• 中国出版政府奖提名奖

    中国百强科技报刊

    湖北出版政府奖

    中国高校百佳科技期刊

    中国最美期刊

    留言板

    尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

    姓名
    邮箱
    手机号码
    标题
    留言内容
    验证码

    大别山北缘商城岩体SHRIMP锆石U-Pb年龄、地球化学及地质意义

    黄丹峰 卢欣祥 罗照华 宋要武 吕国营

    黄丹峰, 卢欣祥, 罗照华, 宋要武, 吕国营, 2019. 大别山北缘商城岩体SHRIMP锆石U-Pb年龄、地球化学及地质意义. 地球科学, 44(11): 3829-3844. doi: 10.3799/dqkx.2018.558
    引用本文: 黄丹峰, 卢欣祥, 罗照华, 宋要武, 吕国营, 2019. 大别山北缘商城岩体SHRIMP锆石U-Pb年龄、地球化学及地质意义. 地球科学, 44(11): 3829-3844. doi: 10.3799/dqkx.2018.558
    Huang Danfeng, Lu Xinxiang, Luo Zhaohua, Song Yaowu, Lü Guoying, 2019. Zircon SHRIMP U-Pb Age, Geochemical Characteristics and Geological Implications of Shangcheng Pluton in the Northern Margin of Dabie Mountain. Earth Science, 44(11): 3829-3844. doi: 10.3799/dqkx.2018.558
    Citation: Huang Danfeng, Lu Xinxiang, Luo Zhaohua, Song Yaowu, Lü Guoying, 2019. Zircon SHRIMP U-Pb Age, Geochemical Characteristics and Geological Implications of Shangcheng Pluton in the Northern Margin of Dabie Mountain. Earth Science, 44(11): 3829-3844. doi: 10.3799/dqkx.2018.558

    大别山北缘商城岩体SHRIMP锆石U-Pb年龄、地球化学及地质意义

    doi: 10.3799/dqkx.2018.558
    基金项目: 

    河南省自然科学基金项目 182300410106

    国家重点研发计划项目 2016YFC0600504-02

    中国地质调查局项目 121201004000160901-18

    详细信息
      作者简介:

      黄丹峰(1985-), 男, 硕士, 工程师, 从事矿产勘查和相关研究工作

    • 中图分类号: P581

    Zircon SHRIMP U-Pb Age, Geochemical Characteristics and Geological Implications of Shangcheng Pluton in the Northern Margin of Dabie Mountain

    • 摘要: 商城岩体位于大别造山带北淮阳火山岩带中段,被早白垩世金刚台组火山岩不整合覆盖,厘定其侵位时间和成因对于揭示大别造山带晚中生代构造演化具有重要意义.对岩体进行SHRIMP锆石U-Pb测年和岩石地球化学研究,岩体中心相肆顾墩单元巨斑状二长花岗岩15个锆石测点中有13个测点的206Pb/238U年龄加权平均值为130.2±1.7 Ma,代表商城岩体最终就位的时间.商城岩体具有高含量的Al2O3、Sr,高Sr/Y值和低含量的Y、Yb,轻重稀土分馏显著,无Eu异常(δEu=0.90~1.05),发育Nb、Ta负异常,具有埃达克质岩石的地球化学特征.商城岩体3个岩相单元从早到晚长英质矿物结晶压力降低,侵位深度显著变浅,为挤压作用下主动侵位的结果.商城岩体是大别造山带早白垩世岩浆爆发的产物,岩浆起源于加厚下地壳的部分熔融,从商城岩体开始侵位至金刚台组火山岩喷发,该区地壳经历快速的隆升和剥蚀,而这一过程正是两者地球化学属性所反映的加厚下地壳减薄的浅表响应,130 Ma是大别造山带晚中生代构造体制转换的时间.

       

    • 图  1  商城岩体地质简图

      a.据刘振宏等(1994)修改;b.大别造山带构造分区图(张宏飞等,2001).1.第四系;2.陈鹏组火山岩;3.金刚台组火山岩;4.商城岩体肆顾墩单元;5.商城岩体石鼓洼单元;6.商城岩体楼房湾单元;7.吴河岩体;8.程香铺单元;9.中侏罗统朱集组;10.上石炭统双石头组;11.上石炭统杨小庄组;12.上中侏罗统胡油坊组;13.泥盆系龟山组;14.泥盆系南湾组;15.下古生界商城群;16.断裂;17.角度不整合;18.涌动接触关系;19.测年样品位置及编号;20.侵入岩体;21.火山岩;22.北淮阳构造带;23.北大别构造带;24.南大别超高压变质单元;25.宿松高压变质单元;26.绿帘石蓝片岩单元;27.红安高压变质杂岩带;28.桐柏变质杂岩

      Fig.  1.  Simplified geological map of the Shangcheng pluton

      图  2  商城岩体岩石照片

      a.商城岩体被金刚台组火山熔岩侵入;b.楼房湾单元中粒石英闪长岩发育片麻理;c.石鼓洼单元斑状粗粒花岗闪长岩;d.肆顾墩单元巨斑状粗粒黑云二长花岗岩

      Fig.  2.  Photographs of the Shangcheng pluton

      图  3  商城岩体锆石CL图像

      图中白线段长度为100 μm

      Fig.  3.  CL images of sample B06 from the Shangcheng pluton

      图  4  商城岩体锆石U-Pb年龄谐和图

      Fig.  4.  U-Pb concordia diagram for zircons from Shangcheng granite samples

      图  5  商城岩体(Na2O+K2O)-SiO2图解

      Middlemost(1994)

      Fig.  5.  SiO2-(Na2O+K2O) classification diagram for the Shangcheng granite samples

      图  6  商城岩体K2O-SiO2

      Rollinson(1993)

      Fig.  6.  SiO2-K2O diagram for the Shangcheng granite samples

      图  7  商城岩体稀土元素球粒陨石标准化图

      球粒陨石标数据引自Boynton(1984)

