Ore-Forming Fluids Signature and Evolution in the Qiagong Fe Skarn Deposit of the Gangdese Belt, Tibet: Implications for Fe-Pb Mineralization
-
摘要: 目前关于恰功矽卡岩型铁矿床的流体演化过程及成矿机制,尤其是铁-铅矿体的成矿作用尚缺研究.对不同阶段的主要矿物进行包裹体均一温度-盐度、激光拉曼光谱分析以及H-O同位素测试.进矽卡岩阶段包裹体均一温度为400~550℃;盐度为15.5%~20.9% NaCleqv,其中S型盐度高达56.5% NaCleqv;气液相成分均为H2O.退化蚀变阶段包裹体均一温度为350~420℃;盐度集中于14.1%~16.6% NaCleqv,少量为2%~8% NaCleqv,而S型包裹体盐度亦高达55.8% NaCleqv;气液相成分均为H2O,液相富含HCO3-和CO32-.石英-方铅矿阶段包裹体均一温度范围为238~343℃,对应盐度为3.1~13.9% NaCleqv,其中含CO2三相包裹体完全均一温度集中在290~310℃,盐度为1.6%~11.2% NaCleqv.石英-方解石阶段包裹体均一温度与盐度分别为242~360℃和1.7%~11.8% NaCleqv,气液相成分均为H2O.H-O同位素显示:进矽卡岩阶段δDH2O为-106.4‰~-113.2‰,δ18OH2O为6.2‰~8.0‰;退化蚀变阶段δDH2O为-84.8‰~-130.1‰,δ18OH2O为2.7‰~5.5‰,退化蚀变阶段δ18OH2O值相对进矽卡岩阶段低;石英-方铅矿阶段δDH2O为-95.3‰~-103.8‰,δ18OH2O为-1.6‰~-0.7‰;石英-方解石阶段δDH2O为-67.4‰~-101.0‰,δ18OH2O为-0.8‰~0.6‰.结果表明流体整体具有从高温、中-高盐度逐渐向低温、低盐度演化的特征,矽卡岩期成矿流体来源于岩浆出溶;矽卡岩期流体的不混溶作用并与围岩发生反应是磁铁矿沉淀的重要机制,石英-方铅矿阶段流体温压下降是方铅矿沉淀的根本原因.Abstract: There is still lack of research on the evolution of ore-forming fluids and ore-forming mechanism of the Qiagong Fe skarn deposit in the Gangdese Belt,especially the mineralization of the iron-lead ore body. We studied the homogenization temperature,salinity,laser Raman spectroscopy and H-O isotopic compositions of major minerals in different stages. The homogeneous temperatures of the fluid inclusions that in the prograde stage range from 400 to 550℃,and the salinities vary from 15.5% to 20.95% NaCl eqv. Besides,the salinity of S-type fluid inclusion in this stage is up to 56.5% NaCleqv. Both the vapor and the liquid phases in these fluid inclusions are H2O. The homogeneous temperatures of fluid inclusions during the retrograde stage range from 350℃ to 420℃,and the salinities are primarily concentrated in 14.1%-16.68% NaCleqv,partly in 2%-8% NaCleqv. However,the salinity of type-S inclusion is up to 55.8% NaCleqv. Both the vapor and the liquid phases in these fluid inclusions are H2O. In addition,the liquid phase is also rich in HCO3- and CO32-. The homogeneous temperatures of the fluid inclusions in quartzgalena stage are 238-343℃,corresponding to the salinities of 3.1%-13.9% NaCleqv. Additionally,the total homogenization temperatures of CO2-bearing three-phase fluid inclusions are 290-310℃,corresponding to the salinities of 1.6%-11.2% NaCl eqv. Lastly,during the quartz-calcite stage,the homogeneous temperatures and salinities of the fluid inclusions vary in 242-360℃ and 1.7%-11.8% NaCl eqv respectively. The component of liquid phase in fluid inclusion is dominated by H2O,as well as the vapor phase. The H-O isotopes show that the δDH2O and δ18OH2O are-106.4‰—-113.2‰ and 6.2‰-8.0‰ during the prograde stage,and -84.8‰—-130.1‰ and 2.7‰-5.5‰ during the retrograde stage,respectively. The δ18OH2O compositions in the retrograde stage are lower than those in the prograde stage. The δDH2O and δ18OH2O are -95.3‰—-103.8‰ and -1.6‰—-0.7‰ in the quartz-galena stage and -67.4‰—-101.0‰ and -0.8‰-0.6‰ in the quartz-calcite stage,respectively. These data indicate that the fluids evolved from high temperature,medium-high salinity to low temperature and low salinity. The ore-forming fluids are mainly derived from magma exsolution in skarn stage. The fluid immiscibility and wall-rock interaction during skarn stage are the main mechanisms of magnetite precipitation. Decreased pressure and temperature during quartz-galena stage might be the prime reasons for precipitation of galena.
