Age and Petrogenesis of the Echeng Intrusion in Southeastern Hubei Province: Implications for Iron Mineralization
-
摘要: 鄂城岩体位于鄂东南地区的最北部,是鄂东南地区的六大岩体之一.在该岩体的南缘接触带上产出了长江中下游地区最大的矽卡岩型铁矿床——程潮铁矿床.众多研究表明,程潮铁矿化与鄂城杂岩体的岩浆演化密切相关,然而目前对于成矿作用究竟是与花岗质岩还是闪长质岩有关仍存在争议.通过对鄂城杂岩体开展系统的锆石U-Pb年代学、元素地球化学和Sr-Nd-Hf同位素研究,结果表明该岩体主要由花岗岩、石英二长岩、花岗斑岩以及小面积的闪长岩组成,最早侵位于140±1 Ma(中粒闪长岩),之后依次侵位形成了细粒闪长岩(132±2 Ma)、花岗斑岩(130±2 Ma)、花岗岩(中细粒花岗岩129±2 Ma,中粒花岗岩129±1 Ma)和石英二长岩(129±1 Ma).根据全岩地球化学特征,鄂城杂岩体的岩石组成大致可以分为两组:(1)花岗岩类,包括花岗岩、花岗斑岩和角闪石英二长岩,钾质,具有高SiO2,低TiO2、FeOt、MnO、MgO含量等特征;(2)闪长岩类,包括中、细粒闪长岩,钠质,具有低SiO2,高TiO2、FeOt、MnO、MgO含量等特征.这些岩石均富集轻稀土元素(LREE)和大离子亲石元素(LILE,如Rb、Th等),亏损高场强元素(HFSE,如Nb、P、Ti)等,且花岗岩类具明显的负Eu异常,而闪长岩类则无此特征.在同位素组成方面,鄂城花岗岩类具有较负的全岩εNd(t)值(-11.7~-10.1)和锆石εHf(t)值(-22.91~-9.83),闪长岩类则具有稍高的全岩εNd(t)值(-7.6)和锆石εHf(t)值(-12.04~-4.69).元素和同位素地球化学特征共同表明,鄂城花岗岩类属于高分异Ⅰ型花岗岩,且主要来源于古元古代基底物质的部分熔融作用,源区可能有少量幔源物质的加入;闪长岩类主要来源于富集岩石圈地幔,且经历了一定的分离结晶作用.年代学结果显示,鄂城花岗岩类和细粒闪长岩的侵位时间均与程潮铁矿床的主成矿期吻合.结合野外接触关系以及前人的研究,程潮铁矿化可能与上述两类岩石均密切相关.从整个鄂东南地区的成矿作用来看,随着岩浆源区壳源物质贡献的增大以及岩浆分异程度的增加,岩浆作用与铁矿化的关系也更加密切.Abstract: The Echeng pluton is one of the six large plutons in southeastern Hubei Province, which is located in the northernmost of the region. The Chengchao iron deposit, the largest skarn iron deposit in the Middle-Lower reaches of Yangtze River belt, has occurred in the southern contact zone of the Echeng pluton. Many researches have showed that the Chengchao iron mineralization was closely connected with the magma evolution of the Echeng complex, whereas whether the mineralization is related to granitic rocks or dioritic rocks is still controversial. In this paper, we present U-Pb age, geochemical, and Sr-Nd-Hf isotopic data to provide constraints on the petrogenesis of the Echeng intrusion and discuss the relationship of magma evolution and iron mineralization. The Echeng complex mainly consists of granite, quartz monzonite, granite porphyry and small-scale diorite. LA-ICP-MS zircon U-Pb data indicates that the Echeng complex began to emplace at 140±1 Ma by medium-grained diorite phase, subsequently fine-grained diorite (132±2 Ma), granite porphyry (130±2 Ma), granite including medium-fine grained (129±2 Ma) and medium-grained (129±1 Ma) phases and quartz monzonite (129±1 Ma) were emplaced in order. According to geochemical characteristics, all the rocks can broadly be divided into two groups:(1) granitoids including granite, granite porphyry, hornblende quartz monzonite are potassic and are characterized by high SiO2, low TiO2, FeOt, MnO, MgO concentrations; (2) diorite including fine and medium grained diorites, are sodic and are characterized by low SiO2, high TiO2, FeOt, MnO, MgO concentrations. These rocks are enriched in light rare earth elements (LREEs) and large ion lithophile elements (LILE) such as Rb, Th, and depleted in high field strength elements(HFSE) such as Nb, P and Ti. Moreover, the Echeng granitoids show obviously negative Eu anomalies but the diorites have no such a signature. The Echeng granitoids have more negative εNd(t) values ranging from -11.7 to -10.1 and zircon εHf(t) values ranging from -22.91 to -9.83, and the diorites have relatively high εNd(t) value (-7.6) and zircon εHf(t) values ranging from -12.04 to -4.69. The geochemical and isotopic data suggests that the Echeng granitoids belong to highly fractionated I-type granites and were mainly derived from partial melting of the Paleoproterozoic basement, possibly with the addition of a small amount of mantle-derived materials, whereas the diorites were mainly originated from the enriched lithospheric mantle, followed by a certain degree of crystallization fractionation. The new geochronological data suggests that the Echeng granitoids and fine-grained diorite broadly coeval with the main mineralization of the Chengchao iron deposit. Combining with field contact relationship and previous research results, the Chengchao iron mineralization was probably related to the Echeng granitoids and fine-grained diorite. Based on the mineralizations in southeastern Hubei Province, magmatism is more closely related to iron mineralization with the increases of differentiation degrees and crustal contributions in the magma source.