      Fig.  7.  Chondrite-normalized REE patterns for the Shangcheng pluton

      图  8  商城岩体微量元素蛛网图

      原始地幔数据引自Sun and MacDonough(1989)

      Fig.  8.  Spider diagram for the Shangcheng pluton

      图  9  商城岩体CIPW标准矿物Q-Ab-Or-H2O相图

      a.所有数据投点; b.各单元样品平均值投点;底图转邓晋福(1987);单位为GPa

      Fig.  9.  Triangle diagrams of CIPW Q-Ab-Or-H2O for the Shangcheng pluton

      图  10  Sr/Y-Y图解

      底图据Defant(1990);金刚台组火山岩数据黄丹峰(2010)

      Fig.  10.  Diagram of Sr/Y-Y

      表  1  商城岩体锆石SHRIMP U⁃Pb分析结果

      Table  1.   Zircon SHRIMP U⁃Pb dating results of sample B06 from the Shangcheng pluton

      点号 U
      (10-6
      Th
      (10-6
      232Th/
      238U
      206Pb*
      (10-6
      206Pbc
      (%)
      207Pb*/
      206Pb*
      ±% 207Pb*/
      235U
      ±% 206Pb*/
      238U
      ±% 年龄(Ma)
      206Pb/
      238U
      207Pb/
      206Pb
      B06-1.1 166 109 0.68 2.89 0.00 0.057 5 7.3 0.161 0 7.7 0.020 28 2.5 129.5 ± 3.3 512 ±160
      B06-2.1 344 205 0.62 6.12 0.00 0.051 0 4.2 0.145 9 4.8 0.020 74 2.4 132.3 ± 3.1 242 ± 96
      B06-3.1 356 250 0.73 6.06 0.27 0.051 0 4.8 0.139 2 5.4 0.019 80 2.3 126.4 ± 2.9 240 ±110
      B06-4.1 484 352 0.75 8.63 0.90 0.042 6 9.2 0.121 0 9.5 0.020 55 2.3 131.1 ± 3.0 -189 ±230
      B06-5.1 191 130 0.70 3.44 0.00 0.048 8 5.4 0.140 8 5.9 0.020 92 2.5 133.5 ± 3.3 139 ±130
      B06-6.1 347 224 0.67 6.23 0.28 0.049 7 5.1 0.143 2 5.6 0.020 87 2.3 133.2 ± 3.1 183 ±120
      B06-7.1 410 299 0.75 7.41 0.32 0.050 6 4.2 0.146 3 4.8 0.020 98 2.3 133.9 ± 3.1 221 ± 97
      B06-8.1 200 244 1.26 59.0 0.00 0.117 6 1.2 5.580 0 2.6 0.344 00 2.3 1 906 ±38 1 921 ± 21
      B06-8.2 23 66 2.94 7.36 0.23 0.122 6 4.1 6.270 0 5.1 0.371 00 3.0 2 033 ±53 1 994 ± 72
      B06-9.1 309 207 0.69 5.44 0.62 0.047 7 6.4 0.134 3 6.9 0.020 39 2.4 130.2 ± 3.1 87 ±150
      B06-10.1 183 120 0.68 3.32 1.86 0.036 1 14 0.103 0 15 0.020 70 2.6 132.1 ± 3.4 -623 ±390
      B06-11.1 335 268 0.83 5.77 0.27 0.047 5 5.2 0.131 2 5.7 0.020 00 2.4 127.7 ± 3.0 77 ±120
      B06-12.1 175 137 0.81 3.16 1.09 0.050 0 7.0 0.143 0 7.4 0.020 77 2.5 132.5 ± 3.3 194 ±160
      B06-13.1 474 590 1.29 7.91 0.48 0.048 5 7.2 0.129 4 7.5 0.019 33 2.4 123.5 ± 2.9 125 ±170
      B06-14.1 335 256 0.79 5.88 0.74 0.045 6 5.4 0.127 6 6.0 0.020 29 2.8 129.5 ± 3.5 -23 ±130
        注:应用实测的204Pb校正普通铅;Pbc和Pb*分别为普通铅和放射成因铅;样品的标准校正误差均为0.44%.
      下载: 导出CSV

      表  2  商城岩体主量元素结果(%)

