• 中国出版政府奖提名奖

    中国百强科技报刊

    湖北出版政府奖

    中国高校百佳科技期刊

    中国最美期刊

    留言板

    尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

    姓名
    邮箱
    手机号码
    标题
    留言内容
    验证码

    用“伞式解构”方法剖析致密储层微观各向异性

    杜书恒 庞姗 柴光胜 汪贺 师永民

    杜书恒, 庞姗, 柴光胜, 汪贺, 师永民, 2020. 用“伞式解构”方法剖析致密储层微观各向异性. 地球科学, 45(1): 276-284. doi: 10.3799/dqkx.2018.567
    引用本文: 杜书恒, 庞姗, 柴光胜, 汪贺, 师永民, 2020. 用“伞式解构”方法剖析致密储层微观各向异性. 地球科学, 45(1): 276-284. doi: 10.3799/dqkx.2018.567
    Du Shuheng, Pang Shan, Chai Guangsheng, Wang He, Shi Yongmin, 2020. Quantitative Analysis on the Microscopic Anisotropy Characteristics of Pore and Mineral in Tight Reservoir by 'Umbrella Deconstruction' Method. Earth Science, 45(1): 276-284. doi: 10.3799/dqkx.2018.567
    Citation: Du Shuheng, Pang Shan, Chai Guangsheng, Wang He, Shi Yongmin, 2020. Quantitative Analysis on the Microscopic Anisotropy Characteristics of Pore and Mineral in Tight Reservoir by "Umbrella Deconstruction" Method. Earth Science, 45(1): 276-284. doi: 10.3799/dqkx.2018.567

    用“伞式解构”方法剖析致密储层微观各向异性

    doi: 10.3799/dqkx.2018.567
    基金项目: 

    国家自然科学基金项目 41902132

    中国科学院油气资源研究重点实验室开放基金项目 KLOR2018-6

    详细信息
      作者简介:

      杜书恒(1994-), 男, 博士, 助理研究员, 主要从事非常规油气综合研究

    • 中图分类号: P618

    Quantitative Analysis on the Microscopic Anisotropy Characteristics of Pore and Mineral in Tight Reservoir by "Umbrella Deconstruction" Method

    • 摘要: 致密油气储层作为非常规油气储层的重要类型,具有孔隙尺度小,微观非均质性强等显著特征.目前在大幅提高资源动用率方面仍面临重大理论挑战,探索潜力广阔.本研究利用“伞式解构”方法定量解析了中国鄂尔多斯盆地陆相致密砂岩储层孔隙和矿物的微观各向异性特征.实例研究显示,八向伞式切片微观孔喉发育存在显著的微观各向异性,各向填隙物发育特征差异明显,随着取样角度的变化,呈现连续非稳态分布.八向伞式切片分形维数是孔隙率、渗透率和孔喉发育概率的良好表征.研究可为揭示致密储层储渗机理及“甜点”分布规律,指导致密油气有效开发提供重要的理论支撑与实践依据.

       

    • 图  1  研究区地理位置

      Fig.  1.  Location of the study area

      图  2  “伞式解构”技术原理示意

      Du et al.(2018a, 2018b)

      Fig.  2.  Schematic diagram of "umbrella deconstruction" technology

      图  3  八向孔隙半径分布

      a.0°方向;b.22.5°方向;c.45°方向;d.67.5°方向;e.90°方向;f.112.5°方向;g.135°方向;h.157.5°方向

      Fig.  3.  Distribution of pore radius in eight directions

      图  4  八向喉道半径分布

      a.0°方向;b.22.5°方向;c.45°方向;d.67.5°方向;e.90°方向;f.112.5°方向;g.135°方向;h.157.5°方向

      Fig.  4.  Distribution of throat radius in eight directions

      图  5  八向切片孔喉属性参数分布

      Fig.  5.  Distribution of pore and throat parameters in eight direction

      图  6  八向切片孔喉属性参数变化曲线

      Fig.  6.  Change curve of pore and throat parameters in eight directions

      图  7  八向切片填隙物条带属性参数变化曲线

      Fig.  7.  Change curve of parameters of interfilling strip properties in eight directions

      图  8  八向孔喉分形维数与孔喉属性参数相关性分析

      Fig.  8.  Correlation analysis between pore-throat fractal dimension in eight directions and pore throat attribute parameters

