Magma Mixing in Halagatu Granitic Batholith from Eastern Part of the East Kunlun Orogenic Belt: Constraints from Lithology and Mineralogy
-
摘要: 哈拉尕吐花岗岩基位于东昆仑东段,其中花岗闪长岩岩浆混合作用明显,是研究岩浆混合作用的良好对象.从岩石学、岩相学和矿物化学等方面对哈拉尕吐花岗岩基进行了详细研究.电子探针结果显示:寄主岩斜长石的An值同相对应包体中斜长石捕掳晶近似;包体中基质斜长石大部分具核边结构,核部和边部An值存在间断;部分包体中浅色基质斜长石的An值与具核边结构斜长石的边部近似;辉长闪长岩中斜长石具较高的An值.寄主岩角闪石同相对应包体中角闪石捕掳晶的结晶温度、压力和氧逸度较为接近;包体中基质角闪石的结晶温度和压力低于寄主岩角闪石,氧逸度稍高于寄主岩角闪石;辉长闪长岩角闪石具有最高的结晶温度和压力及最低的氧逸度.哈图沟剖面和德福胜剖面寄主岩中的斜长石和角闪石的成分具有一定差别.岩浆不同期次侵入结晶和岩浆自身演化,使不同地点斜长石和角闪石的成分和物理化学特征具有一定变化.镁铁质岩浆位于地壳深部,氧逸度较低,使结晶的角闪石具有较高的形成压力和较低的氧逸度,斜长石具较高An值;随着镁铁质岩浆注入寄主岩,由于环境突变,使斜长石受到熔蚀;由于岩浆上侵以及两种岩浆物理化学性质差别较大,导致温度、压力和水饱和度降低,氧逸度升高,使包体中残留岩浆快速结晶,形成具核边结构、浅色均一的斜长石,以及结晶程度较差、较高氧逸度的角闪石.Abstract: Magma mixing events occurred widely and fiercely in Halagatu granitic batholith in eastern part of the East Kunlun orogenic belt, one of the ideal natural labs for magma mixing and mingling studies. We study through electron microprobe (EPMA) the lithology, petrography and mineral chemistry from the granitic batholith. The results reveal that plagioclases in the host rocks and those in the xenocrystals in MMEs have similar mineral features of anorthite-albite component value (An value). And most plagioclases in matrix of MMEs have core-rim structures with an An value discontinuity. An values of the light-colored matrix plagioclase in some MMEs are similar to those with core-rim structures. The plagioclases in gabbro diorite have a higher An value. The crystallization temperature, pressure and oxygen fugacity of the hornblendes of the host rocks are similar to those of the hornblende xenocrystals in MMEs. The crystallization temperature and pressure of the matrix hornblende in the MMEs are lower than those in the host rocks, and the oxygen fugacity is slightly higher than that in the host rocks. The hornblendes in gabbro diorite have the highest crystallization temperature and pressure and the lowest oxygen fugacity. The compositions of the plagioclase and hornblende in the host rocks of the Hatugou section and Defusheng section are different. Intermittent magma intrusions and crystallizations, together with their evolution resulted in differences in composition, physical and chemical features varying with places. The mafic magma stayed in deep the Crust with lower oxygen fugacity, providing a condition of high pressure and low oxygen fugacity for hornblende crystallization and high An value for plagioclases. With the injection of mafic magma into the host rocks, due to environmental changes, plagioclases are subject to erosion. The temperature, pressure and water saturation reduced, whilst oxygen fugacity increased because of magma intrusion and physical and chemical differences for the two magmas. Thus the residual magma in MMEs crystallized quickly to form plagioclases with core-rim structures and uniformly light color, and hornblendes with non-crystal shape and high value of oxygen fugacity.
-
图 1 东昆仑造山带及邻区构造单元划分简图(a)和东昆仑东段哈图沟-德福胜一带哈拉尕吐花岗岩基地质简图(b)
1.第四系;2.上三叠统鄂拉山组;3.上三叠统八宝山组;4.中三叠统闹仓坚沟组;5.下三叠统洪水川组;6.下石炭统哈拉郭勒组;7.泥盆系牦牛山组;8.下古生界纳赤台岩群;9.新元古界万宝沟岩群;10.中元古界小庙岩组;11.古元古界白沙河岩组;12.正长花岗岩;13.香加南山花岗岩基;14.哈拉尕吐花岗岩基;15.石英闪长岩;16.中基性岩;17.角度不整合面/同源侵入体间界线;18.韧性构造界面/脆性断层;19.强面理化带;20.水系
Fig. 1. Tectonic units division of the East Kunlun orogen and its adjacent area (a); distribution diagram of the Halagatu granitic batholith in Hatugou-Defusheng area in eastern part of East Kunlun (b)
图 2 东昆仑东段哈图沟和德福胜地区哈拉尕吐花岗岩基实测剖面
1.黑云石英片岩;2.黑云斜长片麻岩;3.花岗质片麻岩;4.正长花岗岩;5.二长花岗岩;6.似斑状二长花岗岩;7.中粗粒花岗闪长岩;8.含闪长质包体中粗粒花岗闪长岩;9.含闪长质包体粗粒花岗闪长岩;10.含闪长质包体细粒英云闪长岩;11.中基性侵入岩;12.辉长岩;13.侵入体间界线;14.侵入体与围岩接触面;15.样品代号.图中年龄:①据张刚(2012);②据李瑞保(2012);③据陈国超(2014)
Fig. 2. Section of the granitic batholith in Hatugou-Defusheng area in eastern part of East Kunlun
图 5 东昆仑东段哈拉尕吐花岗岩基中斜长石显微镜下特征(正交偏光)
a.寄主岩中斜长石;b.包体中基质斜长石;c.包体中斜长石捕掳晶;d.寄主岩中斜长石;e.包体中基质斜长石和捕掳晶斜长石;f.寄主岩中斜长石;g.包体中基质斜长石;h.包体中斜长石捕掳晶;i.寄主岩中斜长石;j.包体中基质斜长石;k.包体中斜长石捕掳晶;l, m.辉长闪长岩中斜长石;图中数字为斜长石An值
Fig. 5. Petrographic features of plagioclase in Halagatu granitic batholith in eastern part of East Kunlun (cross nicols)
图 9 角闪石AlⅣ-Fe2+/(Fe2++Mg)图解(a)和角闪石Al2O3-TiO2图解(b)
图a据Anderson and Smith(1995);图b据姜常义和安三元(1984);图例同图 7
Fig. 9. AlⅣ-Fe2+/(Fe2++Mg) (a) and Al2O3-TiO2 diagram of amphiboles (b)
表 1 东昆仑东段哈拉尕吐花岗岩基中斜长石电子探针成分测试结果(%)
Table 1. Electron microprobe analyses (%) of plagioclase in Halagatu granitic batholith in eastern part of East Kunlun