      Table  2.   Major element analyses of the Shangcheng pluton

      楼房湾单元 石鼓洼单元 肆顾墩单元
      序号 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19
      编号 SC-01 SC-05 SC-09 2174 2175 2178 2173 SC-02 SC-04 SC-14 2176 2177 2184 SC-06 SC-08 2171 2185 2188 2172
      SiO2 68.28 63.34 68.66 68.22 61.72 69.12 67.74 70.16 68.66 70.26 69.38 69.14 70.36 69.44 69.38 70.98 70.62 70.50 71.26
      Al2O3 14.67 14.70 14.69 15.47 15.38 15.09 15.36 14.57 14.88 14.74 14.92 15.19 14.89 13.78 14.23 14.92 15.26 13.70 14.7
      TiO2 0.53 1.09 0.62 0.58 0.48 0.48 0.45 0.46 0.57 0.42 0.42 0.44 0.42 0.35 0.48 0.35 0.40 0.32 0.32
      Fe2O3 1.56 2.40 1.78 1.79 1.63 1.45 1.57 1.29 1.45 1.04 1.63 1.57 2.16 1.12 1.47 1.11 0.57 1.13 1.57
      FeO 1.51 2.73 1.56 1.59 1.74 1.50 1.66 1.29 1.44 1.20 1.47 1.52 1.40 1.41 1.48 1.14 1.76 1.66 1.25
      CaO 2.46 3.26 2.30 1.93 2.36 1.87 2.63 2.14 2.14 1.95 1.80 3.12 1.24 1.91 2.22 1.66 1.43 1.80 1.50
      MgO 1.17 1.91 1.07 1.48 1.29 1.16 1.48 0.82 0.88 0.77 1.48 1.39 1.25 1.024 1.34 0.79 1.88 1.48 0.76
      K2O 4.04 3.24 3.62 3.35 3.40 3.65 3.50 3.24 3.77 3.58 3.40 3.65 3.70 3.88 3.69 4.70 3.75 3.55 3.50
      Na2O 4.39 4.06 4.48 4.75 4.60 4.40 4.05 4.56 4.39 4.52 4.20 4.45 4.75 3.98 3.82 4.00 4.05 3.60 4.10
      MnO 0.05 0.06 0.04 0.04 0.04 0.02 0.04 0.04 0.04 0.03 0.04 0.02 0.08 0.04 0.04 0.02 0.02 0.04 0.04
      P2O5 0.31 0.48 0.38 0.17 0.19 0.18 0.21 0.26 0.33 0.22 0.12 0.13 0.12 0.22 0.23 0.12 0.13 0.22 0.08
      H2O+ 0.31 1.44 0.28 0.98 1.28 0.53 0.61 0.32 0.58 0.44 0.73 0.35 0.33 1.28 1.13 0.37 0.46 1.35 0.80
      H2O- 0.10 0.15 0.09 0.17 0.16 0.15 0.13 0.22
      灼失 0.50 2.15 0.49 0.98 1.28 0.53 0.57 0.79 0.62 4.73 0.35 0.33 2.46 1.55 0.46 1.35
      总和 99.47 99.42 99.70 100.4 100.1 99.45 99.90 99.40 99.33 99.35 99.59 99.97 100.7 99.61 99.94 100.2 100.32 99.35 99.88
      Na2O+K2O 8.43 7.30 8.10 8.10 8.00 8.05 7.55 7.80 8.16 8.10 7.60 8.10 8.45 7.86 7.51 8.70 8.00 7.15 7.60
      里特曼指数 2.81 2.62 2.56 2.60 3.42 2.48 2.30 2.24 2.59 2.41 2.19 2.51 2.61 2.34 2.14 2.71 2.20 1.86 2.04
      Mg# 42 41 38 45 42 42 46 37 36 39 47 46 40 43 46 40 60 50 34
        注:序号为4~7、11~13、16~19的数据刘文斌等(2003),Mg#=100×Mg2+/[Mg2++Fe2+ (全铁) ].
      下载: 导出CSV

      表  3  商城岩体微量元素含量(10-6

      Table  3.   Trace element analyses of the Shangcheng pluton

      楼房湾单元 石鼓洼单元 肆顾墩单元
      序号 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19
      编号 SC-01 SC-05 SC-09 2174 2175 2178 2173 SC-02 SC-04 SC-14 2176 2177 2184 SC-06 SC-08 2171 2185 2188 2172
      Sc 3.58 6.52 4.86 3.48 3.78 3.50 4.59 5.36
      V 51.7 91.7 54.4 55.1 49.3 50.3 63.7 34.3 42.1 31.7 48.3 53.9 34.7 37.9 47.8 36.1 40.5 37.7 39.2
      Cr 5.50 13.3 8.50 8.50 7.00 7.00 13.0 3.80 4.80 6.70 5.70 7.10 8.50 10.6 15.3 11.5 17.4 13.2 16.6
      Co 5.83 11.72 7.02 3.60 3.20 2.30 5.00 5.06 5.34 4.80 1.70 1.50 3.20 5.74 6.59 4.1 6.7 5.2 3.2
      Ni 3.10 8.48 4.50 6.90 6.60 6.80 9.60 2.95 3.62 3.63 5.50 5.00 4.50 5.73 6.86 3.9 7.5 6.2 4.6
      Ga 21.2 19.9 22.8 21.9 21.0 21.4 17.6 17.5
      Rb 77.9 50.4 78.7 85.3 81.1 91.0 103 48.5 41.9 72.0 92.8 86.1 101 106 112 110 88.7 90.3 113
      Sr 869 1063 924 889 346 897 737 529 519 652 811 850 598 339 523 478 449 423 607
      Y 11.1 23.0 12.1 9.00 8.20 7.40 9.88 8.79 10.6 8.71 7.50 6.71 5.90 8.47 13.6 5.07 8.30 7.25 5.33
      Zr 222 302 264 213 195 176 192 133 135 166 177 216 129 137 166 169 122 119 176
      Nb 10.8 15.6 13.01 8.80 7.60 6.90 11.7 9.27 10.3 8.04 6.50 9.50 6.00 4.92 11.5 8.30 12.4 8.70 7.90
      Cs 1.24 1.10 1.75 1.50 1.05 2.03 1.87 2.94
      Ba 1 491 2 033 1 648 1 961 1 788 2 102 1 459 1 254 1 645 1 482 1 778 1 786 1 398 665 831 1 807 394 493 2 045
      Hf 12.5 18.1 14.6 7.86 8.51 8.95 7.88 9.32
      Ta 0.67 1.01 0.84 0.61 0.64 0.51 0.35 0.82
      Pb 21.2 17.2 18.9 20.4 19.9 22.8 24.1 21.7
      Th 11.0 9.42 13.2 8.10 8.50 6.80 9.80 11.5 10.9 9.87 8.60 13.5 9.30 16.6 17.8 9.30 11.1 10.9 10.9
      U 1.63 1.15 1.22 1.50 1.25 1.25 1.83 0.98 1.20 1.34 1.70 1.00 2.33 2.67 3.91 2.17 2.00 2.50 1.50
        注:序号为4~7、11~13、16~19的数据刘文斌等(2003).
      下载: 导出CSV