-
Key words:
- fluid inclusion /
- H-O isotopes /
- laser Raman /
- skarn deposit /
- Qiagong /
- Tibet /
- ore deposit
-
图 1 研究区区域构造简图(a)和恰功矿区地质图(b)
图a据高顺宝(2015)修改;图b据李应栩等(2011)修改. DLJT.打加南-拉马野加-江当乡断裂带;GLNT.噶尔-隆格尔-南木林断裂带;SNJS.狮泉河-嘉黎断裂带;SMMLT.沙莫勒-麦拉-米拉山-洛巴堆断裂带
Fig. 1. Regional structure diagram of the study area (a) and the geological map of Qiagong mining area (b)
图 2 恰功铁矿床矿物特征及野外照片
a.被磁铁矿交代的黄绿色石榴石及充填其上的石英、方解石;b.黄铁矿交代石榴石呈浸染状构造;c.石英脉切割绿泥石化及绿帘石化的石榴石矽卡岩;d.磁铁矿交代石榴石的残余并结晶出阳起石、方解石、石英;e.退化蚀变阶段的石英、方解石及呈柱状、放射状的阳起石;f.绿泥石化的石榴石矽卡岩中见少量镜铁矿;g.灰岩被矽卡岩交代残余形成的角岩化;h.磁铁矿中见黄铁矿及后期表生赤铁矿化;i.金云母及局部表生氧化成赤铁矿的磁铁矿;j.石英-方解石脉体,脉体核部为方解石,边部为石英;k.石英-方铅矿阶段的石英及块状方铅矿;l.断裂带上的铅矿化. Grt.石榴石;Chl.绿泥石;Lim.灰岩;Act.阳起石;Cal.方解石;Qz.石英;Ep.绿帘石;Phl.金云母;Ig.镜铁矿;Hm.赤铁矿;Gn.方铅矿;Pb.铅
Fig. 2. Ore minerals and field photos of Qiagong iron ore deposit
图 4 恰功铁矿床显微岩相学特征
a.石榴石及辉石共生;b.石英脉切穿绿帘石矽卡岩;c.绿帘石、绿泥石交代石榴石;d.阳起石交代石榴石;e.磁铁矿交代石榴石及少量磁铁矿被氧化成赤铁矿;f.磁铁矿交代石榴石形成的骸晶结构(BSE图);g.镜铁矿交代绿泥石;h.石英与方铅矿共生;i.方铅矿交代黄铁矿(BSE图). BSE.背散射;Grt.石榴石;Di.辉石;Ep.绿帘石;Chl.绿泥石;Cal.方解石;Qz.石英;Mt.磁铁矿;Hm.赤铁矿;Ig.镜铁矿;Gn.方铅矿;Py.黄铁矿;Gr~50.钙铝榴石含量为50%
Fig. 4. Micro-petrographic characteristics of Qiagong iron ore deposits
图 5 恰功铁矿床流体包裹体岩相学特征
a.进矽卡岩阶段石榴石中富气包裹体(V型);b.进矽卡岩阶段石榴石中含石盐子晶包裹体(S型);c.退化蚀变阶段阳起石中呈负晶形的包裹体;d.退化蚀变阶段含子晶包裹体与富气相包裹体共生;e.石英-方铅矿阶段的石英中局部从富液相包裹体至富气相包裹体的富集,表明流体发生沸腾作用;f.石英-方铅矿阶段的石英中见大量CO2三相包裹体;g.石英-方解石阶段的石英内部包裹体结构构造;h.石英-方解石阶段的方解石中富气相包裹体(V型)和富液相包裹体(W型);i.石英-方解石阶段的破碎石英中见次生CO2三相包裹体呈带状分布. L.液相;V.气相;Hal.石盐子晶;Op.未知不透明矿物;LCO2.液相CO2;LH2O.液相水;VH2O.气相水;VCO2.气相CO2;P.原生包裹体;PS.假次生包裹体;S.次生包裹体;S型.含子晶±暗色矿物包裹体;V型(VH2O).气相成分为H2O的富气相包裹体;W型(LH2O, VH2O).气液相成分都为H2O的富液相包裹体;L型(LH2O).液相成分为H2O纯液相包裹体
Fig. 5. Petrographic characteristics of fluid inclusions in Qiagong iron ore deposits
图 10 恰功铁矿床氢-氧同位素组成
底图据Hedenquist and Loweenstern(1994)
Fig. 10. Hydrogen-oxygen isotope composition of Qiagong iron ore deposit
表 1 西藏恰功铁矿床各阶段流体包裹体测试结果
Table 1. Test results and pressure estimation of fluid inclusions at different stages of Qiagong iron ore deposit
阶段/寄主矿物 类型 原/次生 数量 气泡消失温度(℃) 石盐消失温度/冰点(℃) 盐度(% NaCleqv) 均值 范围 均值 范围 均值 范围 阶段Ⅰ Grt W P 17 468 400~550 -15.0 -13.0~-18.0 18.6 15.5~20.9 V P 6 487 410~515 -15.7 -13.5 ~-17.0 19.1 17.3~20.2 S P 5 505 485~520 475 465~486 56.5 55.1~57.8 W S 7 241 225~307 -8.0 -7.0~-9.0 11.7 10.4~12.8 阶段Ⅱ Ep W P 16 401 312~515 -9.7 -2.8 ~-15.0 12.9 4.6~18.6 V P 5 432 336~485 -9.8 -3.1~-12.5 13.4 5.1~16.3 S P 2 478 476~480 466 465~466 55.2 55.1~55.3 Act W P 26 390 345~510 -8.5 -1.4~-12.5 12.1 2.4~16.4 V P 3 355 354~355 -11.8 -11.0~-12.5 15.7 15.0~16.4 S P 3 492 454~520 460 435~485 56.8 51.4~57.8 阶段Ⅲ Qz W P 33 268 238~343 -5.4 -3.5~-10.0 8.2 5.7~13.9 V P 5 267 254~285 -4.3 -1.8~-7.1 6.8 3.1~10.6 C 盐度 CO2笼合物 初熔(℃) 熔化(℃) 部分均一(℃) P 14 297 248~315 5.0 -55.9 7.3 27.8 阶段Ⅳ Qz W P 54 268 242~341 -5.0 -1.0~-8.1 7.3 1.7~11.8 S 12 239 210~252 -5.3 -3.4~-6.8 8.2 5.6~10.2 Cal W P 12 294 245~360 -4.3 -2.0~-6.5 7.0 3.4~9.9 注:各矿物及包裹体类型缩写详见图 2和图 5;测试数据均值为算术平均值. 表 2 恰功铁矿床氢-氧同位素测试结果
Table 2. Hydrogen and oxygen isotope test results of Qiagong iron ore deposit
阶段 样品号 矿物 δDV-SMOW(‰) δ18OV-SMOW(‰) δ18OH2O(‰) 均一温度(℃) 阶段Ⅰ QG-45 石榴石 -106.4 3.4 6.2 490 QG15-25 石榴石 -113.2 5.2 8.0 490 阶段Ⅱ QG15-38 绿帘石 -103.1 4.6 5.2 427 QG15-40 绿帘石 -107.0 2.7 3.3 427 QG15-23 阳起石 -84.8 4.7 5.9 410 QG15-39 阳起石 -94.6 5.5 6.7 410 QG-67 磁铁矿 -130.1 4.2 11.8 400 QG-66 磁铁矿 -126.2 3.3 10.9 400 阶段Ⅲ QG15-62 石英 -95.3 7.6 -0.7 265 QG15-63 石英 -103.8 6.7 -1.6 265 阶段Ⅳ QG15-16 石英 -98.0 8.9 0.6 265 QG15-16 方解石 -67.4 4.1 -0.8 300 QG15-40 石英 -101.0 7.7 -0.6 265 -