-
图 4 鄂城岩体SiO2-K2O图解(a)和A/CNK-A/NK图解(b)
图a据Rollison(1993);图b据Maniar and Piccoli(1989).与铜多金属矿床以及铁铜矿床相关的岩体数据引自Li et al.(2009)、谢桂青等(2008)、Xie et al.(2011a, 2011b)以及未发表数据
Fig. 4. SiO2 versus K2O diagram (a) and A/CNK-A/NK diagram (b) for the Echeng intrusion
图 6 鄂城岩体(a, b, c, d)以及鄂东南地区与铜多金属矿(e, f)和铁铜矿(g, h)相关的岩体稀土元素配分图解和微量元素蛛网图
原始地幔和球粒陨石标准值均引自Sun and McDonough(1989);引用数据来源同图 4
Fig. 6. Chondrite-normalized REE patterns and primitive mantle normalized element spider diagrams for the Echeng intrusion (a, b, c, d) and plutons related to copper polymetallic (e, f) and iron-copper deposits (g, h) in southeastern Hubei Province
图 7 鄂东南地区晚中生代岩浆岩年龄直方图
数据引自Li et al.(2009, 2014)、Li et al.(2010)、Xie et al.(2006, 2011a, 2011b, 2012)、本文以及未发表数据
Fig. 7. Age histograms of Late Mesozoic magmatism in southeastern Hubei Province
图 8 鄂城花岗岩类的(a)10 000×(Ga/Al)-(Zr+Nb+Ce+Y), (b) FeOt/MgO-10 000×Ga/Al, (c) Zr-10 000×(Ga/Al)和(d)Zr/Hf-Nb/Ta图
图 8a, 8b, 8c据Whalen et al.(1987);图 8d据吴福元等(2017);OGT. I, S&M型花岗岩;FG.高分异的Ⅰ型花岗岩
Fig. 8. (a) 10 000×(Ga/Al) vs. (Zr+Nb+Ce+Y), (b) FeOt/MgO vs. 10 000×Ga/Al, (c) Zr vs. 10 000×(Ga/Al) and (d) Zr/Hf vs. Nb/Ta diagrams of the Echeng granitoids
图 10 鄂城岩体(87Sr/86Sr)i-εNd(t)图
DMM.亏损地幔单元;EM(Ⅰ, Ⅱ).富集地幔单元,引自Zindler and Hart(1986);长江中下游地区早白垩纪基性岩引自Yan et al.(2008);上地壳引自Taylor and McLennan(1985);扬子下地壳引自Jahn et al.(1999);崆岭杂岩和大别山变质岩引自Ma et al.(2000);与铜多金属矿床和铁铜矿床相关的侵入岩数据来源同图 4
Fig. 10. Initial (87Sr/86Sr)i vs. εNd(t) diagram of the Echeng intrusion
图 12 鄂城岩体花岗岩类的铝饱和指数(A/CNK)-锆石饱和温度图解
锆石饱和温度据Watson and Harrison(1983)方法计算.华南高分异I型花岗岩据Li et al.(2007b);北喜马拉雅淡色花岗岩据Zhang et al.(2004)
Fig. 12. A/CNK vs. Zircon saturaton temperature diagram of the Echeng granitoids
图 13 鄂城闪长岩的(a)Rb-Ni和(b)La-La/Sm图
Fig. 13. (a) Rb vs. Ni and (b) La vs. La/Sm diagrams of the Echeng diorites
图 14 鄂城岩体以及鄂东南地区与铜多金属矿床和铁铜矿床相关的侵入岩的锆石εHf(t)直方图
与铜多金属矿床以及铁铜矿床相关的侵入岩数据引自Xie et al.(2011a, 2011b)以及未发表数据
Fig. 14. Histograms of zircon εHf(t) values for the Echeng complex and intrusions related to copper polymetallic deposits and Fe-Cu deposits
图 15 鄂东南地区与成矿作用相关的岩体的分异指数对比
与铜多金属矿床以及铁铜矿床相关的岩体数据引自Li et al.(2009);谢桂青等(2008);Xie et al.(2011a, 2011b)以及未发表数据
Fig. 15. Differentiation index diagram of intrusions related to mineralizations in southeastern Hubei Province
-
[1] Allègre, C.J., Minster, J.F., 1978.Quantitative Models of Trace Element Behavior in Magmatic Processes.Earth and Planetary Science Letters, 38(1):1-25. https://doi.org/10.1016/0012-821x(78)90123-1 [2] Andersen, T., 2002.Correction of Common Lead in U-Pb Analyses that do not Report 204Pb.Chemical Geology, 192(1-2):59-79. https://doi.org/10.1016/s0009-2541(02)00195-x [3] Baker, M.B., Hirschmann, M.M., Ghiorso, M.S., et al., 1995.Compositions of Near-Solidus Peridotite Melts from Experiments and Thermodynamic Calculations.Nature, 375(6529):308-311. https://doi.org/10.1038/375308a0 [4] Ballouard, C., Poujol, M., Boulvais, P., et al., 2016.Nb-Ta Fractionation in Peraluminous Granites:A Marker of the Magmatic-Hydrothermal Transition.Geology, 44(3):231-234. https://doi.org/10.1130/g38169y.1 [5] Bau, M., 1996.Controls on the Fractionation of Isovalent Trace Elements in Magmatic and Aqueous Systems:Evidence from Y/Ho, Zr/Hf, and Lanthanide Tetrad Effect.Contributions to Mineralogy and Petrology, 123(3):323-333. https://doi.org/10.1007/s004100050159 [6] Blichert-Toft, J., Albarède, F., 1997.The