      表  4  商城岩体稀土元素含量(10-6

      Table  4.   Rare earth element analyses of the Shangcheng pluton

      楼房湾单元 石鼓洼单元 肆顾墩单元
      序号 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19
      编号 SC-01 SC-05 SC-09 2174 2175 2178 2173 SC-02 SC-04 SC-14 2176 2177 2184 SC-06 SC-08 2171 2185 2188 2172
      La 64.1 95.9 71.5 50.7 51.5 47.5 40.1 62.2 65.9 68.2 44.5 48.3 34.9 32.8 78.3 36.4 33.4 31.6 38.7
      Ce 110 193 132 92.4 97.7 85.6 71.7 110 121 118 81.2 85.7 62.8 59.6 114 66.7 56.7 52.1 70.7
      Pr 12.1 23.2 15.1 9.63 9.85 9.01 7.38 12.2 14.0 13.0 8.66 9.14 5.95 6.32 11.15 6.76 5.91 4.78 7.08
      Nd 42.6 86.2 53.2 37.6 39.1 36.0 28.9 42.7 49.1 45.0 33.2 34.7 23.7 22.0 37.0 26.5 22.7 17.9 26.4
      Sm 6.21 13.2 8.00 6.09 6.44 5.66 4.85 6.28 7.27 6.38 5.53 5.83 3.72 3.41 5.46 4.41 3.75 2.93 4.28
      Eu 1.64 3.29 2.02 1.49 1.54 1.41 1.23 1.65 1.87 1.73 1.30 1.36 0.96 0.96 1.38 1.12 0.92 0.72 1.00
      Gd 4.32 8.90 5.06 3.75 4.11 3.43 3.33 4.03 4.742 3.98 3.38 3.53 2.26 2.514 3.797 2.69 2.61 2.06 2.62
      Tb 0.55 1.15 0.65 0.45 0.51 0.35 0.44 0.48 0.58 0.49 0.39 0.41 0.23 0.35 0.52 0.34 0.35 0.26 0.34
      Dy 2.56 5.40 2.88 1.97 2.15 1.78 2.07 2.11 2.58 2.09 1.73 1.83 1.14 1.75 2.73 1.50 1.79 1.39 1.28
      Ho 0.40 0.87 0.44 0.34 0.38 0.30 0.39 0.32 0.385 0.30 0.30 0.32 0.18 0.316 0.48 0.25 0.34 0.27 0.22
      Er 1.09 2.27 1.19 0.82 0.89 0.73 0.96 0.82 1.01 0.85 0.73 0.77 0.48 0.91 1.41 0.64 0.96 0.75 0.55
      Tm 0.13 0.27 0.14 0.11 0.13 0.09 0.13 0.09 0.12 0.10 0.10 0.11 0.06 0.13 0.18 0.09 0.15 0.13 0.07
      Yb 0.86 1.79 0.90 0.64 0.68 0.51 0.83 0.64 0.72 0.63 0.58 0.60 0.39 0.93 1.33 0.55 0.98 0.81 0.42
      Lu 0.12 0.25 0.11 0.09 0.10 0.08 0.14 0.08 0.10 0.08 0.09 0.09 0.05 0.134 0.20 0.08 0.16 0.13 0.06
      ∑REE 247 435 293 206 215 193 162 244 269 261 182 193 137 132 258 148 131 116 154
      (La/Yb)N 50.6 36.2 53.3 53.4 51.1 62.8 32.6 65.1 61.4 72.5 51.7 54.2 60.3 23.8 39.6 44.6 23.0 26.3 62.2
      δEu 0.97 0.93 0.97 0.95 0.92 0.98 0.94 1.00 0.97 1.05 0.92 0.92 1.01 1.00 0.93 0.99 0.90 0.90 0.91
      Sr/Y 78.5 46.2 76.3 98.8 42.2 121 74.5 60.2 48.8 74.9 108 127 101 40.0 38.6 94.3 54.0 58.4 114
      Y/Yb 12.9 12.8 13.5 14.1 12.1 14.5 11.9 13.7 14.7 13.8 12.9 11.2 15.1 9.10 10.2 9.20 8.50 9.00 12.7
      (Ho/Yb)N 1.35 1.41 1.42 1.55 1.63 1.71 1.37 1.46 1.55 1.39 1.51 1.55 1.34 0.99 1.04 1.32 1.01 0.97 1.52
      (Gd/Lu)N 4.59 4.51 5.52 5.18 5.11 5.33 2.96 6.26 6.02 6.11 4.67 4.88 5.62 2.33 2.37 4.18 2.03 1.97 5.43
        注:序号为4~7、11~13、16~19的数据刘文斌等(2003),δEu=EuN/(SmN*×GdN)1/2.
      下载: 导出CSV
    • [1] Ames, L., Zhou, G. Z., Xiong, B. C., 1996. Geochronology and Isotopic Character of Ultrahigh-Pressure Metamorphism with Implications for Collision of the Sino-Korean and Yangtze Cratons, Central China. Tectonics, 15(2):472-489. https://doi.org/10.1029/95tc02552
      [2] Bierman, P. R., 1994. Using In-Situ Produced Cosmogenic Isotopes to Estimate Rates of Landscape Evolution:A Review from the Geomorphic Perspective. Journal of Geophysical Research:Solid Earth, 99(B7):13885-13896. https://doi.org/10.1029/94jb00459
      [3] Boynton, W.V., 1984. Cosmochemistry of the Rare Earth Elements. In: Henderson, P., ed., Rare Earth Element Geochemistry. Elsevier Science Publishers, Armsterdam, 63-114.
      [4] Compston, W., Williams, I. S., Meyer, C., 1984. U-Pb Geochronology of Zircons from Lunar Breccia 73217 Using a Sensitive High Mass-Resolution Ion Microprobe. Journal of Geophysical Research, 89(S02):525-534. https://doi.org/10.1029/jb089is02p0b525
      [5] Cong, B.L., Wang, Q.C., Zhai, M.G., 1996. Ultrahigh-Pressure Metamorphic Rocks in Dabie-Sulu Region. Science Press, Beijing, 1-285.
      [6] Defant, M. J., Drummond, M. S., 1990. Derivation of Some Modern Arc Magmas by Melting of Young Subducted Lithosphere. Nature, 347(6294):662-665. https://doi.org/10.1038/347662a0
      [7] Deng, J.F., 1987. Phase Equilibrium of Rocks and Petrogenesis. Wuhan College Press of Geology, Wuhan (in Chinese).
      [8] Deng, X., Wu, K. B., Yang, K. G., 2013. Emplacement and Deformation of Shigujian Syntectonic Granite in Central Part of the Dabie Orogen:Implications for Tectonic Regime Transformation. Science China Earth Sciences, 56(6):980-992. https://doi.org/10.1007/s11430-013-4613-6
