• 中国出版政府奖提名奖

    中国百强科技报刊

    湖北出版政府奖

    中国高校百佳科技期刊

    中国最美期刊

    留言板

    尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

    姓名
    邮箱
    手机号码
    标题
    留言内容
    验证码

    东北地区新开岭-科洛杂岩变形规律与成因

    杨文鹏 张立东 张俭峰 姜海洋 吕石佳 李新鹏 万太平

    杨文鹏, 张立东, 张俭峰, 姜海洋, 吕石佳, 李新鹏, 万太平, 2019. 东北地区新开岭-科洛杂岩变形规律与成因. 地球科学, 44(7): 2551-2566. doi: 10.3799/dqkx.2018.570
    引用本文: 杨文鹏, 张立东, 张俭峰, 姜海洋, 吕石佳, 李新鹏, 万太平, 2019. 东北地区新开岭-科洛杂岩变形规律与成因. 地球科学, 44(7): 2551-2566. doi: 10.3799/dqkx.2018.570
    Yang Wenpeng, Zhang Lidong, Zhang Jianfeng, Jiang Haiyang, Lü Shijia, Li Xinpeng, Wan Taiping, 2019. Deformation Characteristics and Genesis of the Xinkailing-Keluo Complex in NE China. Earth Science, 44(7): 2551-2566. doi: 10.3799/dqkx.2018.570
    Citation: Yang Wenpeng, Zhang Lidong, Zhang Jianfeng, Jiang Haiyang, Lü Shijia, Li Xinpeng, Wan Taiping, 2019. Deformation Characteristics and Genesis of the Xinkailing-Keluo Complex in NE China. Earth Science, 44(7): 2551-2566. doi: 10.3799/dqkx.2018.570

    东北地区新开岭-科洛杂岩变形规律与成因

    doi: 10.3799/dqkx.2018.570
    基金项目: 

    黑龙江1:5万嫩北农场四队、座虎滩公社、杨树村、沐河屯幅区域地质矿产调查 1212011220430

    详细信息
      作者简介:

      杨文鹏(1984-), 男, 硕士, 工程师, 资源勘查工程专业, 主要从事区域地质矿产调查与研究工作

    • 中图分类号: P548

    Deformation Characteristics and Genesis of the Xinkailing-Keluo Complex in NE China

    • 摘要: 新开岭-科洛杂岩位于中国东北地区的嫩江-黑河构造带中,其变形规律与成因一直是制约东北地区乃至邻区构造演化的关键问题之一.据详尽的野外调查,系统分析了岩石宏观糜棱面理、矿物拉伸线理、“A”型褶皱、不对称褶皱、眼球状旋转构造和显微书斜式、眼球状旋转等构造样式.构造解析及运动学分析反映杂岩带两侧整体分别向NW及SE向的伸展滑脱特征;杂岩带内黑云斜长片麻岩及侵入糜棱岩中的闪长玢岩锆石U-Pb(LA-ICP-MS)定年及区域对比研究结果显示,其韧性变形变质作用时代为中侏罗世(167 Ma),变质峰期时限为170~163 Ma,中侏罗世晚期(163 Ma)暴露于地表.新开岭-科洛杂岩具上盘盖层、拆离韧性剪切带及下盘核杂岩3层式结构特征.核内为大面积分布的花岗岩类,地层时代远比核外地层偏新,并无“古老”的变质岩;拆离韧性剪切带变形温度约400~500℃,其变质强度达绿片岩相,后期发生明显退变质作用.新开岭-科洛岩浆核杂岩主要是在岩浆底侵、花岗岩岩体强力侵位引起地壳隆升的伸展构造背景下形成.

       

    • 图  1  东北地区构造单元

      底图据Wu et al.(2002)修改

      Fig.  1.  Tectonic divisions of Northeast China

      图  2  新开岭-科洛地区地质简图

      1.第四系;2.中生代地层;3.新生代火山岩;4.中生代火山岩;5.晚古生代地层;6.早古生代地层;7.片岩类;8.晚古生代花岗质杂岩;9.片麻岩类;10.新开岭岩群;11.中生代花岗质杂岩;12.兴华渡口岩群;13.深熔花岗岩;14.白垩纪花岗岩;15.侏罗纪花岗岩;16.晚古生代花岗岩;17.早古生代花岗岩;18.实测断裂;19.推测断裂;20.拆离断层;21.逆断层;22.韧性剪切带;23.构造剖面位置;24.地层产状;25.变质岩产状;26.糜棱面理产状;27.年龄及文献;图据黑龙江省区域地质调查所, 2013, 中华人民共和国1:250 000万区域地质调查报告嫩江县幅(M51C003004),哈尔滨

