deep Mantle Process since the Late Mesozoic.International Ocean Discovery Program Preliminary Report 349. http://doi.org/10.14379/iodp.pr.349.2014 [7] Fan, C.Y., Xia, S.H., Sun, J.L., et al., 2017a.Lateral Variations of Crustal Structure in the Northeastern of the South China Sea.AGU Fall Meeting 2017, American Geophysical Union, New Orleans. [8] Fan, C.Y., Xia, S.H., Zhao, F., et al., 2017b.New Insights into the Magmatism in the Northern Margin of the South China Sea:Spatial Features and Volume of Intraplate Seamounts.Geochemistry, Geophysics, Geosystems, 18(6):2216-2239. doi: 10.1002/ggge.v18.6 [9] Hao, T.Y., Xu, Y., Sun, F.L., et al., 2011.Integrated Geophysical Research on the Tectonic Attribute of Conjugate Continental Margin of South China Sea.Chinese Journal of Geophysics(Chinese Edition), 54(12):3098-3116 (in Chinese with English abstract). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=dqwlxb201112011 [10] Hao, T.Y., You, Q.Y., 2011.Progress of Homemade OBS and Its Application on Ocean Bottom Structure Survey.Chinese Journal of Geophysics(Chinese Edition), 54(12):3352-3361 (in Chinese with English abstract). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=dqwlxb201112033 [11] He, E.Y., Zhao, M.H., Qiu, X.L., et al., 2016.Crustal Structure across the Post-Spreading Magmatic Ridge of the East Sub-Basin in the South China Sea:Tectonic Significance.Journal of Asian Earth Sciences, 121:139-152. doi: 10.1016/j.jseaes.2016.03.003 [12] Hsu, S.K., Yeh, Y.C., Doo, W.B., et al., 2004.New Bathymetry and Magnetic Lineations Identifications in the Northernmost South China Sea and Their Tectonic Implications.Marine Geophysical Researches, 25(1-2):29-44. https://doi.org/10.1007/s11001-005-0731-7 [13] Huismans, R., Beaumont, C., 2011.Depth-Dependent Extension, Two-Stage Breakup and Cratonic Underplating at Rifted Margins.Nature, 473(7345):74-78. https://doi.org/10.1038/nature09988 [14] Lester, R., McIntosh, K., Van Avendonk, H.J.A., et al., 2013.Crustal Accretion in the Manila Trench Accretionary Wedge at the Transition from Subduction to Mountain-Building in Taiwan.Earth and Planetary Science Letters, 375:430-440. https://doi.org/10.1016/j.epsl.2013.06.007 [15] Li, C.F., Li, J.B., Ding, W.W., et al., 2015.Seismic Stratigraphy of the Central South China Sea Basin and Implications for Neotectonics.Journal of Geophysical Research:Solid Earth, 120(3):1377-1399. doi: 10.1002/2014JB011686 [16] Li, C.F., Song, T.R., 2012.Magnetic Recording of the Cenozoic Oceanic Crustal Accretion and Evolution of the South China Sea Basin.Chinese Science Bulletin, 57(20):1879-1895 (in Chinese with English abstract). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=QK201203512616 [17] Li, C.F., Wang, P.X., Dieter, F., et al., 2009.Opening of the South China Sea and Its Implications for Southeast Asian Tectonics Since the Late Mesozoic.Advance in Earth Sciences, 24(12):1339-1351 (in Chinese with English abstract). http://d.old.wanfangdata.com.cn/Periodical/dqkxjz200912008 [18] Li, C.F., Xu, X., Lin, J., et al., 2014.Ages and Magnetic Structures of the South China Sea Constrained by Deep Tow Magnetic Surveys and IODP Expedition 349.Geochemistry, Geophysics, Geosystems, 15(12):4958-4983. doi: 10.1002/2014GC005567 [19] Li, J.B., 2011.Dynamics of the Continental Margins of South China Sea:Scientific Experiments and Research Progresses.Chinese Journal of Geophysics(Chinese Edition), 54(12):2993-3003 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-DQWX201112004.htm [20] Li, J.B., Ding, W.W., Wu, Z.Y., et al., 2012.The Propagation of Seafloor Spreading in the