[1] Ault, K. M., 2004. Sulfur and Lead Isotope Study of the EL Mochito Zn-Pb-Ag Deposit. Economic Geology, 99(6): 1223-1231. https://doi.org/10.2113/gsecongeo.99.6.1223 [2] Baker, T., Achterberg, E.V., Ryan, C. G., et al., 2004. Composition and Evolution of Ore Fluids in a Magmatic-Hydrothermal Skarn Deposit. Geology, 32(2): 117-120. https://doi.org/10.1130/g19950.1 [3] Baker, T., Lang, J. R., 2003. Reconciling Fluid Inclusion Types, Fluid Processes, and Fluid Sources in Skarns: An Example from the Bismark Deposit, Mexico. Mineralium Deposita, 38(4): 474-495. https://doi.org/10.1007/s00126-002-0306-3 [4] Bodnar, R. J., 1993. Revised Equation and Table for Determining the Freezing Point Depression of H2O-NaCl Solutions. Geochimica et Cosmochimica Acta, 57(3): 683-684. https://doi.org/10.1016/0016-7037(93)90378-a [5] Chang, Z. S., Meinert, L. D., 2004. The Magmatic-Hydrothermal Transition—Evidence from Quartz Phenocryst Textures and Endoskarn Abundance in Cu-Zn Skarns at the Empire Mine, Idaho, USA. Chemical Geology, 210(1-4): 149-171. https://doi.org/10.1016/j.chemgeo.2004.06.018 [6] Chen, Y. J., Chen, H. Y., Zaw, K., et al., 2007. Geodynamic Settings and Tectonic Model of Skarn Gold Deposits in China: An Overview. Ore Geology Reviews, 31(1-4): 139-169. https://doi.org/10.1016/j.oregeorev.2005.01.001 [7] Chen, Y.J., Li, N., 2009. Nature of Ore-Fluids of Intracontinental Intrusion-Related Hypothermal Deposits and its Difference from those in Island Arcs. Acta Petrologica Sinica, 25(10):2477-2508 (in Chinese with English abstract). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=ysxb98200910016 [8] Clayton, R. N., Rex, R. W., Syers, J. K., et al., 1972. Oxygen Isotope Abundance in Quartz from Pacific Pelagic Sediments. Journal of Geophysical Research, 77(21): 3907-3915. https://doi.org/10.1029/jc077i021p03907 [9] Collins, P. L. F., 1979. Gas Hydrates in CO2-Bearing Fluid Inclusions and the Use of Freezing Data for Estimation of Salinity. Economic Geology, 74(6): 1435-1444. https://doi.org/10.2113/gsecongeo.74.6.1435 [10] Ding, L., Kapp, P., Zhong, D.L., et al., 2003. Cenozoic Volcanism in Tibet: Evidence for a Transition from Oceanic to Continental Subduction. Journal of Petrology, 44(10): 1833-1865. https://doi.org/10.1093/petrology/egg061 [11] Dong, G.C., Mo, X.X., Zhao, Z.D., et al., 2005.A New Understanding of the Stratigraphic Successions of the Linzizong Volcanic Rocks in the Lhünzhub Basin, Northern Lhasa, Tibet, China. Regional Geology of China, 24(6):549-557 (in Chinese with English abstract). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=zgqydz200506012 [12] Einaudi, M. T., Burt, D. M., 1982. Introduction: Terminology, Classification, and Composition of Skarn Deposits. Economic Geology, 77(4): 745-754. https://doi.org/10.2113/gsecongeo.77.4.745 [13] Fournier, R.O., 1992. The Influences of Depth of Burial and the Brittle-Ductile Transition on the Evolution of Magmatic Fluids. Geological Survey of Japan Report, 279: 57-59. [14] Gao, S.B., 2015. Copper-Iron Polymetal Metallogenic Regularity and Election of Targennt Areas in the Western of Gangdise Metallogenic