      Fig.  2.  Simplified geological map of Xinkailing-Keluo area

      图  3  新开岭-科洛杂岩地质剖面

      1.第四系;2.中生代地层;3.晚古生代地层;4.早古生代地层;5.片岩类;6.片麻岩类7.新开岭岩体;8.中生代花岗质杂岩;9.晚古生代花岗质杂岩;10.深熔花岗岩;11.中侏罗世侵入岩;12.中生代火山岩;13.同构造脉岩14.受断裂带影响的变形带;15.韧性剪切带;16.断裂带及编号;17.侵入界线;18.产状

      Fig.  3.  Across geological sections of the Xinkailing-Keluo complex

      图  4  韧性剪切带变形组构赤平投影

      1.线理(L);2.面理法线(P);3.测量的线理及面理数;4.线理及面理测量区域及编号;5.初糜棱岩;6.糜棱岩;7.超糜棱岩;8.脉岩;9.片岩类;10.花岗岩;11.剖面位置及编号;12.韧性剪切带边界;13.面理产状;14.面理及面理上线理产状;15.线理的指向与倾伏

      Fig.  4.  Stereograms of mineral elongation lineation and foliation of the detachment shear zone

      图  5  新开岭-科洛杂岩岩石野外及显微照片

      a.长英质糜棱岩(XK001)XZ面,眼球状旋转构造指示上盘向SE方向运动;b.“A”型褶皱,指示上盘向NW方向运动;c.糜棱岩(XK045)中不对称褶皱,指示上盘向SE方向运动;d.糜棱岩(XK167)XZ面,拖尾长石眼球状构造,指示上盘向NW方向运动;e.糜棱岩(XK085)中近水平的A型线理,指示向SE方向滑脱;f.糜棱岩(XK175)眼球状旋转构造,指示上盘向NW方向运动(+);g.糜棱岩(XK033)眼球状旋转构造指示上盘向SE方向运动(+);h.糜棱岩(XK192)绿帘石书斜式构造指示上盘向NW方向运动(+);Qtz.石英;Kfs.钾长石;Pl.斜长石;Ep.绿帘石

      Fig.  5.  Field outcrops and photomicrographs of the rocks from the Xinkailing-Keluo complex

      图  6  新开岭-科洛杂岩锆石U-Pb谐和图及锆石阴极发光(CL)图像

      Fig.  6.  Zircon U-Pb concordian diagrams and cathodoluminescence (CL) images from the Xinkailing-Keluo complex

      图  7  新开岭-科洛杂岩韧性剪切带显微特征

      a.花岗质糜棱岩中核幔构造(XK010)(+);b.长英质糜棱岩中斜长石显微破裂及绿帘石化(XK036)(+);c.长英质糜棱岩中石英单晶内发育的亚晶粒(XK112)(+);d.花岗质糜棱岩中斜长石塑性拉长及显微破裂(XK094)(+);Qtz.石英;Pl.斜长石;Ep.绿帘石;Ms.白云母

      Fig.  7.  Microscopic features of the detachment shear zone from the Xinkailing-Keluo complex

      图  8  野外照片(a)和岩石单颗粒锆石U-Pb年龄谱(b)

      Fig.  8.  Outcrop photograph (a) and age spectrogram (b) of the zircon ages from primary cocks

      图  9  新开岭-科洛杂岩成因机制及演化模式

      1.晚古生代地层;2.早古生代地层;3.片岩类;4.片麻岩类5.中生代火山岩;6.大石寨组;7.白垩纪花岗岩;8.侏罗纪花岗岩;9.深熔花岗岩;10.晚古生代花岗质杂岩;11.碎裂岩;12.同构造脉岩;13.拆离断层;14.正断层;15.逆断层;16.韧性剪切带

      Fig.  9.  Genetic mechanism and evolution models of the Xinkailing-Keluo complex

      表  1  新开岭-科洛杂岩锆石LA⁃ICP⁃MS U⁃Pb同位素数据(D0014)

      Table  1.   LA⁃ICP⁃MS U⁃Pb composition of zircon samples of the Xinkailing⁃Keluo complex (D0014)