Southwestern Subbasin, South China Sea.Chinese Science Bulletin, 57(24):3182-3191. https://doi.org/10.1007/s11434-012-5329-2 [21] Li, S.Z., Suo, Y.H., Liu, X., et al., 2012.Basic Structural Pattern and Tectonic Models of the South China Sea:Problems, Advances and Controversies.Marine Geology & Quaternary Geology, 32(6):35-53 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-HYDZ201206009.htm [22] Liu, S.Q., Zhao, M.H., Zhang, J.Z., et al., 2017.OBS Seismic Data Processing of the Manila Trench Subduction Zone (21°N) and Some Preliminary Results.Journal of Tropical Oceanography, 36(2):60-69 (in Chinese with English abstract). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=rdhy201702008 [23] Lu, J., M., 1993.The Princle of Seismic Exploration.University of Petroleum Press, Dongying (in Chinese). [24] Makris, J., Papoulia, J., Mcpherson, S., et al., 2012.Mapping of Sediments and Crust Offshore Kenya, East Africa: A Wide Aperture Refraction/Reflection Survey.In: 2012 SEG Annual Meeting, Las Vegas, 1-5. [25] McIntosh, K., van Avendonk, H., Lavier, L., et al., 2013.Inversion of a Hyper-Extended Rifted Margin in the Southern Central Range of Taiwan.Geology, 41(8):871-874. https://doi.org/10.1130/g34402.1 [26] Mi, L.J., Liu, B.J., He, M., et al., 2016.Petroleum Geology Characteristics and Exploration Direction in Baiyun Deep Water Area, Northern Continental Margin of the South China Sea.China Offshore Oil and Gas, 28(2):10-22 (in Chinese with English abstract). [27] Mjelde, R., Raum, T., Digranes, P., et al., 2003.Vp/Vs Ratio along the Vøring Margin, NE Atlantic, Derived from OBS Data:Implications on Lithology and Stress Field.Tectonophysics, 369(3-4):175-197. https://doi.org/10.1016/s0040-1951(03)00198-7 [28] Qiu, X.L., Zhao, M.H., Xu, H.L., et al., 2012.Important Processes of Deep Seismic Surveys in the South China Sea:Retrospection and Expectation.Journal of Tropical Oceanography, 31(3):1-9 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-RDHY201203002.htm [29] Sibuet, J.C., Tucholke, B.E., 2012.The Geodynamic Province of Transitional Lithosphere Adjacent to Magma-Poor Continental Margins.Geological Society, London, Special Publications, 369(1):429-452. https://doi.org/10.1144/sp369.15 [30] Sun, Z., Stock, J., Jian, Z., et al., 2016.Expedition 367/368 Scientific Prospectus Addendum:South China Sea Rifted Margin.International Ocean Discovery Program. https://doi.org/10.14379/iodp.sp.367368.2016 [31] Taylor, B., Hayes, D.E., 1983.Origin and History of the South China Sea Basin.In: Hayes, D.E., ed., The Tectonic and Geologic Evolution of Southeast Asian Seas and Islands: Part 2.Geophysical Monography Series.American Geophysical Union, Washington, 23-56. [32] Wang, J., Yang, T., Qiu, X.L., et al., 2018.Ambient Noise Cross-Correlation Analysis of Active Seismic Experiment Data in the East Sub-Basin of China Sea.In 15th Annual Meeting Asia Oceania Geosciences Society, Honolulu. [33] Wang, J., Zhao, M.H., He, E.Y., et al., 2014.The Selection of Optimal Inversion Parameters for First-Arrival Seismic Tomography:An Application to 3D Seismic Data from the Central Sub-Basin of the South China Sea.Journal of Tropical Oceanography, 33(5):74-83 (in Chinese with English abstract). doi: 10.4133/SAGEEP.27-069 [34] Wang, J., Zhao, M.H., Qiu, X.L., et al., 2016.3D Seismic Structure of the Zhenbei-Huangyan Seamounts Chain in the East Sub-Basin of the South China Sea and Its Mechanism of Formation.Geological Journal, 51(B4):448-463. https://doi.org/10.13039/501100001809 [35] Wang, P., Prell, W.L., Blum, P., et al., 2000.Proceedings of the Ocean Drilling Program:Initial Reports, Volume 184.College Station:The Ocean Drilling Program. [36] Wang, P.X., 2009.Toward Scientific Breakthrough in the South China Sea.Journal of Tropical Oceanography, 28(3):1-4 (in Chinese with English abstract). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=rdhy200903001 [37] Wang, P.X., 2012.Tracing the Life History of a Marginal Sea-On "the South China Sea Deep" Research Program.Chinese Science Bulletin, 57(20):1807-1826 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-JXTW201224002.htm [38] Wu, J., Suppe, J., 2017.Proto-South China Sea Plate Tectonics Using Subducted Slab Constraints from Tomography.Journal of Earth Science, 661(B4):1-15. https://doi.org/10.1007/s12583-017-0813-x [39] Wu, J., Suppe, J., Lu, R.Q., et al., 2016.Philippine Sea and East Asian Plate Tectonics since 52Ma Constrained by New Subducted Slab Reconstruction Methods.Journal of Geophysical Research:Solid Earth, 121(6):4670-4741. doi: 10.1002/2016JB012923 [40] Wu, Z.L., Li, J.B., Ruan, A.G., et al., 2011.Crustal Structure of the Northwestern Sub-Basin, South China Sea:Results from a Wide-Angle Seismic Experiment.Science in China(Series D), 41(10):1463-1476 (in Chinese with English abstract). doi: 10.1007/s11430-011-4324-9 [41] Xia, S.H., Xu, H.L., Sun, J.L., et al., 2017.Seismic Imaging of Late Cretaceous Magmatic System in the Northern Margin of South China Sea.American Geophysical Union Fall Meeting 2017, New Orleans. [42] Xia, S.H., Zhao, D.P., Sun, J.L., et al., 2016.Teleseismic Imaging of the Mantle beneath Southernmost China:New Insights into the Hainan Plume.Gondwana Research, 36:46-56. doi: 10.1016/j.gr.2016.05.003 [43] Xie, X.N., Zhang, C., Ren, J.Y., et al., 2011.Effects of Distinct Tectonic Evolutions on Hydrocarbon Accumulation in Northern and Southern Continental Marginal Basins of South China Sea.Chinese Journal of Geophysics-Chinese Edition, 54(12):3280-3291 (in Chinese with English abstract). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=dqwlxb201112026 [44] Zhang, J., Li, J.B., Ruan, A.G., et al., 2016.The Velocity Structure of a Fossil Spreading Centre in the Southwest Sub-Basin, South China Sea.Geological Journal, 51(1-2):548-561. doi: 10.1002/gj.2778/pdf [45] Zhang, J.Z., Qiu, X.L., Zhao, M.H., et al., 2018.Abnormal Data Retrieval of Three-Dimensional OBS Survey at the Bashi Channel Area of the South China Sea.Chinese Journal of Geophysics, 61(4):1529-1538 (in Chinese with English abstract). http://d.old.wanfangdata.com.cn/Periodical/dqwlxb201804026 [46] Zhang, L., Zhao, M.H., Wang, J., et al., 2013.Correction of OBS Position and Recent Advances of 3D Seismic Exploration in the Central Sub-Basin of South China Sea.Earth Science, 38(1):33-42 (in Chinese with English abstract). https://doi.org/10.3799/dqkx.2013.004 [47] Zhao, M.H., He, E.Y., Sibuet, J.C., et al., 2018a.Postseafloor Spreading Volcanism in the Central East South China Sea and Its Formation through an Extremely Thin Oceanic Crust.Geochemistry, Geophysics, Geosystems, 19(3):621-641. doi: 10.1002/ggge.v19.3 [48] Zhao, M.H., He, E.Y., Sun, L.T., et al., 2016.Research on Deep Seismic Structures of Mariana Trench Subduction Zone and Its Inspiration for Manila Trench Subduction zone.Journal of Tropical Oceanography, 35(1):48-60 (in Chinese with English abstract). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=rdhy201601005 [49] Zhao, M.H., Liu, S.Q., Sibuet, J.C., et al., 2018b.Thinned Continental Crust Intruded by Volcanic Ridges at the Northeastern South China Sea imaged by a Wide-Angle Refraction Data and Its Extension into the Unfolded Manila Slab.In 15th Annual Meeting Asia Oceania Geosciences Society, Honolulu. [50] Zhao, M.H., Qiu, X.L., Xia, S.H., et al., 2007.Identification and Analysis of Shear Waves Recorded by Three-Component OBSs in Northeastern South China Sea.Progress in Natural Science, 17(11):1516-1523.