测点号 SiO2 Al2O3 FeOT MnO MgO CaO Na2O K2O Total An Ab Or 寄主岩斜长石 11614-2-3.1 56.80 25.86 0.23 0.00 0.00 9.06 6.14 0.02 98.10 45 55 0 11614-2-3.2 56.54 26.54 0.23 0.00 0.00 9.60 5.51 0.01 98.44 49 51 0 11614-2-3.3 57.27 26.04 0.21 0.00 0.00 8.88 6.23 0.04 98.66 44 56 0 11614-2-3.4 56.05 26.56 0.27 0.00 0.00 10.07 5.41 0.01 98.37 51 49 0 11614-2-3.5 56.09 26.22 0.21 0.01 0.01 9.39 5.69 0.03 97.64 48 52 0 11614-2-3.6 56.01 27.03 0.16 0.01 0.00 10.02 5.52 0.02 98.77 50 50 0 包体基质斜长石 11614-11-2.4 54.13 27.78 0.37 0.02 0.00 11.36 5.04 0.01 98.71 55 45 0 11614-11-2.5 55.81 25.22 0.38 0.00 0.01 8.68 6.26 0.01 96.38 43 57 0 11614-11-2.6 57.13 26.04 0.25 0.03 0.00 9.06 6.18 0.01 98.68 45 55 0 包体斜长石捕掳晶 11614-11-1.1 57.25 26.13 0.24 0.00 0.00 9.10 6.17 0.03 98.91 45 55 0 11614-11-1.2 55.86 27.10 0.26 0.02 0.01 10.22 5.65 0.03 99.15 50 50 0 11614-11-1.3 56.64 26.53 0.26 0.02 0.01 9.55 5.95 0.03 98.98 47 53 0 11614-11-1.4 57.34 26.03 0.23 0.00 0.00 9.03 6.19 0.03 98.84 45 55 0 11614-11-1.5 55.82 27.09 0.23 0.04 0.00 10.35 5.60 0.01 99.13 50 49 0 11614-11-1.6 57.55 26.12 0.14 0.03 0.00 9.07 6.24 0.02 99.16 44 55 0 11614-11-1.7 55.63 27.30 0.15 0.00 0.00 10.44 5.52 0.01 99.06 51 49 0 寄主岩斜长石 11617-1-2.1 56.88 26.05 0.16 0.00 0.00 8.87 6.20 0.03 98.19 44 56 0 11617-1-2.2 58.15 25.33 0.23 0.02 0.00 8.32 6.82 0.02 98.89 40 60 0 11617-1-2.3 57.84 25.65 0.14 0.02 0.00 8.54 6.67 0.02 98.90 41 58 0 11617-1-2.4 57.20 27.58 0.29 0.00 0.15 5.01 5.42 0.25 95.91 33 65 2 11617-1-2.5 58.29 23.97 0.18 0.01 0.00 6.93 6.91 0.01 96.31 36 64 0 11617-1-2.6 56.33 25.47 0.21 0.02 0.04 8.50 6.28 0.01 96.86 43 57 0 11617-1-2.7 60.24 22.78 0.15 0.01 0.02 5.41 8.22 0.01 96.83 27 73 0 包体基质斜长石 11617-9-1.10 59.82 23.91 0.19 0.01 0.00 6.22 7.60 0.00 97.77 31 69 0 11617-9-1.11 56.79 26.10 0.28 0.02 0.00 8.69 6.18 0.02 98.08 44 56 0 11617-9-1.12 60.92 23.56 0.15 0.00 0.00 5.98 7.99 0.01 98.60 29 71 0 包体斜长石捕掳晶 11617-9-1.1 56.10 26.95 0.20 0.00 0.00 10.01 5.82 0.01 99.07 49 51 0 11617-9-1.2 55.66 26.66 0.18 0.00 0.00 9.98 5.60 0.01 98.11 50 50 0 11617-9-1.3 45.89 27.19 0.96 0.10 0.62 9.63 1.90 0.31 86.60 72 26 3 11617-9-1.4 53.03 31.36 0.44 0.21 0.14 1.01 2.45 0.67 89.32 16 71 13 11617-9-1.5 52.74 24.99 0.29 0.03 0.02 9.16 5.38 0.01 92.63 48 51 0 11617-9-1.6 65.95 23.97 0.11 0.00 0.02 2.64 8.28 0.08 101.05 15 85 1 11617-9-1.7 57.09 26.10 0.19 0.00 0.00 9.07 6.34 0.02 98.81 44 56 0 寄主岩斜长石 11637-8-3.1 56.60 23.72 0.17 0.02 0.00 6.90 7.08 0.22 94.70 35 64 1 11637-8-3.2 56.65 23.81 0.23 0.00 0.00 6.72 6.96 0.13 94.49 35 65 1 11637-8-3.3 54.74 23.88 0.12 0.00 0.00 7.71 6.56 0.10 93.11 39 60 1 11637-8-3.4 56.78 23.75 0.08 0.00 0.00 6.67 6.95 0.08 94.31 34 65 1 11637-8-3.5 55.17 24.38 0.11 0.00 0.00 7.69 6.67 0.12 94.14 39 61 1 11637-8-3.6 56.93 24.05 0.10 0.01 0.00 7.12 6.96 0.10 95.27 36 64 1 11637-8-3.7 58.79 21.51 0.34 0.00 0.13 4.79 8.28 0.16 94.00 24 75 1 包体基质斜长石 11637-17a-1.1 48.00 28.90 0.12 0.01 0.00 16.77 2.69 0.01 96.51 77 23 0 11637-17a-1.2 52.79 29.03 0.20 0.00 0.00 12.58 4.25 0.00 98.84 62 38 0 11637-17a-1.3 57.42 26.15 0.11 0.03 0.00 8.85 6.43 0.01 99.01 43 57 0 11637-17a-1.4 58.12 25.44 0.12 0.00 0.00 8.01 6.81 0.01 98.52 39 61 0 11637-17a-1.5 56.71 24.40 0.19 0.00 0.02 7.90 6.49 0.02 95.73 40 60 0 包体斜长石捕掳晶 11637-17a-2.1 57.46 25.98 0.09 0.02 0.01 8.77 6.40 0.01 98.73 43 57 0 11637-17a-2.2 61.58 22.52 0.07 0.00 0.00 5.32 8.38 0.02 97.90 26 74 0 11637-17a-2.3 57.65 25.65 0.03 0.01 0.00 8.50 6.54 0.00 98.38 42 58 0 11637-17a-2.4 56.40 26.75 0.07 0.01 0.00 9.67 6.05 0.00 98.96 47 53 0 11637-17a-2.5 58.46 24.02 0.13 0.01 0.01 6.92 7.52 0.03 97.09 34 66 0 11637-17a-2.6 58.17 26.04 0.26 0.00 0.13 6.13 6.34 0.13 97.19 35 65 1 11637-17a-2.7 56.96 26.33 0.20 0.00 0.00 9.42 6.16 0.00 99.08 46 54 0 寄主岩斜长石 11638-1-3.1 57.18 24.55 0.14 0.00 0.00 9.62 6.48 0.01 97.97 45 55 0 11638-1-3.3 60.46 23.77 0.15 0.02 0.01 6.44 7.66 0.02 98.53 32 68 0 11638-1-3.4 59.40 24.88 0.19 0.00 0.00 7.45 7.28 0.00 99.20 36 64 0 11638-1-3.5 58.47 25.48 0.20 0.00 0.00 8.30 6.75 0.02 99.22 40 59 0 包体基质斜长石 11638-6a-3.1 60.00 24.46 0.03 0.00 0.00 7.33 7.70 0.12 99.70 34 65 1 11638-6a-3.2 57.52 25.78 0.09 0.00 0.00 9.02 6.51 0.08 99.08 43 56 0 包体斜长石捕掳晶 11638-6-1.1 61.02 23.76 0.10 0.02 0.00 5.91 8.10 0.01 98.91 29 71 0 11638-6-1.2 58.45 25.56 0.11 0.00 0.00 8.26 6.83 0.01 99.22 40 60 0 11638-6-1.3 61.89 22.93 0.06 0.00 0.00 5.03 8.47 0.00 98.37 25 75 0 11638-6-1.4 62.32 22.98 0.03 0.00 0.01 5.13 8.54 0.00 99.00 25 75 0 11638-6-1.5 59.22 24.09 0.09 0.00 0.00 6.94 7.20 0.01 97.55 35 65 0 11638-6-1.6 61.04 22.71 0.16 0.00 0.03 4.96 7.89 0.00 96.78 26 74 0 11638-6-1.7 61.56 23.71 0.18 0.00 0.00 5.96 8.02 0.01 99.44 29 71 0 辉长闪长岩斜长石 11639-7a-2.1 56.27 26.26 0.11 0.00 0.00 9.34 6.60 0.10 98.70 44 56 1 11639-7a-2.2 55.48 27.38 0.11 0.00 0.00 10.71 5.51 0.07 99.30 52 48 0 11639-7b-1.1 56.79 25.65 0.12 0.01 0.00 9.08 6.46 0.09 98.24 44 56 0 11639-7b-1.2 57.51 25.67 0.08 0.00 0.00 8.82 6.80 0.12 99.00 42 58 1 11639-7b-1.3 55.76 26.39 0.23 0.00 0.06 9.77 6.20 0.08 98.50 46 53 0 表 2 不同产状角闪石电子探针成分测试结果