      测点号 Th U Th/U 比值 比值 比值 年龄(Ma) 年龄(Ma) 年龄(Ma)
      (10-6 207Pb/
      206Pb
      1σ 207Pb/
      235U
      1σ 206Pb/
      238U
      1σ 207Pb/
      206Pb
      1σ 207Pb/
      235U
      1σ 206Pb/
      238U
      1σ
      D0014-1 18.88 870.31 0.02 0.049 56 0.001 75 0.172 66 0.005 88 0.025 26 0.000 36 174 53 162 5 161 3
      D0014-2 155.85 975.25 0.16 0.051 32 0.001 71 0.221 59 0.007 36 0.031 32 0.000 45 254 50 203 6 199 5
      D0014-3 292.75 249.81 1.17 0.050 07 0.002 93 0.220 19 0.012 72 0.031 89 0.000 52 198 103 202 11 202 5
      D0014-4 210.24 330.78 0.64 0.051 71 0.002 06 0.321 26 0.012 64 0.045 05 0.000 70 273 62 283 10 284 6
      D0014-5 10.47 384.28 0.03 0.049 52 0.003 59 0.183 11 0.013 17 0.026 81 0.000 44 173 132 171 11 171 5
      D0014-6 10.32 438.53 0.02 0.049 44 0.002 42 0.189 69 0.009 19 0.027 82 0.000 44 169 83 176 8 177 5
      D0014-7 19.91 770.43 0.03 0.049 50 0.001 90 0.187 81 0.007 11 0.027 51 0.000 42 172 60 175 6 175 5
      D0014-8 153.22 260.78 0.59 0.052 35 0.002 19 0.340 20 0.014 21 0.047 12 0.000 75 301 65 297 11 297 8
      D0014-9 220.11 828.03 0.27 0.050 07 0.001 86 0.208 98 0.007 68 0.030 27 0.000 46 198 57 193 6 192 5
      D0014-10 28.01 278.51 0.10 0.049 93 0.003 23 0.215 01 0.013 72 0.031 22 0.000 56 192 112 198 11 198 6
      D0014-11 141.12 243.65 0.58 0.052 17 0.002 63 0.346 94 0.017 23 0.048 22 0.000 79 293 83 302 13 304 8
      D0014-12 192.65 368.48 0.52 0.052 08 0.002 58 0.345 92 0.016 94 0.048 16 0.000 77 289 83 302 13 303 8
      D0014-13 293.7 631.15 0.47 0.051 15 0.001 83 0.283 22 0.009 97 0.040 15 0.000 62 248 53 253 8 254 6
      D0014-14 77.52 133.74 0.58 0.052 04 0.003 44 0.345 88 0.022 47 0.048 19 0.000 91 287 114 302 17 303 9
      D0014-15 63.03 475.33 0.13 0.050 07 0.002 79 0.221 20 0.012 19 0.032 03 0.000 52 198 97 203 10 203 5
      D0014-16 9.44 451.25 0.02 0.049 85 0.003 39 0.184 06 0.012 40 0.026 77 0.000 46 188 122 172 11 170 5
      D0014-17 5.33 606.29 0.01 0.051 33 0.002 77 0.172 06 0.009 15 0.024 30 0.000 40 256 92 161 8 155 5
      D0014-18 4.92 179.33 0.03 0.049 30 0.004 51 0.176 00 0.015 89 0.025 88 0.000 53 162 164 165 14 165 5
      D0014-19 4.59 314.27 0.02 0.049 14 0.003 19 0.181 07 0.011 56 0.026 72 0.000 48 155 111 169 10 170 5
      D0014-20 5.81 531.01 0.01 0.049 70 0.002 57 0.183 10 0.009 32 0.026 71 0.000 44 181 87 171 8 170 5
      D0014-21 1.41 171.19 0.01 0.049 48 0.005 55 0.179 96 0.019 97 0.026 37 0.000 58 171 208 168 17 168 6
      D0014-22 7.75 752.69 0.01 0.049 57 0.001 95 0.178 91 0.006 89 0.026 17 0.000 42 175 60 167 6 167 5
      D0014-23 151.81 330.01 0.46 0.052 42 0.002 45 0.338 88 0.015 53 0.046 87 0.000 78 304 74 296 12 295 8
      D0014-24 185.81 416.14 0.45 0.051 37 0.002 26 0.299 92 0.012 96 0.042 33 0.000 69 257 69 266 10 267 6
      D0014-25 200.96 450.67 0.45 0.050 15 0.002 24 0.218 89 0.009 53 0.031 65 0.000 55 202 69 201 8 201 5
      下载: 导出CSV

      表  2  新开岭-科洛杂岩锆石LA⁃ICP⁃MS U⁃Pb同位素数据(D0002)

      Table  2.   LA⁃ICP⁃MS U⁃Pb composition of zircon samples of the Xinkailing⁃Keluo complex (D0002)