Belt, Tibet (Dissertation). China University of Geosciences, Wuhan (in Chinese with English abstract). [15] Gemmell, J. B., Zantop, H., Meinert, L. D., 1992. Genesis of the Aguilar Zinc-Lead-Silver Deposit, Argentina: Contact Metasomatic vs. Sedimentary Exhalative. Economic Geology, 87(8): 2085-2112. https://doi.org/10.2113/gsecongeo.87.8.2085 [16] Harris, A. C., Golding, S. D., 2002. New Evidence of Magmatic-Fluid-Related Phyllic Alteration: Implications for the Genesis of Porphyry Cu Deposits. Geology, 30(4): 335-338. https://doi.org/10.1130/0091-7613(2002)030 < 0335:neomfr > 2.0.co; 2 doi: 10.1130/0091-7613(2002)030<0335:neomfr>2.0.co;2 [17] Hedenquist, J. W., Arribas, A., Reynolds, T. J., 1998. Evolution of an Intrusion-Centered Hydrothermal System: Far Southeast-Lepanto Porphyry and Epithermal Cu-Au Deposits, Philippines. Economic Geology, 93(4): 373-404. https://doi.org/10.2113/gsecongeo.93.4.373 [18] Hedenquist, J. W., Lowenstern, J. B., 1994. The Role of Magmas in the Formation of Hydrothermal Ore Deposits. Nature, 370(6490): 519-527. https://doi.org/10.1038/370519a0 [19] Hedenquist, J. W., Reyes, A. G., Simmons, S. F., et al., 1992. The Thermal and Geochemical Structure of Geothermal and Epithermal Systems: A Framework for Interpreting Fluid Inclusion Data. European Journal of Mineralogy, 4(5): 989-1016. https://doi.org/10.1127/ejm/4/5/0989 [20] Hedenquist, J.W., Richards, J.P., 1998. The Influence of Geochemical Techniques on the Development of Genetic Models for Porphyry Copper Deposits. Economic Geology, 10:235-256. doi: 10.1134-S1063776111060203/ [21] Hou, Z. Q., Duan, L. F., Lu, Y. J., et al., 2015. Lithospheric Architecture of the Lhasa Terrane and Its Control on Ore Deposits in the Himalayan-Tibetan Orogen. Economic Geology, 110(6): 1541-1575. https://doi.org/10.2113/econgeo.110.6.1541 [22] Hou, Z.Q., Lu, Q.T., Wang, A.J., et al., 2003. Continental Collision and Related Metallogeny:A Case Study of Mineralization in Tibetan Orogen. Mineral Deposits, 22(4):319-333 (in Chinese with English abstract). [23] Hou, Z.Q., Mo, X.X., Gao, Y.F., et al., 2006.Early Processes and Tectonic Model for the Indian—Asian Continental Collision:Evidence from the Cenozoic Gangdese Igneous Rocks in Tibet. Acta Geologica Sinica, 80(9):1233-1248 (in Chinese with English abstract). [24] Ishihara, S., Jin, M. S., Sasaki, A., 2000. Source Diversity of Ore Sulfur from Mesozoic-Cenozoic Mineral Deposits in the Korean Peninsula Region. Resource Geology, 50(4): 203-212. https://doi.org/10.1111/j.1751-3928.2000.tb00070.x [25] Leng, Q.F., Tang, J.X., Zheng, W.B., et al., 2016.Geochronology, Geochemistry and Zircon Hf Isotopic Compositions of the Ore-Bearing Porphyry in the Lakang'e Porphyry Cu-Mo Deposit, Tibet. Earth Science, 41(6):999-1015 (in Chinese with English abstract). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=dqkx201606007 [26] Li, Y.X., Xie, Y.L., Chen, W., et al., 2011.U-Pb Age and Geochemical Characteristics of Zircon in Monzogranite Porphyry from Qiagong Deposit, Tibet, and Geological Implication. Acta Petrologica Sinica, 27(7):2023-2033 (in Chinese with English abstract). http://d.old.wanfangdata.com.cn/Periodical/ysxb98201107011 [27] Lu, H.Z., Fan, H.R., Li, P., et al., 2004. Fluid inclusions. Science Press, Beijing (in Chinese). [28] Mao, C., Lü, X.B., Chen, C., et al., 2016.Characteristics and Metallogenic Significance of Melt-Fluid Inclusions of Shanshenfu Granite in the Hongyan Area, Inner Mongolia. Earth Science, 41(1):139-152 (in Chinese with English abstract). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=dqkx201601011 [29] Megaw, P. K. M., Ruiz, J., Titley, S. R., 1988. High-Temperature, Carbonate-Hosted Ag-Pb-Zn(Cu) Deposits of Northern Mexico. Economic Geology, 83(8): 1856-1885. https://doi.org/10.2113/gsecongeo.83.8.1856 [30] Meinert, L.D., 1992. Skarns and Skarn Deposits. Geoscience Canada, 19(4): 145-162. http://d.old.wanfangdata.com.cn/Periodical/hbjzkjxyxb200901022 [31] Meinert, L.D., Dipple, G.M., Nicolescu, S., 2005. World Skarn Deposits. In: Hedenquist, J.W., Thompson, J.F.H., Goldfarb, R.J., eds., Economic Geology 100th Anniversary Volume. Society of Economic Geologists, Littleton, Colorado. [32] Meinert, L. D., Hedenquist, J. W., Satoh, H., et al., 2003. Formation of Anhydrous and Hydrous Skarn in Cu-Au Ore Deposits by Magmatic Fluids. Economic Geology, 98(1): 147-156. https://doi.org/10.2113/gsecongeo.98.1.147 [33] Meinert, L. D., Hefton, K. K., Mayes, D., et al., 1997. Geology, Zonation, and Fluid Evolution of the Big Gossan Cu-Au Skarn Deposit, Ertsberg District, Irian Jaya. Economic Geology, 92(5): 509-534. https://doi.org/10.2113/gsecongeo.92.5.509 [34] Mo, X.X., Dong, G.C., Zhao, Z.D., et al., 2005.Spatial and Temporal Distribution and Characteristics of Granitoids in the Gangdese, Tibet and Implication for Crustal Growth and Evolution. Geological Journal of China Universities, 11(3):281-290 (in Chinese with English abstract). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=gxdzxb200503001 [35] O'Neil, J.R., Taylor, H.P., 1969. Oxygen Isotope Equilibrium between Muscovite and Water. Journal of Geophysical Research, 74(25): 6012-6022. https://doi.org/10.1029/jb074i025p06012 [36] Pan, G.T., Mo, X.X., Hou, Z.Q., et al., 2006. Spatial-Temporal Framework of the Gangdese Orogenic Belt and Its Evolution. Acta Petrologica Sinica, 22(3):521-533 (in Chinese with English abstract). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=ysxb98200603001 [37] Reed, M.H., Spycher, N.F., 1985. Boiling, Cooling, and Oxidation in Epithermal Systems: A Numerical Modeling Approach. Economic Geology, 1:249-272. [38] She, H.Q., Feng, C.Y., Zhang, D.Q., et al., 2005.Characteristics and Metallogenic Potential of Skarn Copper-Lead-Zinc Polymetallic Deposits in Central Eastern Gangdese.Mineral Deposits, 24(5):508-520 (in Chinese with English abstract). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=kcdz200505005 [39] Singoyi, B., Zaw, K., 2001. A Petrological and Fluid Inclusion Study of Magnetite-Scheelite Skarn Mineralization at Kara, Northwestern Tasmania: Implications for Ore Genesis. Chemical Geology, 173(1-3): 239-253. https://doi.org/10.1016/s0009-2541(00)00278-3 [40] Suzuoki, T., Epstein, S., 1976. Hydrogen Isotope Fractionation between OH-Bearing Minerals and Water. Geochimica et Cosmochimica Acta, 40(10): 1229-1240. https://doi.org/10.1016/0016-7037(76)90158-7 [41] Tang, J.X., Duo, J., Liu, H.F., et al., 2012. Minerogenetic Series of Ore Deposits in the East Part of the Gangdise Metallogenic Belt.Acta Geoscientica Sinica, 33(4):393-410 (in Chinese with English abstract). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=dqxb201204002 [42] Tang, J.X., Wang, L.Q., Zheng, W.B., et al., 2014.Ore Deposits Metallogenic Regularity and Prospecting in the Eastern Section of the Gangdese Metallogenic Belt. Acta Geologica Sinica, 88(12):2545-2555 (in Chinese with English abstract). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=dizhixb201412027 [43] Taylor, B.E., 1986. Magmatic Volatiles: Isotopic Variation of C, H, and S. Reviews in Mineralogy and Geochemistry, 16(1): 185-225. [44] Taylor, H.P., Turi, B., 1976. High-18O Igneous Rocks from the Tuscan Magmatic Province, Italy. Contributions to Mineralogy and Petrology, 55(1): 33-54. https://doi.org/10.1007/bf00372753 [45] Wang, F.G., Li, G.M., Lin, F.C., et al., 2005.Ore Potential of Skarn-Type Ore Deposits in the Gangdise Metallogenic Belt, Tibet. Regional Geology of China, 24(4):378-385 (in Chinese with English abstract). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=zgqydz200504014 [46] Wang, X.L., Gu, X.X., Peng, Y.W., et al., 2016. Geological Features, Metallogenic Setting and Exploration Potential of the Skarn Fe-Cu Polymetallic Deposits in the Eastern Segment of the Boluokenu Mineralization Belt, Xinjiang. Acta Petrologica Sinica, 32(5):1315-1332 (in Chinese with English abstract). http://d.old.wanfangdata.com.cn/Periodical/ysxb98201605005 [47] Williams-Jones, A. E., Samson, I. M., Ault, K. M., et al., 2010. The Genesis of Distal Zinc Skarns: Evidence from the Mochito Deposit, Honduras. Economic Geology, 105(8): 1411-1440. https://doi.org/10.2113/econgeo.105.8.1411 [48] Wu, S., Zheng, Y. Y., Geng, R. R., et al., 2017. Geology, Fluid Inclusion and Isotope Constraints on Ore Genesis of the Post-Collisional Dabu Porphyry Cu-Mo Deposit, Southern Tibet. Ore Geology Reviews, 89: 421-440. https://doi.org/10.1016/j.oregeorev.2017.06.030 [49] Xie, Y.L., Li, Y.X., Chang, Z.S., et al., 2009. Magmatic Evolution and Characteristics of Magmatic Fluid in the Qiagong Porphyry System. Acta Geologica Sinica, 83(12):1869-1886 (in Chinese with English abstract). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=dizhixb200912006 [50] Xu, J., 2017. Metallogenic Mechanism and Model of the Paleogene Fe-Cu-Pb-Zn Skarn Deposits in Nyainqentanglha, Tibet (Dissertation). China University of Geosciences, Wuhan (in Chinese with English abstract). [51] Xu, J., Zheng, Y. Y., Sun, X., et al., 2016a. Geochronology and Petrogenesis of Miocene Granitic Intrusions Related to the Zhibula Cu Skarn Deposit in the Gangdese Belt, Southern Tibet. Journal of Asian Earth Sciences, 120: 100-116. https://doi.org/10.1016/j.jseaes.2016.01.026 [52] Xu, J., Zheng, Y. Y., Sun, X., et al., 2016b. Alteration and Mineralization at the Zhibula Cu Skarn Deposit, Gangdese Belt, Tibet. Ore Geology Reviews, 75: 304-326. https://doi.org/10.1016/j.oregeorev.2015.11.028 [53] Yang, Z., Jiang, H., Yang, M.G., et al., 2017.Zircon U-Pb and Molybdenite Re-Os Dating of the Gangjiang Porphyry Cu-Mo Deposit in Central Gangdese and Its Geological Significance. Earth Science, 42(3):339-356 (in Chinese with English abstract). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=dqkx201703003 [54] Zhai, Y.S., Yao, S.Z., Cai, K.Q., 2011. Mineral Deposits (3rd Edition). Geological Publishing House, Beijing (in Chinese). [55] Zhao, H.F., Zhong, K.H., 2014.The Geologic Characteristic and Genesis of Qiagong's Skarn-Related Iron Deposit, Tibet, China. Sichuan Nonferrous Metals, (3):15-17 (in Chinese with English abstract). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=scysjs201403003 [56] Zhao, Y.M., 2013.Main Genetic Types and Geological Characteristics of Iron-Rich Ore Deposits in China. Mineral Deposits, 32(4):686-705 (in Chinese with English abstract). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=kcdz201304004 [57] Zhao, Y. M., Dong, Y. G., Li, D. X., et al., 2003. Geology, Mineralogy, Geochemistry, and Zonation of the Bajiazi Dolostone-Hosted Zn-Pb-Ag Skarn Deposit, ProvinceLiaoning, China. Ore Geology Reviews, 23(3-4): 153-182. https://doi.org/10.1016/s0169-1368(03)00034-9 [58] Zhao, Y.M., Feng, C.Y., Li, D.X., et al., 2017.New Progress in Prospecting for Skarn Deposits and Spatial-Teporal Distribution of Skarn Deposits in China. Mineral Deposits, 36(3):519-543 (in Chinese with English abstract). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=kcdz201703001 [59] Zhao, Y.M., Li, D.X., 2003. Amphiboles in Skarn Deposits of China. Mineral Deposits, 22(4):345-359 (in Chinese with English abstract). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=kcdz200304003 [60] Zheng, Y. C., Fu, Q., Hou, Z. Q., et al., 2015a. Metallogeny of the Northeastern Gangdese Pb-Zn-Ag-Fe-Mo-W Polymetallic Belt in the Lhasa Terrane, Southern Tibet. Ore Geology Reviews, 70: 510-532. https://doi.org/10.1016/j.oregeorev.2015.04.004 [61] Zheng, Y. Y., Sun, X., Gao, S. B., et al., 2015b. Metallogenesis and the Minerogenetic Series in the Gangdese Polymetallic Copper Belt. Journal of Asian Earth Sciences, 103: 23-39. https://doi.org/10.1016/j.jseaes.2014.11.036 [62] Zheng, Y. F., 1993. Calculation of Oxygen Isotope Fractionation in Hydroxyl-Bearing Silicates. Earth and Planetary Science Letters, 120(3/4): 247-263. https://doi.org/10.1016/0012-821x(93)90243-3 [63] Zheng, Y.F., Xu, B.L., Zhou, G.T., et al., 2000. Geochemical Studies of Stable Isotopes in Minerals. Earth Science Frontiers, 7(2):299-320 (in Chinese with English abstract). [64] Zheng, Y.Y., Wang, B.S., Fan, Z.H., et al., 2002. Analysis of Tectonic Evolution in the Eastern Section of the Gangdise Mountains, tibet and the Metallogenic Potentialities of Copper Gold Poly Metal. Geological Science and Technology Information, 21(2):55-60 (in Chinese with English abstract). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=dzkjqb200202012 [65] Zheng, Y.Y., Xue, Y.X., Cheng, L.J., et al., 2004. Finding, Characteristics and Significances of Qulong Superlarge Porphyry Copper (Molybdenum) Deposit, Tibet. Earth Science, 29(1):103-108 (in Chinese with English abstract). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=dqkx200401018 [66] Zhou, Z.H., Liu, H.W., Chang, G.X., et al., 2011. Mineralogical Characteristics of Skarns in the Huanggang Sn-Fe Deposit of Inner Mongolia and Their Metallogenic Indicating Significance. Acta Petrologica et Mineralogica, 30(1):97-112 (in Chinese with English abstract). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=yskwxzz201101009 [67] Zhu, D.C., Zhao, Z.D., Niu, Y.L., et al., 2012. Origin and Paleozoic Tectonic Evolution of the Lhasa Terrane. Geological Journal of China Universities, 18(1):1-15 (in Chinese with English abstract). [68] 陈衍景, 李诺, 2009.