Table 2. Electron microprobe analyses of amphiboles of distinct occurrence
产状 样品点号 主量元素(%) 基于23个氧原子计算的阳离子数 基于23个氧原子计算的阳离子数 Mg# Fe2+/
(Fe2++Mg)温度(℃) P(MPa) 深度(km) △NNO lgfO2 SiO2 TiO2 Al2O3 Cr2O3 FeOT MnO MgO CaO Na2O K2O Total SiT AlT AlC FeC3+ TiC MgC FeC2+ MnC FeB2+ MnB CaB NaB CaA NaA KA Total 寄主岩角闪石 11614-2-3.7 46.90 0.18 7.53 0.00 14.94 0.76 12.24 11.73 1.13 0.06 95.46 7.08 0.92 0.41 0.59 0.02 2.75 1.22 0.00 0.07 0.10 1.83 0.00 0.06 0.33 0.01 15.41 68 0.32 792 336 12.71 1.13 -12.90 11614-2-3.8 45.28 0.18 8.11 0.95 15.66 0.59 11.39 11.63 1.23 0.07 95.13 6.97 1.03 0.44 0.53 0.02 2.61 1.39 0.00 0.09 0.08 1.83 0.00 0.08 0.37 0.01 15.47 64 0.36 812 399 15.07 0.89 -12.70 11614-2-3.9 46.75 0.12 7.22 0.00 16.83 0.65 11.10 11.95 0.88 0.06 95.58 7.11 0.89 0.40 0.63 0.01 2.51 1.44 0.00 0.07 0.08 1.85 0.00 0.10 0.26 0.01 15.37 63 0.37 777 315 11.89 0.85 -13.51 包体角闪石捕掳晶 11614-11-2.1 46.94 0.14 7.37 0.00 15.47 0.58 12.22 11.66 1.31 0.06 95.78 7.08 0.92 0.39 0.55 0.02 2.75 1.30 0.00 0.10 0.07 1.83 0.00 0.06 0.38 0.01 15.45 66 0.34 788 323 12.19 1.13 -12.97 11614-11-2.2 45.69 0.21 8.60 0.00 15.86 0.56 11.55 11.58 1.43 0.05 95.56 6.93 1.07 0.47 0.51 0.02 2.61 1.39 0.00 0.11 0.07 1.82 0.00 0.07 0.42 0.01 15.49 63 0.37 817 430 16.27 0.87 -12.60 11614-11-2.3 46.80 0.11 7.00 0.03 16.16 0.64 11.91 11.87 1.15 0.05 95.72 7.09 0.91 0.34 0.55 0.01 2.69 1.40 0.00 0.09 0.08 1.83 0.00 0.10 0.34 0.01 15.45 64 0.36 782 294 11.10 1.08 -13.16 寄主岩角闪石 11617-1-3.1 49.88 0.06 4.95 0.07 14.41 0.83 13.46 11.94 0.85 0.03 96.50 7.40 0.60 0.26 0.71 0.01 2.98 1.04 0.00 0.04 0.10 1.86 0.00 0.04 0.24 0.01 15.29 73 0.27 728 111 4.20 1.59 -13.93 11617-1-3.2 48.70 0.08 5.50 0.00 15.26 0.84 12.79 12.06 0.87 0.03 96.18 7.29 0.71 0.26 0.66 0.01 2.86 1.21 0.00 0.04 0.11 1.85 0.00 0.08 0.25 0.01 15.34 70 0.30 745 161 6.09 1.39 -13.71 11617-1-3.3 44.66 0.16 8.55 0.02 16.97 0.82 10.95 11.75 1.34 0.06 95.30 6.86 1.14 0.40 0.44 0.02 2.51 1.63 0.00 0.11 0.11 1.79 0.00 0.15 0.40 0.01 15.56 59 0.41 825 436 16.46 0.76 -12.55 包体角闪石捕掳晶 11617-9-2.1 44.76 0.17 8.62 0.00 16.58 0.65 11.18 11.78 1.39 0.06 95.20 6.86 1.14 0.42 0.44 0.02 2.55 1.57 0.00 0.11 0.08 1.80 0.00 0.13 0.41 0.01 15.56 60 0.40 828 440 16.63 0.80 -12.46 11617-9-2.2 46.81 0.19 7.35 0.05 15.14 0.59 12.46 11.77 1.11 0.04 95.50 7.07 0.93 0.38 0.58 0.02 2.80 1.22 0.00 0.11 0.07 1.81 0.00 0.09 0.32 0.01 15.42 68 0.32 791 321 12.15 1.23 -12.81 11617-9-2.3 45.99 0.20 7.94 0.02 14.67 0.59 11.99 11.92 1.27 0.05 94.72 7.01 0.99 0.43 0.55 0.02 2.72 1.28 0.00 0.04 0.08 1.88 0.00 0.07 0.38 0.01 15.45 67 0.33 810 377 14.26 0.98 -12.66 包体基质角闪石 11617-9-2.7 47.17 0.15 7.26 0.06 15.93 0.73 11.84 12.11 0.99 0.05 96.31 7.09 0.91 0.38 0.60 0.02 2.65 1.35 0.00 0.05 0.09 1.85 0.00 0.10 0.29 0.01 15.40 65 0.35 785 311 11.77 1.00 -13.18 11617-9-2.8 47.08 0.13 6.81 0.05 15.76 0.63 12.20 11.87 0.87 0.06 95.45 7.13 0.87 0.34 0.62 0.01 2.75 1.27 0.00 0.11 0.08 1.81 0.00 0.12 0.26 0.01 15.38 67 0.33 775 278 10.49 1.23 -13.17 11617-9-2.9 45.59 0.18 6.95 0.17 15.85 0.59 11.45 11.68 0.77 0.06 93.32 7.09 0.91 0.37 0.63 0.02 2.66 1.33 0.00 0.10 0.08 1.82 0.00 0.13 0.23 0.01 15.37 65 0.35 781 306 11.55 1.07 -13.19 寄主岩角闪石 11638-1-2.1 46.18 0.08 7.69 0.03 17.69 0.65 10.63 11.80 1.22 0.03 96.03 7.03 0.97 0.41 0.54 0.01 2.41 1.63 0.00 0.08 0.08 1.84 0.00 0.09 0.36 0.01 15.46 59 0.41 788 356 13.44 0.67 -13.43 11638-1-2.2 44.59 0.16 8.79 0.02 18.67 0.81 9.59 11.63 1.31 0.06 95.62 6.87 1.13 0.46 0.48 0.02 2.20 1.83 0.00 0.09 0.11 1.81 0.00 0.11 0.39 0.01 15.52 53 0.47 815 459 17.34 0.34 -13.18 11638-1-2.3 43.05 0.13 9.42 0.04 20.52 0.81 8.46 11.54 1.43 0.06 95.49 6.73 1.27 0.46 0.39 0.02 1.97 2.17 0.00 0.13 0.11 1.76 0.00 0.17 0.43 0.01 15.61 46 0.54 833 524 19.82 0.02 -13.12 包体基质角闪石 11638-6-2.1 46.14 0.10 7.25 0.01 18.55 0.73 9.73 11.67 0.99 0.03 95.20 7.11 0.90 0.42 0.62 0.01 2.23 1.71 0.00 0.05 0.09 1.85 0.00 0.08 0.29 0.01 15.38 56 0.44 767 326 12.30 0.46 -14.11 