      测点号 Th U Th/U 比值 比值 比值 年龄(Ma) 年龄(Ma) 年龄(Ma)
      (10-6 207Pb/
      206Pb
      1σ 207Pb/
      235U
      1σ 206Pb/
      238U
      1σ 207Pb/
      206Pb
      1σ 207Pb/
      235U
      1σ 206Pb/
      238U
      1σ
      D0002-1 202.78 447.58 0.45 0.050 01 0.001 52 0.230 11 0.006 23 0.033 15 0.000 57 209 36 210 5 210 5
      D0002-2 18.300 27.19 0.67 0.049 02 0.011 21 0.178 42 0.038 66 0.026 76 0.000 81 155 349 167 33 167 8
      D0002-3 59.730 405.06 0.15 0.050 12 0.002 34 0.173 74 0.005 63 0.025 06 0.000 42 174 48 163 5 162 3
      D0002-4 542.98 791.52 0.69 0.049 02 0.001 02 0.175 25 0.003 85 0.026 54 0.000 46 163 26 164 3 164 3
      D0002-5 403.66 1 044.6 0.39 0.055 40 0.001 14 0.204 16 0.004 35 0.027 14 0.000 4 163 92 170 6 170 3
      D0002-6 653.82 2 118.6 0.31 0.111 02 0.002 67 0.370 14 0.006 67 0.024 18 0.000 32 246 147 148 9 142 3
      D0002-7 114.32 337.37 0.34 0.049 21 0.002 56 0.178 43 0.006 92 0.026 31 0.000 43 165 63 167 6 167 3
      D0002-8 230.89 454.92 0.51 0.052 02 0.001 34 0.316 61 0.008 31 0.044 53 0.000 68 293 33 279 6 278 6
      D0002-9 1 562.9 2 200.9 0.71 0.108 13 0.002 18 0.399 53 0.007 12 0.027 21 0.000 41 216 167 161 11 158 3
      D0002-10 497.49 516.01 0.97 0.066 24 0.002 31 0.249 47 0.006 39 0.027 43 0.000 42 447 145 192 11 172 5
      D0002-11 198.48 249.76 0.80 0.049 15 0.002 67 0.173 21 0.008 58 0.025 52 0.000 43 161 86 162 7 162 3
      D0002-12 40.10 126.54 0.32 0.049 07 0.004 31 0.174 86 0.013 56 0.026 34 0.000 48 164 141 164 12 164 5
      D0002-13 884.55 1 627.9 0.54 0.051 31 0.001 61 0.175 14 0.003 82 0.026 81 0.000 44 184 26 164 3 162 3
      D0002-14 14.54 467.84 0.03 0.049 24 0.001 21 0.173 69 0.005 14 0.025 26 0.000 40 169 42 163 4 162 3
      D0002-15 114.46 281.56 0.41 0.056 21 0.001 08 0.220 31 0.006 52 0.032 43 0.000 52 205 41 202 5 202 5
      D0002-16 96.36 177.1 0.54 0.052 03 0.002 39 0.212 73 0.009 71 0.031 51 0.000 51 194 77 196 8 196 5
      D0002-17 21.58 116.57 0.19 0.049 13 0.003 16 0.168 47 0.011 36 0.025 46 0.000 43 147 115 158 10 158 5
      D0002-18 280.92 184.17 1.53 0.073 82 0.003 79 0.260 51 0.012 32 0.024 26 0.000 47 191 233 163 15 161 5
      D0002-19 304.64 444.66 0.69 0.196 00 0.004 62 0.670 23 0.013 84 0.025 41 0.000 41 189 199 122 11 128 3
      D0002-20 143.34 987.56 0.15 0.059 01 0.001 16 0.309 65 0.006 53 0.038 46 0.000 51 576 23 274 5 240 5
      D0002-21 42.37 166.05 0.26 0.049 81 0.003 58 0.173 97 0.009 91 0.026 57 0.000 42 159 99 163 9 163 5
      D0002-22 27.54 67.92 0.41 0.097 31 0.009 51 0.356 83 0.031 14 0.027 87 0.000 65 206 188 149 12 159 5
      D0002-23 207.95 156.46 1.33 0.063 53 0.004 26 0.231 65 0.013 74 0.027 61 0.000 52 705 98 210 11 169 5
      D0002-24 197.13 310.01 0.64 0.052 71 0.001 37 0.338 31 0.009 13 0.047 53 0.000 76 299 35 296 7 295 6
      D0002-25 427.69 943.85 0.45 0.051 19 0.001 51 0.179 36 0.004 42 0.026 14 0.000 41 223 31 167 4 164 3
      下载: 导出CSV
    • [1] Bureau of Geology and Mineral Resources of Heilongjiang Province, 1993. Regional Geology of Heilongjiang Province. Geological Publishing House, Beijing (in Chinese).
      [2] Bureau of Geology and Mineral Resources of Nei Mongol Autonomous Region, 1996. Stratigraphy (Lithostratic) of NeiMongol Autonomous Region. China University of Geosciences Press, Wuhan (in Chinese).