Lu-Hf Isotope Geochemistry of Chondrites and the Evolution of the Mantle-Crust System.Earth and Planetary Science Letters, 148(1-2):243-258. https://doi.org/10.1016/s0012-821x(97)00040-x [7] Champion, D.C., Chappell, B.W., 1992.Petrogenesis of Felsic Ⅰ-Type Granites:an Example from Northern Queensland.Transactions of the Royal Society of Edinburgh:Earth Sciences, 83(1-2):115-126. https://doi.org/10.1017/s026359330000780x [8] Chappell, B.W., 1999.Aluminium Saturation in I-and S-Type Granites and the Characterization of Fractionated Haplogranites.Lithos, 46(3):535-551. https://doi.org/10.1016/s0024-4937(98)00086-3 [9] Chen, C.H., Lin, W., Lu, H.Y., et al., 2000.Cretaceous Fractionated Ⅰ-Type Granitoids and Metaluminous A-Type Granites in SE China:The Late Yanshanian Post-Orogenic Magmatism.Transactions of the Royal Society of Edinburgh:Earth Sciences, 91(1-2):195-205. https://doi.org/10.1017/s0263593300007379 [10] Collins, W.J., Beams, S.D., White, A.J.R., et al., 1982.Nature and Origin of A-Type Granites with Particular Reference to Southeastern Australia.Contributions to Mineralogy and Petrology, 80(2):189-200. doi: 10.1007/BF00374895 [11] Deng, X.D., Li, J.W., Zhou, M.F., et al., 2015.In-Situ LA-ICPMS Trace Elements and U-Pb Analysis of Titanite from the Mesozoic Ruanjiawan W-Cu-Mo Skarn Deposit, Daye District, China.Ore Geology Reviews, 65:990-1004. https://doi.org/10.1016/j.oregeorev.2014.08.011 [12] Ding, L.X., Huang, G.C., Xia, J.L., 2014.Petrogenesis of the Longjiaoshan-Fujiashan Porphyritic Intrusion in Southeastern Hubei Province and Implications for Cu-W Mineralization.Acta Geologica Sinica, 88(8):1513-1527 (in Chinese with English abstract). http://cn.bing.com/academic/profile?id=c648e8211ac6c7961482052461daebb2&encoded=0&v=paper_preview&mkt=zh-cn [13] Ding, L.X., Huang, G.C., Xia, J.L., 2016.Petrogenesis of the Yangxin Complex in Southeast Hubei Province:Constraints from LA-ICP-MS Zircon U-Pb Ages and Hf Isotopes.Geological Journal of China Universities, 22(3):443-458 (in Chinese with English abstract). [14] Falloon, T.J., Green, D.H., O'Neill, H.S.C., et al., 1997.Experimental Tests of Low Degree Peridotite Partial Melt Compositions:Implications for the Nature of Anhydrous Near-Solidus Peridotite Melts at 1 GPa.Earth and Planetary Science Letters, 152(1-4):149-162. https://doi.org/10.1016/s0012-821x(97)00155-6 [15] Green, D.H., 1973.Experimental Melting Studies on a Model Upper Mantle Composition at High Pressure under Water-Saturated and Water-Undersaturated Conditions.Earth and Planetary Science Letters, 19(1):37-53. https://doi.org/10.1016/0012-821x(73)90176-3 [16] Green, T.H., 1995.Significance of Nb/Ta as an Indicator of Geochemical Processes in the Crust-Mantle System.Chemical Geology, 120(3-4):347-359. https://doi.org/10.1016/0009-2541(94)00145-x [17] Griffin, W.L., Pearson, N.J., Belousova, E., et al., 2000.The Hf Isotope Composition of Cratonic Mantle:LAM-MC-ICPMS Analysis of Zircon Megacrysts in Kimberlites.Geochimica et Cosmochimica Acta, 64(1):133-147. https://doi.org/10.1016/s0016-7037(99)00343-9 [18] Hu, H., Duan, Z., Luo, Y., et al., 2014.Trace Element Systematic of Magnetite from the Chengchao Iron Deposit in the Daye District:A Laser Ablation ICP-MS Study and Insights into Ore Genesis.Acta Petrologica Sinica, 30(5):1292-1306 (in Chinese with English