      [9] Gao, S., Luo, T. C., Zhang, B. R., et al., 1998. Chemical Composition of the Continental Crust as Revealed by Studies in East China. Geochimica et Cosmochimica Acta, 62(11):1959-1975. https://doi.org/10.1016/s0016-7037(98)00121-5
      [10] Gao, X.Y., Zhao, T.P., Shi, X.B., et al., 2013. Geochemisty and Petrogenesis of the Early Cretaceous Shangcheng and Daquandian Granites in the North Dabie Mountains. Geochimica, 42(4):307-339 (in Chinese with English abstract). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=dqhx201304002
      [11] Glazner, A. F., Bartley, J. M., Coleman, D. S., et al., 2004. Are Plutons Assembled over Millions of Years by Amalgamation from Small Magma Chambers?. GSA Today, 14(4):4-11. https://doi.org/10.1130/1052-5173(2004)014<0004:apaomo>2.0.co; 2 doi: 10.1130/1052-5173(2004)014<0004:apaomo>2.0.co;2
      [12] Hacker, B. R., Ratschbacher, L., Webb, L., et al., 1998. U/Pb Zircon Ages Constrain the Architecture of the Ultrahigh-Pressure Qinling-Dabie Orogen, China. Earth and Planetary Science Letters, 161(1/2/3/4):215-230. https://doi.org/10.1016/s0012-821x(98)00152-6
      [13] Hacker, B. R., Wang, Q. C., 1995. Ar/Ar Geochronology of Ultrahigh-Pressure Metamorphism in Central China. Tectonics, 14(4):994-1006. https://doi.org/10.1029/95tc00932
      [14] He, X. H., Zhong, H., Zhao, Z. F., et al., 2018. U-Pb Geochronology, Elemental and Sr-Nd Isotopic Geochemistry of the Houyaoyu Granite Porphyrites:Implication for the Genesis of Early Cretaceous Felsic Intrusions in East Qinling. Journal of Earth Science, 29(4):920-938. https://doi.org/10.1007/s12583-018-0788-2
      [15] He, Y.S., Li, S.G., Hoefs, J., et al., 2011. Post-Collisional Granitoids from the Dabie Orogeny:New Evidence for Partial Melting of a Thickened Continental Crust. Geochimica et Cosmochimica Acta, 75(13):3815-3838. https://doi.org/10.1016/j.gca.2011.04.011
      [16] Heimsath, A. M., Dietrich, W.E., Nishiizumi, K., et al., 1999. Cosmogenic Nuclides, Topography, and the Spatial Variation of Soil Depth. Geomorphology, 27(1/2):151-172. https://doi.org/10.1016/s0169-555x(98)00095-6
      [17] Hou, H.X., Zhang, D.H, Zhang, R.Z., 2016. The Chronology, Geochemical Characteristics and Geological Significance of the Mesozoic Shiyaogou Hidden Granite at the East Qinling. Earth Science, 41 (10):1665-1682 (in Chinese with English abstract). https://doi.org/10.3799/dqkx.2016.122.
      [18] Huang, D.F., 2010. Late Mesozoic Magmatic Records for Transition of Tectonic Regimes of Dabie Orogenic Belt(Dissertation). China University of Geosciences, Beijing (in Chinese with English abstract).
      [19] Huang, D.F., Luo, Z.H., Lu, X.X., 2010.Zircon SHRIMP U-Pb Age and Tectonic Implications of Jingangtai Volcanic Rocks in North Margin of Dabie Mountains. Earth Science Frontiers, 17(1):1-10 (in Chinese with English abstract). http://d.old.wanfangdata.com.cn/Periodical/dxqy201001001
      [20] Huang, H., Xue, H.M., 2012. LA-ICP-MS Zircon U-Pb Ages of Early Cretaceous Volcanic Rocks from Jingangtai Formation in Beihuaiyang Belt on the Northern Margin of the Dabie Orogen and Their Geological Implications. Acta Petrologica et Mineralogica, 31 (3):371-381 (in Chinese with English abstract). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=yskwxzz201203007
      [21] Hutton, D. H. W., 1988. Granite Emplacement Mechanisms and Tectonic Controls:Inferences from Deformation Studies. Earth and Environmental Science Transactions of the Royal Society of Edinburgh, 79(2/3):245-255. https://doi.org/10.1017/s0263593300014255
      [22] Li, S. G., He, Y. S., Wang, S. J., 2013. Process and Mechanism of Mountain-Root Removal of the Dabie Orogen:Constraints from Geochronology and Geochemistry of Post-Collisional Igneous Rocks. Chinese Science Bulletin, 58(23):2316-2322 (in Chinese). doi: 10.1360/csb2013-58-23-2316
      [23] Li, S. G., Jagoutz, E., Chen, Y. Z., et al., 2000. Sm-Nd and Rb-Sr Isotopic Chronology and Cooling History of Ultrahigh Pressure Metamorphic Rocks and Their Country Rocks at Shuanghe in the Dabie Mountains, Central China. Geochimica et Cosmochimica Acta, 64(6):1077-1093. https://doi.org/10.1016/s0016-7037(99)00319-1
      [24] Li, S.G., Li, H.M., Chen, Y.Z., et al., 1997. Chronology of Ultrahigh-Pressure Metamorphism in the Dabie Mountains and Su-Lu Terrene:Ⅱ. U-Pb Isotope System of Zircon. Science in China (Series D:Earth Sciences), 27(3):200-206 (in Chinese). http://www.cnki.com.cn/Article/CJFDTotal-JDXG199606003.htm