      [3] Davis, G. A., Lister, G. S., 1988. Detachment Faulting in Continental Extension: Perspectives from the Southwestern U.S. Cordillera. Special Paper of the Geological Society of America, 218:133-159. https://doi.org/10.1130/spe218-p133
      [4] Davis, G. A., Xu, B., Zheng, Y. D., et al., 2004. Indosinian Extension in the Solonker Suture Zone: The Sonid Metamorphic Core Complex, Inner Mongolia, China. Earth Science Frontiers, 11(9):135-143.
      [5] Gou, J., Sun, D. Y., Li, R., et al., 2013. Geochronology, Geochemistry and Petrogenesis of the Early Mesozoic Granites in the Sunwu-Jiayin Area, Heilongjiang Province. Journal of Jilin University (Earth Science Edition), 43(1):119-133 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-CCDZ201301016.htm
      [6] Li, C. L., Qu, H., Zhao, Z. H., et al., 2013. Zircon U-Pb Ages, Geochemical Characteristics and Tectonic Implications of Early Carboniferous Granites in Huolongmen Area, Heilongjiang Province. Geology in China, 40(3):859-868 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-DIZI201303018.htm
      [7] Li, C. Y., 1982. Explanation to Tectonic Map of Asia (at 1:8 000 000 Scale). Geological Publishing House, Beijing, 13-28 (in Chinese).
      [8] Li, J. Y., He, Z. J., Mo, S. G., et al., 2004. The Age of Conglomerates in the Lower Part of the Xiufeng Formation in the Northern Da Hinggan Mountains, NE China, and Their Tectonic Implications. Geological Bulletin of China, 23(2):120-129 (in Chinese with English abstract). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=zgqydz200402004
      [9] Li, L., Sun, F. Y., Li, B. L., et al., 2017. Geochronology of Ershi'erzhan Formation Sandstone in Mohe Basin and Tectonic Environment of Its Provenance. Earth Science, 42(1):35-52 (in Chinese with English abstract). https://doi.org/10.1016/10.3799/dqkx.2017.003
      [10] Li, Y., Ding, L. L., Xu, W. L., et al., 2015. Geochronology and Geochemistry of Muscovite Granite in Sunwu Area, NE China: Implications for the Timing of Closure of the Mongol-Okhotsk Ocean. Acta Petrologica Sinica, 31(1):56-66 (in Chinese with English abstract). http://d.old.wanfangdata.com.cn/Periodical/ysxb98201501004
      [11] Li, Y., Xu, W. L., Wang, F., et al., 2014. Geochronology and Geochemistry of Late Paleozoic Volcanic Rocks on the Western Margin of the Songnen-Zhangguangcai Range Massif, NE China: Implications for the Amalgamation History of the Xing'an and Songnen-Zhangguangcai Range Massifs. Lithos, 205: 394-410. https://doi.org/10.1016/j.lithos.2014.07.008
      [12] Liang, C. Y., Liu, Y. J., Li, W., et al., 2011. Characteristics of Extensional Structure of Keluo Complex in Nenjiang Area, Heilongjiang, China. Geological Bulletin of China, 30(Z1):291-299 (in Chinese with English abstract). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=zgqydz201102014
      [13] Ludwig, K. R., 2001. Users Manual for Isoplot/Ex_ver.2.49. Berkeley Geochronology Center, Berkeley.
      [14] Mancktelow, N. S., Pennacchioni, G., 2004. The Influence of Grain Boundary Fluids on the Microstructure of Quartz-Feldspar Mylonites. Journal of Structural Geology, 26(1): 47-69. https://doi.org/10.1016/s0191-8141(03)00081-6