11638-6-2.2 45.24 0.08 7.65 0.00 19.90 0.78 9.44 11.80 1.04 0.03 95.99 6.98 1.02 0.37 0.52 0.01 2.17 1.93 0.00 0.11 0.10 1.79 0.00 0.16 0.31 0.01 15.48 51 0.49 785 361 13.64 0.41 -13.75 11638-6-2.3 43.74 0.15 8.12 0.01 19.35 0.73 8.81 11.60 1.28 0.06 93.85 6.90 1.10 0.42 0.48 0.02 2.07 2.02 0.00 0.06 0.10 1.84 0.00 0.12 0.39 0.01 15.52 50 0.50 803 418 15.80 0.13 -13.71 辉长闪长岩角闪石 11639-7b-2 43.93 0.31 10.49 0.00 17.00 0.41 10.43 12.03 1.14 0.30 96.04 6.68 1.32 0.57 0.46 0.04 2.37 1.57 0.00 0.13 0.05 1.82 0.00 0.14 0.34 0.06 15.54 58 0.42 864 595 22.47 0.46 -12.06 11639-7b-2 44.33 0.41 10.31 0.02 16.96 0.45 10.15 12.00 1.26 0.29 96.19 6.73 1.27 0.58 0.49 0.05 2.30 1.59 0.00 0.08 0.06 1.87 0.00 0.09 0.37 0.06 15.51 58 0.42 856 577 21.82 0.28 -12.38 注:元素下角标A、B、C、T对应角闪石结晶学位置;Mg#=100×Mg/(Fe2++Mg);角闪石温度和氧逸度据 Ridolfi et al.(2010) 计算;角闪石压力据Schmidt(1992)计算. -
[1] Anderson, J.L., Smith, D.R., 1995.The Effects of Temperature and fO2 on the Al-in-Hornblende Barometer.American Mineralogist, 80(5-6):549-559. https://doi.org/10.2138/am-1995-5-614 [2] Bachmann, O., Bergantz, G.W., 2008.Rhyolites and Their Source Mushes across Tectonic Settings.Journal of Petrology, 49(12):2277-2285. https://doi.org/10.1093/petrology/egn068 [3] Barbarin, B., 2005.Mafic Magmatic Enclaves and Mafic Rocks Associated with Some Granitoids of the Central Sierra Nevada Batholith, California:Nature, Origin, and Relations with the Hosts.Lithos, 80(1-4):155-177. https://doi.org/10.1016/j.lithos.2004.05.010 [4] Baxter, S., Feely, M., 2002.Magma Mixing and Mingling Textures in Granitoids:Examples from the Galway Granite, Connemara, Ireland.Mineralogy and Petrology, 76(1):63-74. https://doi.org/10.1007/s007100200032 [5] Brown, M., 2013.Granite:From Genesis to Emplacement.GSA Bulletin, 125(7-8):1079-1113. https://doi.org/10.1130/B30877.1 [6] Castro, A., 2001.Plagioclase Morphologies in Assimilation Experiments:Implications for Disequilibrium Melting in the Generation of Granodiorite Rocks.Mineralogy and Petrology, 71(1-2):31-49. https://doi.org/10.1007/s007100170044 [7] Chappell, B.W., White, A.J.R., 1992.I- and S-Type Granites in the Lachland Fold Belt.Mineralogy Magazine Transactions of the Royal Society of Edinburgh:Earth Sciences, 83(1-2):1-26. https://doi.org/10.1017/S0263593300007720 [8] Chen, B., Chen, Z.C., Jahn, B.M., 2009.Origin of Mafic Enclaves form the Taihang Mesozoic Orogen, North China Craton.Lithos, 110(1-4):343-358. https://doi.org/10.1016/j.lithos.2009.01.015 [9] Chen, G.C., 2014.Petrology, Genesis and Geological Significance of Late Paleozoic-Early Mesozoic Granites in East Kunlun Orogen (Dissertation).Chang'an University, Xi'an (in Chinese with English abstract). [10] Chen, G.C., Pei, X.Z., Li, R.B., et al., 2013a.Zircon U-Pb Geochronology, Geochemical Characteristics and Geological Significance of Cocoe A'Long Quartz Diorites Body from the Hongshuichuan Area in East Kunlun.Acta Geologica Sinica, 87(2):178-196 (in Chinese with English abstract). [11] Chen, G.C., Pei, X.Z., Li, R.B., et al., 2013b.Late Triassic Magma Mixing in the East Kunlun Orogenic Belt:A Case Study of Helegang Xilikete Granodiorites.Geology in China, 40(4):1044-1065 (in Chinese with English abstract). [12] Chen, G.C., Pei, X.Z., Li, R.B., et al., 2013c.Geochronology and Genesis of the Helegang Xilikete Granitic Plutons from the Southern Margin of the Eastern East Kunlun Orogenic Belt and Their Tectonic Significance.Acta Geologica Sinica, 87(10):1524-1541 (in Chinese with English abstract). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=dizhixb201310004 [13] Chen, G.C., Pei, X.Z., Li, R.B., et al., 2016.Genesis of Magma Mixing and Mingling of Xiangjiananshan Granite Batholith in the Eastern Section of East Kunlun Orogen:Evidence from Mafic Microgranular Enclaves(MMEs).Earth Science Frontiers, 23(4):226-240 (in Chinese with English abstract). http://d.old.wanfangdata.com.cn/Periodical/dxqy201604019 [14] Chen, G.C., Pei, X.Z., Li, R.B., et al., 2017a.Age and Petrogenesis of Jialuhe Basic-Intermediate Pluton in Xiangjia'nanshan Granite Batholith in the Eastern Part of East Kunlun Orogenic Belt, and Its Geological Significance.Geotectonica et Metallogenia, 41(6):1097-1115 (in Chinese with English abstract). [15] Chen, G.C., Pei, X.Z., Li, R.B., et al., 2017a.Paleo-Tethyan Oceanic Crust Subduction in the Eastern Section of the East Kunlun Orogenic Belt:Geochronology and Petrogenesis of the Qushi'ang Granodiorite.Acta