abstract). https://www.researchgate.net/publication/276092136_Petrogenesis_of_the_Zhangmatun_gabbro_in_the_Ji'nan_complex_North_China_Craton_Implications_for_skarn-type_iron_mineralization [19] Huang, G.C., Xia, J.L., Ding, L.X., et al., 2013.Stage Division and Origin of Tonglushan Pluton in Southeast Hubei Province:Evidence from Zircon U-Pb Ages and Hf Isotopes.Geology in China, 40(5):1392-1408 (in Chinese with English abstract). http://cn.bing.com/academic/profile?id=1ee2c43d3f6cbed55b4c5d3171b196b1&encoded=0&v=paper_preview&mkt=zh-cn [20] Jahn, B.M., Wu, F.Y., Lo, C.H., et al., 1999.Crust-Mantle Interaction Induced by Deep Subduction of the Continental Crust:Geochemical and Sr-Nd Isotopic Evidence from Post-Collisional Mafic-Ultramafic Intrusions of the Northern Dabie Complex, Central China.Chemical Geology, 157(1/2):119-146. https://doi.org/10.1016/s0009-2541(98)00197-1 [21] Li, J.W., Vasconcelos, P.M., Zhou, M.F., et al., 2014.Longevity of Magmatic-Hydrothermal Systems in the Daye Cu-Fe-Au District, Eastern China with Implications for Mineral Exploration.Ore Geology Reviews, 57:375-392. https://doi.org/10.1016/j.oregeorev.2013.08.002 [22] Li, J.W., Zhao, X.F., Zhou, M.F., et al., 2008.Origin of the Tongshankou Porphyry-Skarn Cu-Mo Deposit, Eastern Yangtze Craton, Eastern China:Geochronological, Geochemical, and Sr-Nd-Hf Isotopic Constraints.Mineral Deposita, 43(3):315-336. https://doi.org/10.1007/s00126-007-0161-3 [23] Li, J.W., Zhao, X.F., Zhou, M.F., et al., 2009.Late Mesozoic Magmatism from the Daye Region, Eastern China:U-Pb Ages, Petrogenesis, and Geodynamic Implications.Contributions to Mineralogy and Petrology, 157(3):383-409. https://doi.org/10.1007/s00410-008-0341-x [24] Li, X.H., Li, W.X., Li, Z.X., 2007a.On the Genetic Classification and Tectonic Implications of the Early Yanshanian Granitoids in the Nanling Range, South China.Chinese Science Bulletin, 52(14):1873-1885. https://doi.org/10.1007/s11434-007-0259-0 [25] Li, X.H., Li, W.X., Wang, X.C., et al., 2010.SIMS U-Pb Zircon Geochronology of Porphyry Cu-Au-(Mo) Deposits in the Yangtze River Metallogenic Belt, Eastern China:Magmatic Response to Early Cretaceous Lithospheric Extension.Lithos, 119(3-4):427-438. https://doi.org/10.1016/j.lithos.2010.07.018 [26] Li, X.H., Li, Z.X., Li, W.X., et al., 2007b.U-Pb Zircon, Geochemical and Sr-Nd-Hf Isotopic Constraints on Age and Origin of Jurassic I-and A-Type Granites from Central Guangdong, SE China:A Major Igneous Event in Response to Foundering of a Subducted Flat-Slab?Lithos, 96(1):186-204. https://doi.org/10.1016/j.lithos.2006.09.018 [27] Liu, H., Qiu, J.S., Luo, Q.H., et al., 2002.Petrogenesis of the Mesozoic Potash-Rich Volcanic Rocks in the Luzong Basin, Anhui Province:Geochemical Constraints.Geochimica, 31(2):129-140 (in Chinese with English abstract). https://doi.org/10.3321/j.issn:0379-1726.2002.02.004 [28] Ludwig, K. R., 2003. User's Manual for Isoplot 3. 