      [15] Maruyama, S., Send, T., 1986. Orogeny and Relative Plate Motions: Example of the Japanese Islands. Tectonophysics, 127(3/4): 305-329. https://doi.org/10.1016/0040-1951(86)90067-3
      [16] Miao, L. C., Fan, W. M., Zhang, F. Q., et al., 2003. Zircon SHRIMP Geochronology of the Xinkailing-Kele Complex in the Northwestern Lesser Xing'an Range, and Its Geological Implications. Chinese Science Bulletin, 48(22):2315-2323 (in Chinese). doi: 10.1360%2F03wd0316?LI=true
      [17] Passchier, C. W., Trouw, R. A. J., 2005. Microtectonics. Springer-Verlag, Berlin, 40-43.
      [18] Qu, H., Li, C. L., Yang, F. S., et al., 2015. Zircon U-Pb Ages, Geochemical Characteristics and Their Geological Implication of Granitic Complex in Huolongmen Area, Northwestern Xiao Hinggan Mountains. Global Geology, 34(1):34-43 (in Chinese with English abstract).
      [19] Rojas-Agramonte, Y., Kröner, A., Demoux, A., et al., 2011. Detrital and Xenocrystic Zircon Ages from Neoproterozoic to Palaeozoic Arc Terranes of Mongolia: Significance for the Origin of Crustal Fragments in the Central Asian Orogenic Belt. Gondwana Research, 19(3): 751-763. https://doi.org/10.1016/j.gr.2010.10.004
      [20] Şengör, A. M. C., Natal'in, B. A., Burtman, V. S., 1993. Evolution of the Altaid Tectonic Collage and Palaeozoic Crustal Growth in Eurasia. Nature, 364(6435): 299-307. https://doi.org/10.1038/364299a0
      [21] She, H. Q., Li, J. W., Xiang, A. P., et al., 2012. U-Pb Ages of the Zircons from Primary Rocks in Middle-Northern Daxinganling and its Implications to Geotectonic Evolution. Acta Petrologica Sinica, 28(2):572-594 (in Chinese with English abstract). http://d.old.wanfangdata.com.cn/Periodical/ysxb98201202018
      [22] Sui, Z. M., Ge, W. C., Wu, F. Y., et al., 2007. Zircon U-Pb Ages, Geochemistry and Its Petrogenesis of Jurassic Granites in Northeastern Part of the Da Hinggan Mts. Acta Petrologica Sinica, 23(2):461-480 (in Chinese with English abstract). http://en.cnki.com.cn/article_en/cjfdtotal-ysxb200702024.htm
      [23] Sun, D. Y., Gou, J., Wang, T. H., et al., 2013. Geochronological and Geochemical Constraints on the Erguna Massif Basement, NE China-Subduction History of the Mongol-Okhotsk Oceanic Crust. International Geology Review, 55(14): 1801-1816. https://doi.org/10.1080/00206814.2013.804664
      [24] Wang, S. Q., Xin, H. T., Hu, X. J., et al., 2016. Geochronology, Geochemistry and Geological Significance of Early Paleozoic Wulanaobaotu Intrusive Rocks, Inner Mongolia. Earth Science, 41(4):555-569 (in Chinese with English abstract). https://doi.org/10.3799/dqkx.2016.046
      [25] Wang, Y., Fu, J. Y., Yang, F., et al., 2015. Contraction and Extension in Nenjiang Heihe Tectonic Belt: Evidence from the Late Paleozoic Granitoid Geochemistry. Journal of Jilin University (Earth Science Edition), 45(2):374-387 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTotal-CCDZ201502004.htm
      [26] Wang, Y., Yang, X. P., Na, F. C., et al., 2013. Determination and Geological Implication of the Granitic Mylonite in Nenjiang-Heihe Tectonic Belt. Geology and Resources, 22(6):452-459 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTotal-GJSD201306003.htm