    • [1] Alyafei, N., Mckay, T. J., Solling, T. I., 2016. Characterization of Petrophysical Properties Using Pore-Network and Lattice-Boltzmann Modelling:Choice of Method and Image Sub-Volume Size. Journal of Petroleum Science and Engineering, 145:256-265. https://doi.org/10.1016/j.petrol.2016.05.021
      [2] Arand, F., Hesser, J., 2017. Accurate and Efficient Maximal Ball Algorithm for Pore Network Extraction. Computers & Geosciences, 101:28-37. https://doi.org/10.1016/j.cageo.2017.01.004
      [3] Berrezueta, E., Kovacs, T., 2017. Application of Optical Image Analysis to the Assessment of Pore Space Evolution after CO2 Injection in Sandstones. A Case Study. Journal of Petroleum Science and Engineering, 159:679-690. https://doi.org/10.1016/j.petrol.2017.08.039
      [4] Dong, H., 2007. Micro-CT Imaging and Pore Network Extraction. Imperial College, London.
      [5] Du, S. H., 2019a. Prediction of Permeability and Its Anisotropy of Tight Oil Reservoir via Precise Pore-Throat Tortuosity Characterization and "Umbrella Deconstruction" Method. Journal of Petroleum Science and Engineering, 178:1018-1028. https://doi.org/10.1016/j.petrol.2019.03.009
      [6] Du, S. H., Shi, G. X., Yue, X. J., et al., 2019b. Imaging-Based Characterization of Perthite in the Upper Triassic Yanchang Formation Tight Sandstone of the Ordos Basin, China. Acta Geologica Sinica (English Edition), 93(2):373-385. https://doi.org/10.1111/1755-6724.13768
      [7] Du, S. H., Shi, Y. M., Zheng, X. J., et al., 2019c. Using "Umbrella Deconstruction & Energy Dispersive Spectrometer (UD-EDS)" Technique to Quantify the Anisotropic Elements Distribution of "Chang 7" Shale and Its Significance. Energy, in Press. https://doi.org/10.1016/j.energy.2019.116443
      [8] Du, S. H., Xu, F., Taskyn, A., et al., 2019d. Anisotropy Characteristics of Element Composition in Upper Triassic "Chang 8" Shale in Jiyuan District of Ordos Basin, China:Microscopic Evidence for the Existence of Predominant Fracture Zone. Fuel, 253:685-690. https://doi.org/10.1016/j.fuel.2019.05.031
      [9] Du, S. H., Pang, S., Shi, Y. M., 2018a. A New and More Precise Experiment Method for Characterizing the Mineralogical Heterogeneity of Unconventional Hydrocarbon Reservoirs. Fuel, 232:666-671. https://doi.org/10.1016/j.fuel.2018.06.012
      [10] Du, S. H., Pang, S., Shi, Y. M., 2018b. Quantitative Characterization on the Microscopic Pore Heterogeneity of Tight Oil Sandstone Reservoir by Considering both the Resolution and Representativeness. Journal of Petroleum Science and Engineering, 169:388-392. https://doi.org/10.1016/j.petrol.2018.05.058
      [11] Gundogar, A. S., Ross, C. M., Akin, S., et al., 2016. Multiscale Pore Structure Characterization of Middle East Carbonates. Journal of Petroleum Science and Engineering, 146:570-583. https://doi.org/10.1016/j.petrol.2016.07.018
      [12] Hajnos, M., Lipiec, J., Świeboda, R., et al., 2006. Complete Characterization of Pore Size Distribution of Tilled and Orchard Soil Using Water Retention Curve, Mercury Porosimetry, Nitrogen Adsorption, and Water Desorption Methods. Geoderma, 135:307-314. https://doi.org/10.1016/j.geoderma.2006.01.010
      [13] Hinai, A. A., Rezaee, R., Esteban, L., et al., 2014. Comparisons of Pore Size Distribution:A Case from the Western Australian Gas Shale Formations. Journal of Unconventional Oil and Gas Resources, 8:1-13. https://doi.org/10.1016/j.juogr.2014.06.002
      [14] Huang, W. B., Lu, S. F., Hersi, O. S., et al., 2017. Reservoir Spaces in Tight Sandstones:Classification, Fractal Characters, and Heterogeneity. Journal of Natural Gas Science and Engineering, 46:80-92. https://doi.org/10.1016/j.jngse.2017.07.006