00: A Geochronological Toolkit for Microsoft Excel. Berkeley Geochronology Center, Berkeley, 1-70. [29] Luo, D. W., 2008. Study on Contact Zone Tectonic and Deep Exploration in Chengchao Iron Deposit, Hubei Province (Dissertation). China University of Geosciences, Wuhan (in Chinese with English abstract). [30] Ma, C.Q., Carl, E., Xu, C.H., et al., 2000.The Roots of the Dabieshan Ultrahigh-Pressure Metamorphic Terrane:Constraints from Geochemistry and Nd-Sr Isotope Systematics.Precambrian Research, 102(3-4):279-301. https://doi.org/10.1016/s0301-9268(00)00069-3 [31] Maniar, P.D., Piccoli, P.M., 1989.Tectonic Discrimination of Granitoids.Geological Society of America Bulletin, 101(5):635-643.https://doi.org/10.1130/0016-7606(1989)101<0635:tdog>2.3.co doi: 10.1130/0016-7606(1989)101<0635:tdog>2.3.co [32] Min, H.L., Xu, B.J., Ji, A., et al., 2008.Factor Analysis of Trace Elements of Chengchao Iron Ore.Metalmine, 38(9):93-96 (in Chinese with English abstract). https://doi.org/10.3321/j.issn:1001-1250.2008.09.028 [33] Nicholls, I.A., Ringwood, A.E., 1972.Production of Silica-Saturated Tholeiitic Magmas in Island Arcs.Earth and Planetary Science Letters, 17(1):243-246. https://doi.org/10.1016/0012-821x(72)90282-8 [34] Pérez-Soba, C., Villaseca, C., 2010.Petrogenesis of Highly Fractionated Ⅰ-Type Peraluminous Granites:La Pedriza Pluton (Spanish Central System).Geologica Acta, 8(2):131-149. [35] Qiu, J.S., Xiao, E., Hu, J., et al., 2008.Petrogenesis of High Fractionated Ⅰ-Type Granites in the Coastal Area of Northeastern Fujian Province:Constraints from Zircon U-Pb Geochronology, Geochemistry, and Nd-Hf Isotopes.Acta Petrologica Sinica, 24 (11):2468-2484 (in Chinese with English abstract). https://www.researchgate.net/publication/263693089_Petrogenesis_of_highly_fractionated_I-type_granites_in_the_coastal_area_of_northeastern_Fujian_Province_Constraints_from_zircon_U-Pb_geochronology_geochemistry_and_Nd-Hf_isotopes [36] Ren, Z., Li, J.W., Hu, H., 2012.Fluid Inclusion Study of the Chengchao Iron Deposit in the Daye District, and Insights into Ore Genesis.Mineral Deposits, 31(S):675-676 (in Chinese with English abstract). https://doi.org/10.16111/j.0258-7106.2012.s1.341 [37] Rollison, H. R., 1993. Using Geochemical Data: Evaluation, Persentation, Interpretation. Pearson Education Limited, New York, 144-147. [38] Sangster, D. F., 1964. The Contact Metasomatic Magnetite Deposits of Southwestern British Columbia (Dissertation). University of British Columibia, Vancouver. https://doi.org/ 10.14288/1.0053070 [39] Schwartz, M.O., Melcher, F., 2004.The Falémé Iron District, Senegal.Economic Geology, 99(5):917-939. https://doi.org/10.2113/gsecongeo.99.5.917 [40] Sun, S.S., McDonough, W.F., 1989.Chemical and Isotopic Systematics of Oceanic Basalts:Implications for Mantle Composition and Processes.Geological Society, London, Special Publications, 42(1):313-345. https://doi.org/10.1144/gsl.sp.1989.042.01.19 [41] Sun, Y., Ma, C.Q., Liu, B., 2017.Record of Late Yanshanian Mafic Magmatic Activity in the Middle-Lower Yangtze River Metallogenic Belt.Earth Science, 42(6):891-908 (in Chinese with English abstract). https://doi.org/10.3799/dqkx.2017.077 [42] Tao, J.H., Li, W.X., Li, X.H., et al., 2013.Petrogenesis of Early Yanshanian Highly Evolved Granites in the Longyuanba Area, Southern Jiangxi Province:Evidence from Zircon U-Pb Dating, Hf-O Isotope and Whole-Rock Geochemistry.Science China Earth Sciences, 56(6):922-939. https://doi.org/10.1007/s11430-013-4593-6 [43] Taylor, S. R., McLennan, S. M., 1985. The Continental Crust: Its Composition and Evolution: An Examination of the Geochemical Record Preserved in Sedimentary Rocks. Blackwell Scientific Publications, Oxford. [44] Wang, J., Xie, G.Q., Yao, L., et al., 2014.Petrogenesis of Granodiorite