      [27] Wu, F. Y., Sun, D. Y., Ge, W. C., et al., 2011. Geochronology of the Phanerozoic Granitoids in Northeastern China. Journal of Asian Earth Sciences, 41(1): 1-30. https://doi.org/10.1016/j.jseaes.2010.11.014
      [28] Wu, F. Y., Sun, D. Y., Li, H. M., et al., 2001. The Nature of Basement beneath the Songliao Basin in NE China: Geochemical and Isotopic Constraints. Physics and Chemistry of the Earth, Part A: Solid Earth and Geodesy, 26(9-10): 793-803. https://doi.org/10.1016/s1464-1895(01)00128-4
      [29] Wu, F. Y., Sun, D. Y., Li, H. M., et al., 2002. A-Type Granites in Northeastern China: Age and Geochemical Constraints on Their Petrogenesis. Chemical Geology, 187(1-2): 143-173. https://doi.org/10.1016/s0009-2541(02)00018-9
      [30] Yan, D. P., Zhou, M. F., Song, H. L., et al., 2003. Origin and Tectonic Significance of a Mesozoic Multi-Layer Over-Thrust System within the Yangtze Block (South China). Tectonophysics, 361(3-4): 239-254. https://doi.org/10.1016/s0040-1951(02)00646-7
      [31] Yang, W. R., Wang, J., Liang, X., 2012. The Major Characteristics of Geotectonics of Asia and Regularities of Evolution. Earth Science Frontiers, 19(5):1-17 (in Chinese with English abstract). http://d.old.wanfangdata.com.cn/Periodical/dxqy201205002
      [32] Yuan, H. L., Gao, S., Liu, X. M., et al., 2004. Accurate U-Pb Age and Trace Element Determinations of Zircon by Laser Ablation-Inductively Coupled Plasma-Mass Spectrometry. Geostandards and Geoanalytical Research, 28(3): 353-370. https://doi.org/10.1111/j.1751-908x.2004.tb00755.x
      [33] Zhao, H., Zhang, J., Wang, Y. N., et al., 2017. The Deformation Features, Phases and Significance of Keluo Complex in Nenjiang Area, Heilongjiang Province. Geotectonica et Metallogenia, 41(4):617-637 (in Chinese with English abstract). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=ddgzyckx201704001
      [34] Zhao, H. B., Mo, X. X., Xu, S. M., et al., 2007. Composition and Evolution of the Xinkailing Metamorphic Core Complexes in Heilongjiang Province. Chinese Journal of Geology, 42(1):176-188 (in Chinese with English abstract). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=dzkx200701015
      [35] Zhao, Y. D., Mo, X. X., Li, S. C., et al., 2015. Zircon U-Pb LA-ICP-MS Dating, Petrogeochemical Features of Granitic Mylonite in Northwestern Lesser Hinggan Mountains, and Tectonic Significance. Geological Review, 61(2):443-456 (in Chinese with English abstract).
      [36] Zhao, Z., Chi, X. G., Pan, S. Y., et al., 2010. Zircon U-Pb LA-ICP-MS Dating of Carboniferous Volcanics and Its Geological Significance in the Northwestern Lesser Xing'an Range. Acta Petrologica Sinica, 26(8):2452-2464 (in Chinese with English abstract).
      [37] Zhou, J. B., Wang, B., Zeng, W. S., et al., 2014. Detrital Zircon U-Pb Dating of the Zhalantun Metamorphic Complex and Its Tectonic Implications, Great Xing'an, NE China. Acta Petrologica Sinica, 30(7):1879-1888 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTotal-YSXB201407004.htm
      [38] Zeng, T., Wang, T., Guo, L., et al., 2011. Ages, Origin and Geological Implications of Late Mesozoic Granitoids in Xinkailing Region, NE China. Journal of Jilin University (Earth Science Edition), 41(6):1881-1900 (in Chinese with English abstract). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=cckjdxxb201106019