      [25] Li, S. G., Xiao, Y. L., Liou, D. L., et al., 1993. Collision of the North China and Yangtze Blocks and Formation of Coesite-Bearing Eclogites:Timing and Processes. Chemical Geology, 109(1/2/3/4):89-111. https://doi.org/10.1016/0009-2541(93)90063-o
      [26] Li, X.H., Gao, X.Y., Zhang, Z.H., et al., 2005. LA-ICP-MS Zircon U-Pb Dating of Volcanic Rocks from the Jingangtai Formation and Stratigraphic Comparison. Geotectonica et Metallogenia, 39(4):718-728 (in Chinese with English abstract). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=ddgzyckx201504014
      [27] Li, X. H., Liu, X. M., Liu, Y. S., et al., 2015. Accuracy of LA-ICPMS Zircon U-Pb Age Determination:An Inter-Laboratory Comparison. Science China Earth Sciences, 58(10):1722-1730. https://doi.org/10.1007/s11430-015-5110-x
      [28] Litvinovsky, B. A., Steele, I. M., Wickham, S. M., 2000. Silicic Magma Formation in Overthickened Crust:Melting of Charnockite and Leucogranite at 15, 20 and 25 Kbar. Journal of Petrology, 41(5):717-737. https://doi.org/10.1093/petrology/41.5.717
      [29] Liu, Q.Q., Shao, Y.J., Chen, X.M., et al., 2016. Petrogeochemistry, Geochronology and Hf Isotopes of the Monzogranite from Xinxian, Southern Region in Henan Province. Earth Science, 41 (8):1275-1294 (in Chinese with English abstract). https://doi.org/10.3799/dqkx.2016.507.
      [30] Liu, W.B., Liu, Z.H., Zhang, S.J., 2003. Geological and Geochemical Features of Shangcheng Granite Body and Its Genetic Implication, Henan. Geology and Mineral Resources of South China, (4):17-23 (in Chinese with English abstract). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=hndzykc200304003
      [31] Liu, W.C., Sun, S.P., Li, J.Z., 1997. Volcanic Geology and Facies Tectonics of Late Jurassic Jingangtai Formation at Northern Foot of Dabie Mountains. Geoscience, 11(2):237-243 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-XDDZ702.016.htm
      [32] Liu, Z.H., Peng, S.M., Bai, C.J., 1994. The Characteristics of Petrology of Shangcheng Rock Body and Its Genesis. Henan Geology, 12(2):110-118 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-HNDD402.004.htm
      [33] Ma, C.Q., Yang, K.G., Ming, H.L., et al., 2004. The Timing of Tectonic Transition from Compression to Extension in Dabieshan:Evidence from Mesozoic Granites. Science China Earth Sciences, 47(5):453-462. http://www.cqvip.com/Main/Detail.aspx?id=1001210793
      [34] Ma, Q., Zheng, J. P., Xu, Y. G., et al., 2015. Are Continental "Adakites" Derived from Thickened or Foundered Lower Crust?. Earth and Planetary Science Letters, 419(2):125-133. https://doi.org/10.1016/j.epsl.2015.02.036
      [35] Middlemost, E. A. K., 1994. Naming Materials in the Magma/Igneous Rock System. Earth-Science Reviews, 37(3/4):215-224. https://doi.org/10.1016/0012-8252(94)90029-9
      [36] Petford, N., Cruden, A. R., McCaffrey, K. J. W., et al., 2000. Granite Magma Formation, Transport and Emplacement in the Earth's Crust. Nature, 408(6813):669-673. https://doi.org/10.1038/35047000
      [37] Pitcher, W.S., 1997. The Nature and Origin of Granite (2nd Edition). Chapman & Hall, London, 386.
      [38] Qian, Q., Hermann, J., 2013. Partial Melting of Lower Crust at 10-15 Kbar:Constraints on Adakite and TTG Formation. Contributions to Mineralogy and Petrology, 165(6):1195-1224. https://doi.org/10.1007/s00410-013-0854-9
      [39] Rapp, R. P., Watson, E. B., Miller, C. F., 1991. Partial Melting of Amphibolite/Eclogite and the Origin of Archean Trondhjemites and Tonalites. Precambrian Research, 51(1/2/3/4):1-25. https://doi.org/10.1016/0301-9268(91)90092-o
      [40] Rollinson, H.R., 1993. Using Geochemical Data:Evaluation, Presentation, Interpretation. Longman Scientific & Technical Limited, Singpore, 1-352.
      [41] Rowley, D. B., Xue, F., Tucker, R. D., et al., 1997. Ages of Ultrahigh Pressure Metamorphism and Protolith Orthogneisses from the Eastern Dabie Shan:U/Pb Zircon Geochronology. Earth and Planetary Science Letters, 151(3/4):191-203. https://doi.org/10.1016/s0012-821x(97)81848-1
      [42] Rudnick, R. L., Fountain, D. M., 1995. Nature and Composition of the Continental Crust:A Lower Crustal Perspective. Reviews of Geophysics, 33(3):267-310. https://doi.org/10.1029/95rg01302