Porphyry in Jilongshan Skarn Au Deposit of Southeast Hubei Province:Geochemical and Zircon U-Pb Dating constraints.Mineral Deposits, 33(1):137-152 (in Chinese with English abstract). https://doi.org/10.3969/j.issn.0258-7106.2014.01.009 [45] Wang, L., Hu, M.A., Zhang, W.S., et al., 2009.Structural Ore-Controlling Characteristic and Prospecting Direction in Chengchao Iron Deposit in Southeast Hubei.Metalmine, (4):74-77 (in Chinese with English abstract). https://doi.org/10.3321/j.issn:1001-1250.2009.04.021 [46] Wang, Q., Wyman, D.A., Xu, J.F., et al., 2006.Petrogenesis of Cretaceous Adakitic and Shoshonitic Igneous Rocks in the Luzong Area, Anhui Province (Eastern China):Implications for a Geodynamics and Cu-Au Mineralization.Lithos, 89(3-4):424-446. https://doi.org/10.1016/j.lithos.2005.12.010 [47] Wang, S., Ye, H.S., Yang, Y.Q., et al., 2016.Zircon U-Pb Chronology, Geochemistry and Hf Isotopic Compositions of the Huoshenmiao Pluton, Western Henan.Earth Science, 41(2):293-316 (in Chinese with English abstract). https://doi.org/10.3799/dqkx.2016.022 [48] Wang, Y.L., Zhang, Q., Wang, Y., 2001.Geochemical Characteristics of Volcanic Rocks from Ningwu Area, and Its Significance.Acta Petrologica Sinica, 17(4):565-575 (in Chinese with English abstract). https://doi.org/10.3969/j.issn.1000-0569.2001.04.007 [49] Watson, E.B., Harrison, T.M., 1983.Zircon Saturation Revisited:Temperature and Composition Effects in a Variety of Crustal Magma Types.Earth and Planetary Science Letters, 64(2):295-304. https://doi.org/10.1016/0012-821x(83)90211-x [50] Wedepohl, K.H., Krueger, I., Hartmann, G., 1995.Medieval Lead Glass from Northwestern Europe.Journal of Glass Studies, 37:65-82. http://www.scholastic.com/browse/article.jsp?id=3754175 [51] Whalen, J.B., Currie, K.L., Chappell, B.W., 1987.A-Type Granites:Geochemical Characteristics, Discrimination and Petrogenesis.Contributions to Mineralogy and Petrology, 95(4):407-419. https://doi.org/10.1007/bf00402202 [52] Wilson, M., 1989. Igneous Petrogenesis. Unwin Hyman, London. [53] Wolf, M.B., London, D., 1994.Apatite Dissolution into Peraluminous Haplogranitic Melts:An Experimental Study of Solubilities and Mechanisms.Geochimica et Cosmochimica Acta, 58(19):4127-4145. https://doi.org/10.1016/0016-7037(94)90269-0 [54] Wu, F.Y., Jahn, B.M., Wilde, S.A., et al., 2003a.Highly Fractionated Ⅰ-Type Granites in NE China (Ⅰ):Geochronology and Petrogenesis.Lithos, 66 (3-4):241-273. https://doi.org/10.1016/S0024-4937(02)00222-0 [55] Wu, F.Y., Jahn, B.M., Wilde, S.A., et al., 2003b.Highly Fractionated Ⅰ-Type Granites in NE China (Ⅱ):Isotopic Geochemistry and Implications for Crustal Growth in the Phanerozoic.Lithos, 67(3-4):191-204. https://doi.org/10.1016/s0024-4937(03)00015-x [56] Wu, F.Y., Liu, X.C., Ji, W.Q., et al., 2017.Highly Fractionated Granites:Recognition and Research.Science in China (Series D), 47(7):745-765 (in Chinese). http://cn.bing.com/academic/profile?id=f194a5d4e1524663be5540256112ab5b&encoded=0&v=paper_preview&mkt=zh-cn [57] Xia, J.L., Hu, M.A., Xu, B.J., et al., 2009.Geochemical Constraints on the Ore-Forming Materials of the Chengchao Iron Deposit, Hubei Province.Geoscience, 23(2):285-291 (in Chinese with English abstract). https://doi.org/10.3969/j.issn.1000-8527.2009.02.013 [58] Xia, J.L., Huang, G.C., Ding, L.X., et al., 2015.In Situ Analyses of Trace