(in Chinese with English abstract). http://www.cnki.com.cn/Article/CJFDTotal-ZKJY200802009.htm [51] Zhao, M.H., Qiu, X.L., Xia, S.H., et al., 2010.Seismic Structure in the Northeastern South China Sea:S-Wave Velocity and Vp/Vs Ratios Derived from Three-Component OBS Data.Tectonophysics, 480(1-4):183-197. https://doi.org/10.1016/j.tecto.2009.10.004 [52] Zhou, D., Ru, K., Chen, H.Z., 1995.Kinematics of Cenozoic Extension on the South China Sea Continental Margin and Its Implications for the Tectonic Evolution of the Region.Tectonophysics, 251(1-4):161-177. https://doi.org/10.1016/0040-1951(95)00018-6 [53] Zhu, W.L., Zhong, K., Li, Y.C., et al., 2012.Characteristics of Hydrocarbon Accumulation and Exploration Potential of the Northern South China Sea Deepwater Basins.Chinese Science Bulletin, 57(20):1833-1841(in Chinese with English abstract). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=QK201203504757 [54] 郝天珧, 徐亚, 孙福利, 等, 2011.南海共轭大陆边缘构造属性的综合地球物理研究.地球物理学报, 54(12):3098-3116. doi: 10.3969/j.issn.0001-5733.2011.12.011 [55] 郝天珧, 游庆瑜, 2011.国产海底地震仪研制现状及其在海底结构探测中的应用.地球物理学报, 54(12):3352-3361. doi: 10.3969/j.issn.0001-5733.2011.12.033 [56] 李春峰, 宋陶然, 2012.南海新生代洋壳扩张与深部演化的磁异常记录.科学通报, 57(20):1879-1895. http://d.old.wanfangdata.com.cn/Conference/8574207 [57] 李春峰, 汪品先, Dieter, F., 等, 2009.南海张裂过程及其对晚中生代以来东南亚构造的启示——IODP建议书735-Full介绍.地球科学进展, 24(12):1339-1351. doi: 10.3321/j.issn:1001-8166.2009.12.008 [58] 李家彪, 2011.南海大陆边缘动力学:科学实验与研究进展.地球物理学报, 54(12):2993-3003. doi: 10.3969/j.issn.0001-5733.2011.12.002 [59] 李三忠, 索艳慧, 刘鑫, 等, 2012.南海的基本构造特征与成因模型:问题与进展及论争.海洋地质与第四纪地质, 32(6):35-53. http://kns.cnki.net/KCMS/detail/detail.aspx?filename=HYDZ201206009&dbname=CJFD&dbcode=CJFQ [60] 刘思青, 赵明辉, 张佳政, 等, 2017.马尼拉海沟俯冲带前缘(21°N)海底地震仪数据处理初步成果.热带海洋学报, 36(2):60-69. http://d.old.wanfangdata.com.cn/Periodical/rdhy201702008 [61] 陆基孟, 1993.地震勘探原理.济南:石油大学出版社. [62] 米立军, 柳保军, 何敏, 等, 2016.南海北部陆缘白云深水区油气地质特征与勘探方向.中国海上油气, 28(2):10-22. http://d.old.wanfangdata.com.cn/Periodical/zghsyq-gc201602002 [63] 丘学林, 赵明辉, 徐辉龙, 等, 2012.南海深地震探测的重要科学进程:回顾和展望.热带海洋学报, 31(3):1-9. http://www.cqvip.com/QK/96022X/201203/43602433.html [64] 王建, 赵明辉, 贺恩远, 等, 2014.初至波层析成像的反演参数选取:以南海中央次海盆三维地震探测数据为例.热带海洋学报, 33(5):74-83. doi: 10.3969/j.issn.1009-5470.2014.05.010 [65] 汪品先, 2009.南海——我国深海研究的突破口.热带海洋学报, 28(3):1-4. doi: 10.3969/j.issn.1009-5470.2009.03.001 [66] 汪品先, 2012.追踪边缘海的生命史:"南海深部计划"的科学目标.科学通报, 57(20):1807-1826. http://www.cnki.com.cn/Article/CJFDTotal-KXTB201220002.htm [67] 吴振利, 李家彪, 阮爱国, 等, 2011.南海西北次海盆地壳结构:海底广角地震实验结果.中国科学(D辑), 41(10):1463-1476. http://d.old.wanfangdata.com.cn/Periodical/dqkx201204016 [68] 解习农, 张成, 任建业, 等, 2011.南海南北大陆边缘盆地构造演化差异性对油气成藏条件控制.地球物理学报, 54(12):3280-3291. doi: 10.3969/j.issn.0001-5733.2011.12.026 [69] 张佳政, 丘学林, 赵明辉, 等, 2018.南海巴士海峡三维OBS探测的异常数据恢复.地球物理学报61(4):1529-1538. http://d.old.wanfangdata.com.cn/Periodical/dqwlxb201804026 [70] 张莉, 赵明辉, 王建, 等, 2013.南海中央次海盆OBS位置校正及三维地震探测新进展.地球科学, 38(1):33-42. https://doi.org/10.3799/dqkx.2013.004 [71] 赵明辉, 贺恩远, 孙龙涛, 等, 2016.马里亚纳海沟俯冲带深地震现状对马尼拉海沟俯冲带的研究启示.热带海洋学报, 35(1):48-60. http://d.old.wanfangdata.com.cn/Periodical/rdhy201601005 [72] 赵明辉, 丘学林, 夏少红, 等, 2007.南海东北部三分量海底地震仪记录中横波的识别和分析.自然科学进展, 17(11):1516-1523. doi: 10.3321/j.issn:1002-008x.2007.11.008 [73] 朱伟林, 钟锴, 李友川, 等, 2012.南海北部深水区油气成藏与勘探.科学通报, 57(20):1833-1841. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=QK201203364398