大陆内部浆控高温热液矿床成矿流体性质及其与岛弧区同类矿床的差异.岩石学报, 25(10):2477-2508. http://d.old.wanfangdata.com.cn/Periodical/ysxb98200910016 [69] 董国臣, 莫宣学, 赵志丹, 等, 2005.拉萨北部林周盆地林子宗火山岩层序新议.地质通报, 24(6):549-557. doi: 10.3969/j.issn.1671-2552.2005.06.012 [70] 高顺宝, 2015.西藏冈底斯西段铜铁多金属成矿作用与找矿方向(博士学位论文).武汉: 中国地质大学. [71] 侯增谦, 吕庆田, 王安建, 等, 2003.初论陆-陆碰撞与成矿作用——以青藏高原造山带为例.矿床地质, 22(4):319-333. doi: 10.3969/j.issn.0258-7106.2003.04.001 [72] 侯增谦, 莫宣学, 高永丰, 等, 2006.印度大陆与亚洲大陆早期碰撞过程与动力学模型——来自西藏冈底斯新生代火成岩证据.地质学报, 80(9):1233-1248. doi: 10.3321/j.issn:0001-5717.2006.09.001 [73] 冷秋锋, 唐菊兴, 郑文宝, 等, 2016.西藏拉抗俄斑岩Cu-Mo矿床含矿斑岩地球化学、锆石U-Pb年代学及Hf同位素组成.地球科学, 41(6):999-1015. doi: 10.3799/dqkx.2016.083 [74] 李应栩, 谢玉玲, 陈伟, 等, 2011.西藏恰功铁矿二长花岗斑岩锆石的U-Pb年代学与地球化学特征及意义.岩石学报, 27(7):2023-2033. http://d.old.wanfangdata.com.cn/Periodical/ysxb98201107011 [75] 卢焕章, 范宏瑞, 倪培, 等, 2004.流体包裹体.北京:科学出版社. [76] 毛晨, 吕新彪, 陈超, 等, 2016.内蒙古红彦镇地区山神府花岗岩熔融-流体包裹体特征及其成矿意义.地球科学, 41(1):139-152. doi: 10.3799/dqkx.2016.011 [77] 莫宣学, 董国臣, 赵志丹, 等, 2005.西藏冈底斯带花岗岩的时空分布特征及地壳生长演化信息.高校地质学报, 11(3):281-290. doi: 10.3969/j.issn.1006-7493.2005.03.001 [78] 潘桂棠, 莫宣学, 侯增谦, 等, 2006.冈底斯造山带的时空结构及演化.岩石学报, 22(3):521-533. http://d.old.wanfangdata.com.cn/Periodical/ysxb98200603001 [79] 佘宏全, 丰成友, 张德全, 等, 2005.西藏冈底斯中东段矽卡岩铜-铅-锌多金属矿床特征及成矿远景分析.矿床地质, 24(5):508-520. doi: 10.3969/j.issn.0258-7106.2005.05.005 [80] 唐菊兴, 多吉, 刘鸿飞, 等, 2012.冈底斯成矿带东段矿床成矿系列及找矿突破的关键问题研究.地球学报, 33(4):393-410. doi: 10.3975/cagsb.2012.04.02 [81] 唐菊兴, 王立强, 郑文宝, 等, 2014.冈底斯成矿带东段矿床成矿规律及找矿预测.地质学报, 88(12):2545-2555. http://d.old.wanfangdata.com.cn/Periodical/dizhixb201412027 [82] 王方国, 李光明, 林方成, 等, 2005.西藏冈底斯地区矽卡岩型矿床资源潜力初析.地质通报, 24(4):378-385. doi: 10.3969/j.issn.1671-2552.2005.04.014 [83] 王新利, 顾雪祥, 彭义伟, 等, 2016.新疆博罗科努成矿带东段矽卡岩型铁铜多金属矿床:地质特征、成矿背景与找矿潜力.岩石学报, 32(5):1315-1332. http://d.old.wanfangdata.com.cn/Periodical/ysxb98201605005 [84] 谢玉玲, 李应栩, Chang, Z.S., 等, 2009.西藏恰功铁矿岩浆演化序列及斑岩出溶流体特征.地质学报, 83(12):1869-1886. doi: 10.3321/j.issn:0001-5717.2009.12.006 [85] 徐净, 2017.西藏念青唐古拉古近纪矽卡岩型铁铜铅锌矿床成因机制与成矿模式(博士学位论文).武汉: 中国地质大学. [86] 杨震, 姜华, 杨明国, 等, 2017.冈底斯中段岗讲斑岩铜钼矿床锆石U-Pb和辉钼矿Re-Os年代学及其地质意义.地球科学, 42(3):339-356. doi: 10.3799/dqkx.2017.026 [87] 翟裕生, 姚书振, 蔡克勤, 2011.矿床学(第三版).北京:地质出版社. [88] 赵洪飞, 钟康惠, 2014.西藏恰功矽卡岩型铁矿床地质特征与成因分析.四川有色金属, (3):15-17. doi: 10.3969/j.issn.1006-4079.2014.03.003 [89] 赵一鸣, 2013.中国主要富铁矿床类型及地质特征.矿床地质, 32(4):686-705. http://d.old.wanfangdata.com.cn/Periodical/kcdz201304004 [90] 赵一鸣, 丰成友, 李大新, 等, 2017.中国矽卡岩矿床找矿新进展和时空分布规律.矿床地质, 36(3):519-543. http://d.old.wanfangdata.com.cn/Periodical/kcdz201703001 [91] 赵一鸣, 李大新, 2003.中国夕卡岩矿床中的角闪石.矿床地质, 22(4):345-359. doi: 10.3969/j.issn.0258-7106.2003.04.003 [92] 郑永飞, 徐宝龙, 周根陶, 等, 2000.矿物稳定同位素地球化学研究.地学前缘, 7(2):299-320. doi: 10.3321/j.issn:1005-2321.2000.02.001 [93] 郑有业, 王保生, 樊子珲, 等, 2002.西藏冈底斯东段构造演化及铜金多金属成矿潜力分析.地质科技情报, 21(2):55-60. http://d.old.wanfangdata.com.cn/Periodical/dzkjqb200202012 [94] 郑有业, 薛迎喜, 程力军, 等, 2004.西藏驱龙超大型斑岩铜(钼)矿床:发现、特征及意义.地球科学, 29(1):103-108. http://www.earth-science.net/article/id/1334 [95] 周振华, 刘宏伟, 常帼雄, 等, 2011.内蒙古黄岗锡铁矿床夕卡岩矿物学特征及其成矿指示意义.岩石矿物学杂志, 30(1):97-112. doi: 10.3969/j.issn.1000-6524.2011.01.009 [96] 朱弟成, 赵志丹, 牛耀龄, 等, 2012.拉萨地体的起源和古生代构造演化.高校地质学报, 18(1):1-15. doi: 10.3969/j.issn.1006-7493.2012.01.001