Elements, U-Pb and Lu-Hf Isotopes in Zircons from the Tongshankou Granodiorite Porphyry in Southeast Hubei Province, Middle-Lower Yangtze River Metallogenic Belt, China.Acta Geologica Sinica (English Edition), 89(5):1588-1600. https://doi.org/10.1111/1755-6724.12566 [59] Xie, G.Q., Mao, J.W., Li, R.L., et al., 2006.SHRIMP Zircon U-Pb Dating for Volcanic Rocks of the Dasi Formation in Southeast Hubei Province, Middle-Lower Reaches of the Yangtze River and Its Implications.Chinese Science Bulletin, 51(24):3000-3009. https://doi.org/10.1007/s11434-006-2187-9 [60] Xie, G.Q., Mao, J.W., Li, R.L., et al., 2008.Geochemistry and Petrogenesis of Late Mesozoic Granitoids in Southeastern Hubei Province and Constrains on the Timing of Lithospheric Thinning, Middle-Lower Reaches of the Yangtze River, Eastern China.Acta Petrologica Sinica, 24(8):1917-1927 (in Chinese with English abstract). http://cn.bing.com/academic/profile?id=b7692d874351aa08bdb3b22660597211&encoded=0&v=paper_preview&mkt=zh-cn [61] Xie, G.Q., Mao, J.W., Zhao, H.J., 2011a.Zircon U-Pb Geochronological and Hf Isotopic Constraints on Petrogenesis of Late Mesozoic Intrusions in the Southeast Hubei Province, Middle-Lower Yangtze River Belt (MLYRB), East China.Lithos, 125(1-2):693-710. https://doi.org/10.1016/j.lithos.2011.04.001 [62] Xie, G.Q., Mao, J.W., Zhao, H.J., et al., 2011b.Timing of Skarn Deposit Formation of the Tonglushan Ore District, Southeastern Hubei Province, Middle-Lower Yangtze River Valley Metallogenic Belt and Its Implications.Ore Geology Reviews, 43(1):62-77. https://doi.org/10.1016/j.oregeorev.2011.05.005 [63] Xie, G.Q., Mao, J.W., Zhao, H.J., et al., 2012.Zircon U-Pb and Phlogopite 40Ar-39Ar Age of the Chengchao and Jinshandian Skarn Fe Deposits, Southeast Hubei Province, Middle-Lower Yangtze River Valley Metallogenic Belt, China.Mineral Deposita, 47(6):633-652. https://doi.org/10.1007/s00126-011-0367-2 [64] Yan, J., Chen, J.F., Xu, X.S., 2008.Geochemistry of Cretaceous Mafic Rocks from the Lower Yangtze Region, Eastern China:Characteristics and Evolution of the Lithospheric Mantle.Journal of Asian Earth Sciences, 33(3/4):177-193. https://doi.org/10.1016/j.jseaes.2007.11.002 [65] Yao, L., Liu, J.L., Wang, J., et al., 2012.The Relationship between Granitiods and Mineralization of the Chengchao Large-Size Skarn Iron Deposit in Southeastern Hubei Ore Concentration Area.Geology in China, 39(6):1712-1726 (in Chinese with English abstract). https://doi.org/10.3969/j.issn.1000-3657.2012.06.019 [66] Yao, L., Xie, G.Q., Mao, J.W., et al., 2015.Geological, Geochronological, and Mineralogical Constraints on the Genesis of the Chengchao Skarn Fe Deposit, Edong Ore District, Middle-Lower Yangtze River Valley Metallogenic Belt, Eastern China.Journal of Asian Earth Sciences, 101:68-82. https://doi.org/10.1016/j.jseaes.2015.01.018 [67] Yuan, H.L., Gao, S., Dai, M.N., et al., 2008.Simultaneous Determinations of U-Pb Age, Hf Isotopes and Trace Element Compositions of Zircon by Excimer Laser-Ablation Quadrupole and Multiple-Collector ICP-MS.Chemical Geology, 247(1-2):100-118. https://doi.org/10.1016/j.chemgeo.2007.10.003 [68] Yuan, H.L., Gao, S., Liu, X.M., et al., 2004.Accurate U-Pb Age and Trace Element Determinations of Zircon by Laser Ablation-Inductively Coupled Plasma-Mass Spectrometry.Geostandards and Geoanalytical Research, 