      [43] Sen, C., Dunn, T., 1994. Dehydration Melting of a Basaltic Composition Amphibolite at 1.5 and 2.0 GPa Implications for the Origin of Adakites. Contributions to Mineralogy and Petrology, 117(4):394-409. https://doi.org/10.1007/bf00307273
      [44] Song, B., Zhang, Y.H., Wan, Y.S., et al., 2002. Mount Making and Procedure of the SHRIMP Dating. Geological Review, 48 (Suppl.):26-30 (in Chinese with English abstract. http://en.cnki.com.cn/Article_en/CJFDTOTAL-DZLP2002S1006.htm
      [45] Springer, W., Seck, H. A., 1997. Partial Fusion of Basic Granulites at 5 to 15 Kbar:Implications for the Origin of TTG Magmas. Contributions to Mineralogy and Petrology, 127(1/2):30-45. https://doi.org/10.1007/s004100050263
      [46] Sun, S. S., McDonough, W. F., 1989. Chemical and Isotopic Systematics of Oceanic Basalts:Implications for Mantle Composition and Processes. Geological Society, London, Special Publications, 42(1):313-345. https://doi.org/10.1144/gsl.sp.1989.042.01.19
      [47] Tong, J.S., 2008. Magmatism and Regional Tectonic Evolution of Orogenic Belt, on the Example of Dabie Orogen and Its Beighbouring Area(Dissertation). China University of Geosciences, Beijing (in Chinese with English abstract).
      [48] Wang, C. Y., Zhang, X. K., Chen, B. Y., et al., 1997. Crustal Structure of Dabieshan Orogenic Belt. Science China Earth Sciences, 40(5):456-462. https://doi.org/10.1007/bf02877609
      [49] Wang, Q., Wyman, D. A., Xu, J. F., et al., 2007. Early Cretaceous Adakitic Granites in the Northern Dabie Complex, Central China:Implications for Partial Melting and Delamination of Thickened Lower Crust. Geochimica et Cosmochimica Acta, 71(10):2609-2636. https://doi.org/10.1016/j.gca.2007.03.008
      [50] Wang, Y. S., Wang, H. F., Sheng, Y., et al., 2013. Early Cretaceous Uplift History of the Dabie Orogenic Belt:Evidence from Pluton Emplacement Depths. Science China Earth Sciences, 57(5):1129-1140. https://doi.org/10.1007/s11430-013-4659-5
      [51] Wu, Y.B., Zheng, Y.F., 2004.Minerageny of Zircon and Its Constraints on Interpretation of U-Pb Age. Chinese Science Bulietin, 49(16):1589-1604 (in Chinese). doi: 10.1360/csb2004-49-16-1589
      [52] Xie, Z., Zheng, Y. F., Zhao, Z. F., et al., 2006. Mineral Isotope Evidence for the Contemporaneous Process of Mesozoic Granite Emplacement and Gneiss Metamorphism in the Dabie Orogen. Chemical Geology, 231(3):214-235. https://doi.org/10.1016/j.chemgeo.2006.01.028
      [53] Xiong, X.L., Han, J.W., Wu, J.H., 2007. Phase Equilibrium and Trace Element Partitioning between Minerals and Melt in the Metabasalt System:Constraints on the Formation Conditions of TTG/Adakite Magmas and the Growth of Early Continental Crust. Earth Science Frontiers, 14(2):151-160 (in Chinese with English abstract). http://www.cnki.com.cn/Article/CJFDTotal-DXQY200702011.htm
      [54] Xiong, X. L., Liu, X. C., Zhu, Z. M., et al., 2011. Adakitic Rocks and Destruction of the North China Craton:Evidence from Experimental Petrology and Geochemistry. Science China Earth Sciences, 54(6):858-870. https://doi.org/10.1007/s11430-010-4167-9
      [55] Xu, H. J., Ma, C. Q., Ye, K., 2007. Early Cretaceous Granitoids and Their Implications for the Collapse of the Dabie Orogen, Eastern China:SHRIMP Zircon U-Pb Dating and Geochemistry. Chemical Geology, 240(3/4):238-259. https://doi.org/10.1016/j.chemgeo.2007.02.018
      [56] Xue, F., Rowley, D. B., Tucker, R. D., et al., 1997. U-Pb Zircon Ages of Granitoid Rocks in the North Dabie Complex, Eastern Dabie Shan, China. The Journal of Geology, 105(6):744-753. https://doi.org/10.1086/515984
      [57] Zhai, M.G., Cong, B.L., 1996. Geotectonics of Sulu-Dabie Metamorphic Rocks. Science in China (Series D:Earth Sciences), 26(3):258-264 (in Chinese).
      [58] Zhang, C., Ma, C.Q., 2008.Large-Scale Late Mesozoic Magmatism in the Dabie Mountain:Constraints from Zircon U-Pb Dating and Hf Isotopes. Journal of Mineralogy and Petrology, 28(4):71-79 (in Chinese with English abstract).
      [59] Zhang, H.F., Gao, S., Zhang, B. R., et al., 2001. Pb Isotopic Study on Crustal Structure of Dabie Mountains, Central China. Geochimica, 30(4):395-401 (in Chinese with English abstract). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=dqhx200104014