Geologica Sinica (English Edition), 91(2):565-580. https://doi.org/10.1111/1755-6724.13118 [16] Chen, G.C., Pei, X.Z., Li, R.B., et al., 2017b.Magma Mixing and Mingling for Xiangjiananshan Granitic Batholith at Eastern Area of the East Kunlun Orogenic Belt.Acta Geologica Sinica (English Edition), 91(Supp1):63-63. https://doi.org/10.1111/1755-6724.13187 [17] Chen, G.C., Pei, X.Z., Li, R.B., et al., 2017b.Mineralogical Features of the Amphiboles and Biotites on the Quartz Xenocrysts Rim of Jialuhe Intermediate-Basic Pluton, Eastern East Kunlun Orogen:Constraints on the Magma Mixing and Mingling Process.Earth Science Frontiers, 24(6):10-24 (in Chinese with English abstract). [18] Chen, G.C., Pei, X.Z., Li, R.B., et al., 2017c.Components of the Plagioclase of Granitic Batholith in Xiangjiananshan in the Eastern Section of East Kunlun and Their Implications for Magma Evolution and Mixing Effect.Acta Geologica Sinica, 91(12):2651-2666 (in Chinese with English abstract). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=dizhixb201712005 [19] Chen, J.J., Fu, L.B., Wei, J.H., et al., 2016.Geochemical Characteristics of Late Ordovician Granodiorite in Gouli Area, Eastern Kunlun Orogenic Belt, Qinghai Province:Implications on the Evolution of Proto-Tethys Ocean.Earth Science, 41(11):1863-1882 (in Chinese with English abstract). https://doi.org/10.3799/dqkx.2016.129 [20] Clemens, J.D., Stevens, G., 2012.What Controls Chemical Variation in Granitic Magmas?Lithos, 134-135:317-329. https://doi.org/10.1016/j.lithos.2012.01.001 [21] Clemens, J.D., Wall, V.J., 1984.Origin and Evolution of a Peraluminous Silicic Ignimbrite Suite:The Violet Town Volcanics.Contributions to Mineralogy and Petrology, 88(4):354-371. https://doi.org/10.1007/BF00376761 [22] Coote, A.C., Shane, P., 2016.Crystal Origins and Magmatic System Beneath Ngauruhoe Volcano (New Zealand) Revealed by Plagioclase Textures and Compositions.Lithos, 260:107-119. https://doi.org/10.1016/j.lithos.2016.05.017 [23] Couch, S., Sparks, R.S.J., Carroll, M.R., 2003.The Kinetics of Degassing-Induced Crystallization at Soufriere Hills Volcano, Montserrat.Journal of Petrology, 44(8):1477-1502. https://doi.org/10.1093/petrology/44.8.1477 [24] Didier, J., Barbarin, B., 1991.Enclaves and Granite Petrology.Development in Petrology, Vol.13, Elsevier, Amsterdam. [25] Dong, S.B., Tian, W., 2007.Meditation on Granite Research.Geological Journal of China Universities, 13(3):353-361 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-GXDX200703000.htm [26] Ginibre, C., Wörner, G., Kronz, A., 2002.Minor- and Trace-Element Zoning in Plagioclase:Implications for Magma Chamber Processes at Parinacota Volcano, Northern Chile.Contributions to Mineralogy and Petrology, 143(3):300-315. https://doi.org/10.1007/s00410-002-0351-z [27] Guo, Z.F., Deng, J.F., Xu, Z.Q., et al., 1998.Late Palaeozoic Mesozoic Intracontinental Orogenic Process and Intermedate Acidic Igneous Rocks from the Eastern Kunlun Mountains of Northwestern China.Geoscience, 12(3):345-352 (in Chinese with English abstract). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=QK199800618575 [28] Huang, H., Niu, Y.L., Nowell, G., et al., 2014.Geochemical Constraints on the Petrogenesis of Granitoids in the East Kunlun Orogenic Belt, Northern Tibetan Plateau:Implications for Continental Crust Growth through Syn-Collisional Felsic Magmatism.Chemical Geology, 370:1-18. https://doi.org//10.1016/j.chemgeo.2014.01.010 [29] Jiang, C.Y., An, S.Y., 1984.On Chemical Characteristics of Calcic Amphiboles from Igneous Rocsk and Their Petrogenesis Significance.Journal of Mineralogy and Petrology, 4(3):1-9 (in Chinese with English abstract). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=QK000004313450 [30] Kemp, A.I.S., Hawkesworth, C.J., Foster, G.L., et al., 2007.Magmatic and Crustal Differentiation History of Granitic Rocks from Hf-O Isotopes in Zircon.Science, 315(5814):980-983. https://doi.org/10.1126/science.1136154 [31] Kemp, A.I.S., Wilde, S.A., Hawkesworth, C.J., et al., 2010.Hadean Crustal Evolution Revisited:New Constraints from Pb-Hf Isotope Systematics of the Jack Hills Zircons.Earth and Planetary Science Letters, 296(1-2):45-56. https://doi.org/10.1016/j.epsl.2010.04.043 [32] Kumar, S., Rino, V., 2006.Mineralogy and Geochemistry of Microgranular Enclaves in Palaeoproterozoic Malanjkhand Granitoids, Central India:Evidence of Magma Mixing, Mingling, and Chemical