28(3):353-370. https://doi.org/10.1111/j.1751-908x.2004.tb00755.x [69] Zhang, H.F., Harris, N., Parrish, R., et al., 2004.Causes and Consequences of Protracted Melting of the Mid-Crust Exposed in the North Himalayan Antiform.Earth and Planetary Science Letters, 228(1-2):195-212. https://doi.org/10.1016/j.epsl.2004.09.031 [70] Zhu, D.C., Mo, X.X., Wang, L.Q., et al., 2009.Petrogenesis of Highly Fractionated Ⅰ-Type Granites in the Zayu Area of Eastern Gangdese, Tibet:Constraints from Zircon U-Pb Geochronology, Geochemistry and Sr-Nd-Hf Isotopes.Science in China (Series D:Earth Sciences), 52(9):1223-1239. https://doi.org/10.1007/s11430-009-0132-x [71] Zindler, A., Hart, S., 1986.Chemical GeoDynamics.Annual Review of Earth and Planetary Sciences, 14(1):493-571. https://doi.org/10.1146/annurev.ea.14.050186.002425 [72] Zürcher, L., Ruiz, J., Barton, M.D., 2001.Paragenesis, Elemental Distribution, and Stable Isotopes at the Peña Colorada Iron Skarn, Colima, Mexico.Economic Geology, 96(3):535-557. https://doi.org/10.2113/gsecongeo.96.3.535 [73] 丁丽雪, 黄圭成, 夏金龙, 2014.鄂东南地区龙角山-付家山斑岩体成因及其对成矿作用的指示.地质学报, 88(8):1513-1527. http://www.cqvip.com/QK/95080X/201408/662237550.html [74] 丁丽雪, 黄圭成, 夏金龙, 2016.鄂东南地区阳新复式岩体成因:LA-ICP-MS锆石U-Pb年龄及Hf同位素证据.高校地质学报, 22(3):443-458. http://kns.cnki.net/KCMS/detail/detail.aspx?filename=gxdx201603005&dbname=CJFD&dbcode=CJFQ [75] 胡浩, 段壮, Luo, Y., 等, 2014.鄂东程潮铁矿床磁铁矿的微量元素组成及其矿床成因意义.岩石学报, 30(5):1292-1306. https://www.wenkuxiazai.com/doc/1163369e0975f46526d3e16c-2.html [76] 黄圭成, 夏金龙, 丁丽雪, 等, 2013.鄂东南地区铜绿山岩体的侵入期次和物源:锆石U-Pb年龄和Hf同位素证据.中国地质, 40(5):1392-1408. http://www.cqvip.com/qk/90050X/201305 [77] 刘洪, 邱检生, 罗清华, 等, 2002.安徽庐枞中生代富钾火山岩成因的地球化学制约.地球化学, 31(2):129-140. http://www.cnki.com.cn/Article/CJFDTOTAL-DQHX200202003.htm [78] 骆地伟, 2008. 程潮铁矿接触带构造研究与深部找矿(硕士学位论文). 中国地质大学(武汉). [79] 闵厚禄, 徐伯骏, 季翱, 等, 2008.程潮铁矿矿石微量元素因子分析.金属矿山, 38(9):93-96. http://www.oalib.com/paper/4821805 [80] 邱检生, 肖娥, 胡建, 等, 2008.福建北东沿海高分异Ⅰ型花岗岩的成因:锆石U-Pb年代学、地球化学和Nd-Hf同位素制约.岩石学报, 24(11):2468-2484. http://cdmd.cnki.com.cn/Article/CDMD-10405-1015990409.htm [81] 任喆, 李建威, 胡浩, 2012.鄂东南地区程潮铁矿流体包裹体研究及其矿床成因意义.矿床地质, 31(S):675-676. http://www.cnki.com.cn/Article/CJFDTOTAL-CCDZ201406012.htm [82] 孙洋, 马昌前, 刘彬, 2017.长江中下游地区燕山晚期基性岩浆活动的记录.地球科学, 42(6):891-908. http://www.earth-science.net/WebPage/Article.aspx?id=3586 [83] 王建, 谢桂青, 姚磊, 等, 2014.鄂东南鸡笼山矽卡岩型金矿床花岗闪长斑岩的成因:地球化学和锆石U-Pb年代学约束.矿床地质, 33(1):137-152. http://kns.cnki.net/KCMS/detail/detail.aspx?filename=kcdz201401009&dbname=CJFD&dbcode=CJFQ [84] 王磊, 胡明安, 张旺生, 等, 2009.鄂东南程潮铁矿构造控矿特征及找矿方向.金属矿山, (4):74-77. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=jsks200904021 [85] 王赛, 叶会寿, 杨永强, 等, 2016.豫西火神庙岩体桔石U-Pb年代学、地球化学及Hf同位素组成.地球科学, 41(2):293-316. http://www.earth-science.net/WebPage/Article.aspx?id=3247 [86] 吴福元, 刘小驰, 纪伟强, 等, 2017.高分异花岗岩的识别与研究.中国科学(D辑), 47(7):745-765. http://engine.scichina.com/publisher/scp/journal/SSTe?slug=Overview [87] 夏金龙, 胡明安, 徐伯骏, 等, 2009.湖北程潮铁矿成矿物质来源的地球化学制约.现代地质, 23(2):285-291. http://www.cnki.com.cn/Article/CJFDTOTAL-XDDZ200902012.htm [88] 谢桂青, 毛景文, 李瑞玲, 等, 2008.鄂东南地区大型矽卡岩型铁矿床金云母40Ar-39Ar同位素年龄及其构造背景初探.岩石学报, 24(8):1917-1927. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=ysxb98200808022 [89] 姚磊, 刘佳林, 王建, 等, 2012.鄂东南矿集区程潮大型矽卡岩铁矿的花岗质岩与成矿关系探讨.中国地质, 39(6):1712-1726. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=zgdizhi201206019 -
丁丽雪表1.pdf 丁丽雪表4.docx 丁丽雪表2.pdf 丁丽雪表3.pdf