      [39] 黑龙江省地质矿产局, 1993.黑龙江省区域地质志.北京:地质出版社.
      [40] 内蒙古自治区地质矿产局, 1996.内蒙古自治区岩石地层.武汉:中国地质大学出版社.
      [41] 苟军, 孙德有, 李蓉, 等, 2013.孙吴-嘉荫地区早中生代花岗岩的年代学、地球化学与成因.吉林大学学报(地球科学版), 43(1):119-133. http://www.cnki.com.cn/Article/CJFDTotal-CCDZ201301016.htm
      [42] 李成禄, 曲晖, 赵忠海, 等, 2013.黑龙江霍龙门地区早石炭世花岗岩的锆石U-Pb年龄、地球化学特征及构造意义.中国地质, 40(3):859-868. doi: 10.3969/j.issn.1000-3657.2013.03.017
      [43] 李春昱, 1982.亚洲大地构造1/800万图及说明书.北京:地质出版社, 13-28.
      [44] 李锦轶, 和政军, 莫申国, 等, 2004.大兴安岭北部绣峰组下部砾岩的形成时代及其大地构造意义.地质通报, 23(2):120-129. doi: 10.3969/j.issn.1671-2552.2004.02.004
      [45] 李良, 孙丰月, 李碧乐, 等, 2017.漠河盆地二十二站组砂岩形成时代及物源区构造环境判别.地球科学, 42(1):35-52. http://earth-science.net/WebPage/Article.aspx?id=3412
      [46] 李宇, 丁磊磊, 许文良, 等, 2015.孙吴地区中侏罗世白云母花岗岩的年代学与地球化学:对蒙古-鄂霍茨克洋闭合时间的限定.岩石学报, 31(1):56-66. http://d.old.wanfangdata.com.cn/Periodical/ysxb98201501004
      [47] 梁琛岳, 刘永江, 李伟, 等, 2011.黑龙江嫩江地区科洛杂岩伸展构造特征.地质通报, 30(Z1):291-299. http://d.old.wanfangdata.com.cn/Periodical/zgqydz201102014
      [48] 苗来成, 范蔚茗, 张福勤, 等, 2003.小兴安岭西北部新开岭-科洛杂岩锆石SHRIMP年代学研究及其意义.科学通报, 48(22):2315-2323. doi: 10.3321/j.issn:0023-074X.2003.22.004
      [49] 曲晖, 李成禄, 杨福深, 等, 2015.小兴安岭西北部霍龙门地区花岗质杂岩锆石U-Pb年龄、岩石地球化学特征及地质意义.世界地质, 34(1):34-43. doi: 10.3969/j.issn.1004-5589.2015.01.005
      [50] 佘宏全, 李进文, 向安平, 等, 2012.大兴安岭中北段原岩锆石U-Pb测年及其与区域构造演化的关系.岩石学报, 28(2):572-594. http://www.cnki.com.cn/Article/CJFDTotal-YSXB201202019.htm
      [51] 隋振民, 葛文春, 吴福元, 等, 2007.大兴安岭东北部侏罗纪花岗质岩石的锆石U-Pb年龄、地球化学特征及成因.岩石学报, 23(2):461-480. http://d.old.wanfangdata.com.cn/Periodical/ysxb98200702023
      [52] 王树庆, 辛后田, 胡晓佳, 等, 2016.内蒙古乌兰敖包图早古生代侵入岩年代学、地球化学特征及地质意义.地球科学, 41(4):555-569. http://earth-science.net/WebPage/Article.aspx?id=3274
      [53] 汪岩, 付俊彧, 杨帆, 等, 2015.嫩江-黑河构造带收缩与伸展—源自晚古生代花岗岩类的地球化学证据.吉林大学学报(地球科学版), 45(2):374-387. http://d.old.wanfangdata.com.cn/Periodical/cckjdxxb201502005
      [54] 汪岩, 杨晓平, 那福超, 等, 2013.嫩江-黑河构造带中花岗质糜棱岩的确定及地质意义.地质与资源, 22(6):452-459. doi: 10.3969/j.issn.1671-1947.2013.06.003
      [55] 杨巍然, 王杰, 梁晓, 2012.亚洲大地构造基本特征和演化规律.地学前缘, 19(5):1-17. http://d.old.wanfangdata.com.cn/Periodical/dxqy201205002
      [56] 赵衡, 张进, 王艳楠, 等, 2017.黑龙江科洛杂岩变形特征、阶段和意义.大地构造与成矿学, 41(4):617-637. http://d.old.wanfangdata.com.cn/Periodical/ddgzyckx201704001
      [57] 赵海滨, 莫宣学, 徐受民, 等, 2007.黑龙江新开岭变质核杂岩的组成及其演化.地质科学, 42(1):176-188. doi: 10.3321/j.issn:0563-5020.2007.01.015
      [58] 赵院冬, 莫宣学, 李士超, 等, 2015.小兴安岭西北部花岗质糜棱岩锆石LA-ICP-MS U-Pb年龄、岩石地球化学特征及地质意义.地质论评, 61(2):443-456. http://d.old.wanfangdata.com.cn/Periodical/dzlp201502017
      [59] 赵芝, 迟效国, 潘世语, 等, 2010.小兴安岭西北部石炭纪地层火山岩的锆石LA-ICP-MS U-Pb年代学及其地质意义.岩石学报, 26(8):2452-2464. http://d.old.wanfangdata.com.cn/Periodical/ysxb98201008018
      [60] 周建波, 王斌, 曾维顺, 等, 2014.大兴安岭地区扎兰屯变质杂岩的碎屑锆石U-Pb年龄及其大地构造意义.岩石学报, 30(7):1879-1888. http://d.old.wanfangdata.com.cn/Periodical/ysxb98201407004
      [61] 曾涛, 王涛, 郭磊, 等, 2011.东北新开岭地区晚中生代花岗岩类时代、成因及地质意义.吉林大学学报(地球科学版), 41(6):1881-1900. http://d.old.wanfangdata.com.cn/Periodical/cckjdxxb201106019
    • 加载中
    图(9) / 表(2)
    计量
    • 文章访问数:  3772
    • HTML全文浏览量:  1545
    • PDF下载量:  35
    • 被引次数: 0
    出版历程
    • 收稿日期:  2017-11-16
    • 刊出日期:  2019-07-15

    目录

      /

      返回文章
      返回