Equilibration.Contributions to Mineralogy and Petrology, 152(5):591-609. https://doi.org/10.1007/s00410-006-0122-3 [33] Landi, P., Métrich, N., Bertagnini, A., et al., 2004.Dynamics of Magma Mixing and Degassing Recorded in Plagioclase at Stromboli (Aeolian Archipelago, Italy).Contributions to Mineralogy and Petrology, 147(2):213-227. https://doi.org/10.1007/s00410-004-0555-5 [34] Leake, B.E., 1978.Nomenclature of Amphiboles.The Canadian Mineralogist, 16(4):501-520. https://doi.org/10.1180/minmag.1978.042.324.21 [35] Li, R.B., 2012.Research on the Late Paleozoic-Early Mesozoic Orogeny in East Kunlun Orogen (Dissertation).Chang'an University, Xi'an (in Chinese with English abstract). [36] Li, Y.H., Huang, F., Yu, H.M., et al., 2016.Plagioclase Zoning in Submarine Volcano Kick'em Jenny, Lesser Antilles Arc:Insights into Magma Evolution Processes in Oceanic Arc Magma Chamber.Acta Petrologica Sinica, 32(2):605-616 (in Chinese with English abstract). http://d.old.wanfangdata.com.cn/Periodical/ysxb98201602022 [37] Lin, W.W., Peng, L.J., 1994.The Eastimation of Fe3+ and Fe2+ Contents in Amphibole and Biotite form EPMA Data.Journal of Changchun University of Earth Sciences, 24(2):155-162 (in Chinese with English abstract). [38] Lundstrom, C.C., Glazner, A.F., 2016.Silicic Magmatism and the Volcanic-Plutonic Connection.Elements, 12(2):91-96. https://doi.org/10.2113/gselements.12.2.91 [39] Luo, Z.H., Deng, J.F., Cao, Y.Q., et al., 1999.On Late Paleozoic Early Mesozoic Volcanism and Regional Tectonic Evolution of Eastern Kunlun, Qinghai Province.Geoscience, 13(1):51-56 (in Chinese with English abstract). [40] Meng, F.C., Zhang, J.X., Cui, M.H., 2013.Discovery of Early Paleozoic Eclogite from the East Kunlun, Western China and Its Tectonic Significance.Gondwana Research, 23(2):825-836. https://doi.org/10.1016/j.gr.2012.06.007 [41] Mo, X.X., Luo, Z.H., Deng, J.F., et al., 2007.Granitoids and Crustal Growth in the East-Kunlun Orogenic Belt.Geological Journal of China Universities, 13(3):403-414 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-GXDX200703005.htm [42] Mortimer, N., Gans, P.B., Mildenhall, D.C., 2008.A Middle-Late Quaternary Age for the Adakitic Arc Volcanics of Hautere (Solander Island), Southern Ocean.Journal of Volcanology and Geothermal Research, 178(4):701-707. https://doi.org/10.1016/j.jvolgeores.2008.09.003 [43] Pal, T., Mitra, S.K., Sengupta, S., et al., 2007.Dacite-Andesites of Narcondam Volcano in the Andaman Sea— An Imprint of Magma Mixing in the Inner Arc of the Andaman-Java Subduction System.Journal of Volcanology and Geothermal Research, 168(1-4):93-113. https://doi.org/10.1016/j.jvolgeores.2007.08.005 [44] Pearce, T.H., Kolisnik, A.M., 1990.Observations of Plagioclase Zoning Using Interference Imaging.Earth-Science Reviews, 29(1-4):9-26. https://doi.org/10.1016/0012-8252(0)90024-P [45] Pei, X.Z., Hu, N., Liu, C.J., et al., 2015.Detrital Composition, Geochemical Characteristics and Provenance Analysis for the Maerzheng Formation Sandstone in Gerizhuotuo Area, Southern Margin of East Kunlun Region.Geological Review, 61(2):307-323 (in Chinese with English abstract). [46] Petford, N., Cruden, A.R., McCaffrey, K.J.W., et al., 2000.Granite Magma Formation, Transport and Emplacement in the Earth's Crust.Nature, 408(6813):669-673. https://doi.org/10.1038/35047000 [47] Qin, F., Xu, X.X., Luo, Z.H., 2006.Mixing and Mingling in Petrogenesis of the Fangshan Intrusion, Beijing.Acta Petrologica Sinica, 22(12):2957-2970 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-YSXB200612012.htm [48] Ridolfi, F., Renzulli, A., Puerini, M., 2010.Stability and Chemical Equilibrium of Amphibole in Calc-Alkaline Magmas:An Overview, New Thermobarometric Formulations and Application to Subduction-Related Volcanoes.Contributions to Mineralogy and Petrology, 160(1):45-66. https://doi.org/10.1007/s00410-009-0465-7 [49] Schmidt, M.W., 1992.Amphibole Composition in Tonalite as a Function of Pressure:An Experimental Calibration of the Al-in-Hornblende Barometer.Contributions to Mineralogy and Petrology, 110(2-3):304-310. https://doi.org/10.1007/BF00310745 [50] Shi, B., Zhu, Y.H., Zhong, Z.Q., et al., 2016.Petrological, Geochemical Characteristics and Geological Significance of the Caledonian Peraluminous Granites in Heihai Region, Eastern Kunlun.Earth Science, 41(1):35-54 (in Chinese with English abstract). https://doi.org/10.3799/dqkx.2016.003 [51] Sisson, T.W., Grove, T.L., 1993.Experimental Investigations of the Role of H2O in Calc-Alkaline Differentiation and Subduction Zone Magmatism.Contributions to Mineralogy and Petrology, 113(2):143-166. https://doi.org/10.1007/BF00283225 [52] Sun, Y., Pei, X.Z., Ding, S.P., et al., 2009.Halagatu Magma Mixing Granite in the East Kunlun Mountains—Evidence from Zircon U-Pb Dating.Acta Geologica Sinica, 83(7):1000-1010 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-DZXE200907009.htm [53] Troll, V.R., Schmincke, H.U., 2002.Magma Mixing and Crustal Recycling Recorded in Ternary Feldspar from Compositionally Zoned Peralkaline Ignimbrite'A', Gran Canaria, Canary Islands.Journal of Petrology, 43(2):243-270. https://doi.org/10.1093/petrology/43.2.243 [54] Tsuchiyama, A., 1985.Dissolution Kinetics of Plagioclase in the Melt of the System Diopside-Albite-Anorthite, and Origin of Dusty Plagioclase in Andesites.Contributions to Mineralogy and Petrology, 89(1):1-16. https://doi.org/10.1007/BF01177585 [55] Vernon, R.H.1984.Microgranitoid Enclaves in Granites-Globules of Hybrid Magma Quenched in a Plutonic Environment.Nature, 309(5967):438-439. https://doi.org/ 10.1038/309438a0 [56] Viccaro, M., Giacomoni, P.P., Ferlito, C., et al., 2010.Dynamics of Magma Supply at Mt. Etna Volcano (Southern Italy) as Revealed by Textural and Compositional Features of Plagioclase Phenocrysts.Lithos, 116(1-2):77-91. https://doi.org/10.1016/j.lithos.2009.12.012 [57] Wang, D.Z., Xie, L., 2008.Magma Mingling:Evidence from Enclaves.Geological Journal of China Universities, 14(1):16-21 (in Chinese with English abstract). http://d.old.wanfangdata.com.cn/Periodical/gxdzxb200801002 [58] Weinberg, R.F., 2006.Melt Segregation Structures in Granitic Plutons.Geology, 34(4):305-308. https://doi.org/10.1130/G22406.1 [59] White, A.J.R., Chappell, B.W., 1983.Granitoid Types and Their Distribution in the Lachlan Fold Belt, Southeastern Australia.Geological Society of America Memoirs, 159(12):21-34. https://doi.org/10.1130/MEM159-p21 [60] White, R.V., Tarney, J., Kerr, A.C., et al., 1999.Modification of an Oceanic Plateau, Aruba, Dutch Caribbean:Implications for the Generation of Continental Crust.Lithos, 46(1):43-68.https://doi.org/10.1016/S0024-4937 (98) 00061-9 doi: 10.1016/S0024-4937(98)00061-9 [61] Wiebe, R.A., Jellinek, A.M., Markley, M.J., et al., 2007.Steep Schlieren and Associated Enclaves in the Vinalhaven Granite, Maine:Possible Indicators for Granite Rheology.Contributions to Mineralogy and Petrology, 153(2):121-138.https://doi.org/0.1007/s00410-006-0142-z doi: 10.1007/s00410-006-0142-z [62] Wiebe, R.A., Smith, D., Sturm, M., et al., 1997.Enclaves in the Cadillac Mountain Granite (Coastal Maine):Samples of Hybrid Magma from the Base of the Chamber.Journal of Petrology, 38(3):393-423. https://doi.org/10.1093/petroj/38.3.393 [63] Xu, Z.Q., Li, H.B., Yang, J.S., 2006.An Orogenic Plateau-The Orogenic Collage and Orogenic Types of the Qinghai-Tibet Plateau.Earth Science Frontiers, 13(4):1-17 (in Chinese with English abstract). [64] Yin, H.F., Zhang, K.X., 1997.Characteristics of the Eastern Kunlun Orogenic Belt.Earth Science, 22(4):339-342 (in Chinese with English abstract). http://d.old.wanfangdata.com.cn/Periodical/dzlp201803019 [65] Yuan, W.M., Mo, X.X., Yu, X.H., et al., 2000.The Record of Indosinian Tectonic Setting from the Granotoid of Eastern Kunlun Mountains.Geological Reviews, 46(2):203-211 (in Chinese with English abstract). http://d.old.wanfangdata.com.cn/Periodical/OA000006772 [66] Zhai, M.G., 2017.Granites:Leading Study Issue for Continental Evolution.Acta Petrologica Sinica, 33(5):1369-1380 (in Chinese with English abstract). http://d.old.wanfangdata.com.cn/Periodical/kwysdqhxtb2008z1082 [67] Zhang, G., 2012.Research on Geological Characteristics, Ages and Geological Significance of the Halagatu Granitic Rocks in East Segment of the East Kunlun Orogen (Dissertation).Chang'an University, Xi'an (in Chinese with English abstract). [68] Zhang, W., Zhou, H.W., Zhu, Y.H., et al., 2016.The Evolution of Triassic Granites Associated with Mineralization within East Kunlun Orogenic Belt:Evidence from the Petrology, Geochemistry and Zircon U-Pb Geochronology of the Mohexiala Pluton.Earth Science, 41(8):1334-1348 (in Chinese with English abstract). https://doi.org/10.3799/dqkx.2016.520 [69] Zhang, Y.F., Pei, X.Z., Ding, S.P., et al., 2010.LA-ICP-MS Zircon U-Pb Age of Quartz Diorite at the Kekesha Area of Dulan Couty, Eastern Section of the East Kunlun Orogenic Belt, China and Its Significance.Geological Bulletin of China, 29(1):79-85 (in Chinese with English abstract). [70] Zhao, F.F., Sun, F.Y., Liu, J.L., 2017.Zircon U-Pb Geochronology and Geochemistry of the Gneissic Granodiorite in Manite Area from East Kunlun, with Implications for Geodynamic Setting.Earth Science, 42(6):927-940, 1044 (in Chinese with English abstract). https://doi.org/10.3799/dqkx.2017.073 [71] 陈国超, 2014.