      [15] Jia, C. Z., 2017. Breakthrough and Significance of Unconventional Oil and Gas to Classical Petroleum Geology Theory. Petroleum Exploration and Development, 44(1):1-10. https://doi.org/10.1016/s1876-3804(17)30002-2
      [16] Kate, J. M., Gokhale, C. S., 2006. A Simple Method to Estimate Complete Pore Size Distribution of Rocks. Engineering Geology, 84(1-2):48-69. https://doi.org/10.1016/j.enggeo.2005.11.009
      [17] Klaver, J., Desbois, G., Littke, R., et al., 2016. BIB-SEM Pore Characterization of Mature and Post Mature Posidonia Shale Samples from the Hils Area, Germany. International Journal of Coal Geology, 158:78-89. https://doi.org/10.1016/j.coal.2016.03.003
      [18] Krakowska, P., Puskarczyk, E., Jędrychowski, M., et al., 2018. Innovative Characterization of Tight Sandstones from Paleozoic Basins in Poland Using X-Ray Computed Tomography Supported by Nuclear Magnetic Resonance and Mercury Porosimetry. Journal of Petroleum Science and Engineering, 166:389-405. https://doi.org/10.1016/j.petrol.2018.03.052
      [19] Lai, J., Wang, G. W., Wang, Z. Y., et al., 2018. A Review on Pore Structure Characterization in Tight Sandstones. Earth-Science Reviews, 177:436-457. https://doi.org/10.1016/j.earscirev.2017.12.003
      [20] Markussen, Ø., Dypvik, H., Hammer, E., et al., 2019. 3D Characterization of Porosity and Authigenic Cementation in Triassic Conglomerates/Arenites in the Edvard Grieg Field Using 3D Micro-CT Imaging. Marine and Petroleum Geology, 99:265-281. https://doi.org/10.1016/j.marpetgeo.2018.10.015
      [21] Munawar, M. J., Lin, C. Y., Cnudde, V., et al., 2018. Petrographic Characterization to Build an Accurate Rock Model Using Micro-CT:Case Study on Low-Permeable to Tight Turbidite Sandstone from Eocene Shahejie Formation. Micron, 109:22-33. https://doi.org/10.1016/j.micron.2018.02.010
      [22] Rabbani, A., Jamshidi, S., Salehi, S., 2014. An Automated Simple Algorithm for Realistic Pore Network Extraction from Micro-Tomography Images. Journal of Petroleum Science and Engineering, 123:164-171. https://doi.org/10.1016/j.petrol.2014.08.020
      [23] Silin, D. B., Jin, G., Patzek, T. W., 2003. Robust Determination of Pore Space Morphology in Sedimentary Rocks. Proceedings of SPE Annual Technical Conference and Exhibition, Denver.
      [24] Wang, P. F., Jiang, Z. X., Ji, W. M., et al., 2016. Heterogeneity of Intergranular, Intraparticle and Organic Pores in Longmaxi Shale in Sichuan Basin, South China:Evidence from SEM Digital Images and Fractal and Multifractal Geometries. Marine and Petroleum Geology, 72:122-138. https://doi.org/10.1016/j.marpetgeo.2016.01.020
      [25] Wu, Y. Q., Tahmasebi, P., Lin, C. Y., et al., 2019. A Comprehensive Study on Geometric, Topological and Fractal Characterizations of Pore Systems in Low-Permeability Reservoirs Based on SEM, MICP, NMR, and X-Ray CT Experiments. Marine and Petroleum Geology, 103:12-28. https://doi.org/10.1016/j.marpetgeo.2019.02.003
      [26] Xiao, D. S., Lu, S. F., Lu, Z. Y., et al., 2016. Combining Nuclear Magnetic Resonance and Rate-Controlled Porosimetry to Probe the Pore-Throat Structure of Tight Sandstones. Petroleum Exploration and Development, 43(6):1049-1059. https://doi.org/10.1016/s1876-3804(16)30122-7
      [27] Zheng, S. J., Yao, Y. B., Liu, D. M., et al., 2018. Characterizations of Full-Scale Pore Size Distribution, Porosity and Permeability of Coals:A Novel Methodology by Nuclear Magnetic Resonance and Fractal Analysis Theory. International Journal of Coal Geology, 196:148-158. https://doi.org/10.1016/j.coal.2018.07.008
    • 加载中
    图(8)
    计量
    • 文章访问数:  3509
    • HTML全文浏览量:  793
    • PDF下载量:  34
    • 被引次数: 0
    出版历程
    • 收稿日期:  2018-10-26
    • 刊出日期:  2020-01-15

    目录

      /

      返回文章
      返回