东昆仑造山带(东段)晚古生代-早中生代花岗质岩石特征、成因及地质意义(博士学位论文).西安: 长安大学. http://www.wanfangdata.com.cn/details/detail.do?_type=degree&id=D558915 [72] 陈国超, 裴先治, 李瑞保, 等, 2013a.东昆仑洪水川地区科科鄂阿龙岩体锆石U-Pb年代学、地球化学及其地质意义.地质学报, 87(2): 178-196. http://d.old.wanfangdata.com.cn/Periodical/dizhixb201302004 [73] 陈国超, 裴先治, 李瑞保, 等, 2013b.东昆仑造山带晚三叠世岩浆混合作用:以和勒冈希里克特花岗闪长岩体为例.中国地质, 40(4): 1044-1065. http://d.old.wanfangdata.com.cn/Periodical/zgdizhi201304005 [74] 陈国超, 裴先治, 李瑞保, 等, 2013c.东昆仑造山带东段南缘和勒冈希里克特花岗岩体时代、成因及其构造意义.地质学报, 87(10):1525-1541. http://d.old.wanfangdata.com.cn/Periodical/dizhixb201310004 [75] 陈国超, 裴先治, 李瑞保, 等, 2016.东昆仑东段香加南山花岗岩基的岩浆混合成因:来自镁铁质微粒包体的证据.地学前缘, 23(4): 226-240. http://d.old.wanfangdata.com.cn/Periodical/dxqy201604019 [76] 陈国超, 裴先治, 李瑞保, 等, 2017a.东昆仑东段香加南山花岗岩基中加鲁河中基性岩体形成时代、成因及其地质意义.大地构造与成矿学, 41(6): 1097-1115. http://d.old.wanfangdata.com.cn/Periodical/ddgzyckx201706008 [77] 陈国超, 裴先治, 李瑞保, 等, 2017b.东昆仑东段加鲁河中基性岩体环石英捕虏晶角闪石和黑云母矿物学特征及其对岩浆混合过程的约束.地学前缘, 24(6): 10-24. http://d.old.wanfangdata.com.cn/Periodical/dxqy201706002 [78] 陈国超, 裴先治, 李瑞保, 等, 2017c.东昆仑东段香加南山花岗岩基斜长石成分组成与岩浆演化和混合作用.地质学报, 91(12): 2651-2666. http://d.old.wanfangdata.com.cn/Periodical/dizhixb201712005 [79] 陈加杰, 付乐兵, 魏俊浩, 等, 2016.东昆仑沟里地区晚奥陶世花岗闪长岩地球化学特征及其对原特提斯洋演化的制约.地球科学, 41(11): 1863-1882. http://www.earth-science.net/WebPage/Article.aspx?id=3384 [80] 董申保, 田伟, 2007.花岗岩研究的反思.高校地质学报, 13(3): 353-361. doi: 10.3969/j.issn.1006-7493.2007.03.005 [81] 郭正府, 邓晋福, 许志琴, 等, 1998.青藏东昆仑晚古生代末-中生代中酸性火成岩与陆内造山过程.现代地质, 12(3): 345-352. http://www.cnki.com.cn/Article/CJFDTotal-XDDZ803.006.htm [82] 姜常义, 安三元, 1984.论火成岩中钙质角闪石的化学组成特征及其岩石学意义.矿物岩石, 4(3): 1-9. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=QK000004313450 [83] 李瑞保, 2012.东昆仑造山带(东段)晚古生代-早中生代造山作用研究(博士学位论文).西安: 长安大学. http://cdmd.cnki.com.cn/Article/CDMD-10710-1013017279.htm [84] 李原鸿, 黄方, 于慧敏, 等, 2016.加勒比海小安德列斯岛弧Kick'em Jenny海底火山岩的斜长石成分环带:示踪大洋岛弧岩浆房的演化.岩石学报, 32(2): 605-616. http://d.old.wanfangdata.com.cn/Periodical/ysxb98201602022 [85] 林文蔚, 彭丽君, 1994.由电子探针分析数据估算角闪石、黑云母中的Fe3+、Fe2+.长春地质学院学报, 24(2): 155-162. http://www.cnki.com.cn/Article/CJFDTotal-CCDZ402.004.htm [86] 罗照华, 邓晋福, 曹永清, 等, 1999.青海省东昆仑地区晚古生代-早中生代火山活动与区域构造演化.现代地质, 13(1): 51-56. doi: 10.1038-ajg.2011.100/ [87] 莫宣学, 罗照华, 邓晋福, 等, 2007.东昆仑造山带花岗岩及地壳生长.高校地质学报, 13(3): 403-414. doi: 10.3969/j.issn.1006-7493.2007.03.010 [88] 裴先治, 胡楠, 刘成军, 等, 2015.东昆仑南缘哥日卓托地区马尔争组砂岩碎屑组成、地球化学特征与物源构造环境分析.地质论评, 61(2): 307-323. http://d.old.wanfangdata.com.cn/Periodical/dzlp201502006 [89] 施彬, 朱云海, 钟增球, 等, 2016.东昆仑黑海地区加里东期过铝质花岗岩岩石学、地球化学特征及地质意义.地球科学, 41(1): 35-54. http://www.earth-science.net/WebPage/Article.aspx?id=3217 [90] 孙雨, 裴先治, 丁仨平, 等, 2009.东昆仑哈拉尕吐岩浆混合花岗岩:来自锆石U-Pb年代学的证据.地质学报, 83(7): 1000-1010. doi: 10.3321/j.issn:0001-5717.2009.07.008 [91] 覃锋, 徐晓霞, 罗照华, 2006.北京房山岩体形成过程中的岩浆混合作用证据.岩石学报, 22(12): 2957-2970. http://d.old.wanfangdata.com.cn/Periodical/ysxb98200612013 [92] 王德滋, 谢磊, 2008.岩浆混合作用:来自岩石包体的证据.高校地质学报, 14(1): 16-21. doi: 10.3969/j.issn.1006-7493.2008.01.002 [93] 许志琴, 李海兵, 杨经绥, 2006.造山的高原——青藏高原巨型造山拼贴体和造山类型.地学前缘, 13(4): 1-17. doi: 10.3321/j.issn:1005-2321.2006.04.002 [94] 殷鸿福, 张克信, 1997.东昆仑造山带的一些特点.地球科学, 22(4): 339-342. doi: 10.3321/j.issn:1000-2383.1997.04.001 [95] 袁万明, 莫宣学, 喻学惠, 等, 2000.东昆仑印支期区域构造背景的花岗岩记录.地质论评, 46(2): 203-211. doi: 10.3321/j.issn:0371-5736.2000.02.012 [96] 翟明国, 2017.花岗岩:大陆地质研究的突破口以及若干关键科学问题——"岩石学报"花岗岩专辑代序.岩石学报, 33(5): 1369-1380. http://d.old.wanfangdata.com.cn/Periodical/cckjdxxb201706016 [97] 张刚, 2012.东昆仑造山带东段哈拉尕吐花岗岩体地质特征、形成时代及地质意义(硕士学位论文).西安: 长安大学. http://www.wanfangdata.com.cn/details/detail.do?_type=degree&id=D235914 [98] 张炜, 周汉文, 朱云海, 等, 2016.东昆仑与成矿有关的三叠纪花岗岩演化:基于莫河下拉岩体岩石学、地球化学和锆石U-Pb年代学的证据.地球科学, 41(8): 1334-1348. http://www.earth-science.net/WebPage/Article.aspx?id=3341 [99] 张亚峰, 裴先治, 丁仨平, 等, 2010.东昆仑都兰县可可沙地区加里东期石英闪长岩锆石LA-ICP-MS U-Pb年龄及其意义.地质通报, 29(1): 79-85. doi: 10.3969/j.issn.1671-2552.2010.01.010 [100] 赵菲菲, 孙丰月, 刘金龙, 2017.东昆仑马尼特地区片麻状花岗闪长岩锆石U-Pb年代学、地球化学及其构造背景.地球科学, 42(6): 927-940. http://www.earth-science.net/WebPage/Article.aspx?id=3588