      [60] Zhang, P., Zhang, A.M., Liu, W.C., 1997. Petrochemisty, Geochemistry and Tectonic Setting of Late Jurassic Volcanic Rocks of Jingangtai Formation in Beihuaiyang Area. Geoscience, 11(2):244-252 (in Chinese with English abstract). http://www.en.cnki.com.cn/Article_en/CJFDTOTAL-XDDZ702.017.htm
      [61] Zhang, Q., Wang, Y., Qian, Q., et al., 2001. The Characteristics and Tectonic-Metallogenic Significances of the Adakites in Yanshan Period from Eastern China. Acta Petrologica Sinica, 17(2):236-244 (in Chinese with English abstract). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=ysxb98200102008
      [62] Zhao, X.F., Li, J.W., Ma, C.Q., et al., 2007. Geochronology and Geochemistry of the Gubei Granodiorite, North Huaiyang:Implications for Mesozoic Tectonic Transition of the Dabie Orogen. Acta Petrologica Sinica, 23(6):1392-1402 (in Chinese with English abstract). http://cn.bing.com/academic/profile?id=d853cbab448873b6dad4a0e698f82d63&encoded=0&v=paper_preview&mkt=zh-cn
      [63] Zhao, Z.F., Zheng, Y.F., Wei, C.S., et al., 2004. Zircon U-Pb Age, Element and Oxygen Isotope Geochemistry of Mesozoic Intermediate-Felsic Rocks in the Dabie Mountains. Acta Petrologica Sinica, 20(5):1151-1174 (in Chinese with English abstract). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=ysxb98200405012
      [64] Zhao, Z. F., Zheng, Y. F., Wei, C. S., et al., 2007. Post-Collisional Granitoids from the Dabie Orogen in China:Zircon U-Pb Age, Element and O Isotope Evidence for Recycling of Subducted Continental Crust. Lithos, 93(3/4):248-272. https://doi.org/10.1016/j.lithos.2006.03.067
      [65] Zhu, J., Wu, C. X., Peng, S. G., et al., 2018. Geochronology and Geochemistry of Volcanic Rocks from the Huangchengshan Volcanogenic Epithermal Silver Deposit, Dabie Orogen, China:Implications for Tectonic Setting. Earth Science, 43(7):2404-2419 (in Chinese with English abstract). https://doi.org/10.3799/dqkx.2018.187
      [66] 邓晋福, 1987.岩石相平衡与岩石成因.武汉:武汉地质学院出版社.
      [67] 高昕宇, 赵太平, 施小斌, 等, 2013.大别山北麓早白垩世商城和达权店岩体的地球化学特征与成因.地球化学, 42(4):307-339. doi: 10.3969/j.issn.0379-1726.2013.04.002
      [68] 侯红星, 张德会, 张荣臻, 2016.东秦岭中生代石瑶沟隐伏花岗岩年代学、地球化学特征及地质意义.地球科学, 41 (10):1665-1682. doi: 10.3799/dqkx.2016.122
      [69] 黄丹峰, 2010.大别造山带晚中生代构造体制转换的火成岩证据(硕士学位论文).北京: 中国地质大学.
      [70] 黄丹峰, 罗照华, 卢欣祥, 2010.大别山北缘金刚台火山岩SHRIMP锆石U-Pb年龄及构造意义.地学前缘, 17(1):1-10. http://d.old.wanfangdata.com.cn/Periodical/dxqy201001001
      [71] 黄皓, 薛怀民, 2012.北淮阳早白垩世金刚台组火山岩LA-ICP-MS锆石U-Pb年龄及其地质意义.岩石矿物学杂志, 31 (3):371-381. doi: 10.3969/j.issn.1000-6524.2012.03.007
      [72] 李曙光, 何永胜, 王水炯, 2013.大别造山带的去山根过程与机制:碰撞后岩浆岩的年代学和地球化学制约.科学通报, 58(23):2316-2322. http://www.cqvip.com/qk/94252x/201323/46920167.html
      [73] 李曙光, 李惠民, 陈移之, 等, 1997.大别山-苏鲁地体超高压变质年代学:Ⅱ.锆石U-Pb同位素体系.中国科学(D辑:地球科学), 27(3):200-206. http://www.cnki.com.cn/article/cjfd1996-jdxk199603008.htm
      [74] 李鑫浩, 高昕宇, 张忠慧, 等, 2015.北淮阳早白垩世金刚台组火山岩LA-ICP-MS锆石U-Pb年龄及地层对比.大地构造与成矿学, 39(4):718-728. http://d.old.wanfangdata.com.cn/Periodical/ddgzyckx201504014
      [75] 刘清泉, 邵拥军, 陈昕梦, 等, 2016.豫南新县岩体地球化学、年代学和Hf同位素特征及地质意义.地球科学, 41(8):1275-1294. doi: 10.3799/dqkx.2016.507
      [76] 刘文斌, 刘振宏, 张世佼, 2003.河南商城岩体地质地球化学特征及成因意义.华南地质与矿产, (4):17-23. doi: 10.3969/j.issn.1007-3701.2003.04.003
      [77] 刘文灿, 孙善平, 李家振, 1997.大别山北麓晚侏罗世金刚台组火山岩地质及岩相构造特征.现代地质, 11(2):237-243. http://www.cnki.com.cn/Article/CJFDTotal-XDDZ702.016.htm
      [78] 刘振宏, 彭松民, 白朝军, 1994.商城岩体岩石学特征及其成因探讨.河南地质, 12(2):110-118. http://www.cnki.com.cn/Article/CJFDTotal-HNDD402.004.htm
      [79] 宋彪, 张玉海, 万渝生, 等, 2002.锆石SHRIMP样品靶制作, 年龄测定及有关现象讨论.地质论评, 48(增刊):26-30. http://d.old.wanfangdata.com.cn/Periodical/OA000005931
      [80] 童劲松, 2008.造山带岩浆作用与区域构造演化——以大别造山带及其邻区为例(博士学位论文).北京: 中国地质大学. http://d.wanfangdata.com.cn/Thesis/Y1785219
      [81] 吴元保, 郑永飞, 2004.锆石成因矿物学研究及其对U-Pb年龄解释的制约.科学通报, 49(16):1589-1604. doi: 10.3321/j.issn:0023-074X.2004.16.002
      [82] 熊小林, 韩江伟, 吴金花, 2007.变质玄武岩体系相平衡及矿物-熔体微量元素分配:限定TTG/埃达克岩形成条件和大陆壳生长模型.地学前缘, 14 (2):151-160. http://d.old.wanfangdata.com.cn/Periodical/dxqy200702012
      [83] 翟明国, 从柏林, 1996.苏鲁-大别山变质带岩石大地构造学.中国科学(D辑:地球科学), 26(3):258-264. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=QK199600261341
      [84] 张超, 马昌前, 2008.大别山晚中生代巨量岩浆活动的启动:花岗岩锆石U-Pb年龄和Hf同位素制约.矿物岩石, 28(4):71-79. doi: 10.3969/j.issn.1001-6872.2008.04.013
      [85] 张宏飞, 高山, 张本仁, 等, 2001.大别山地壳结构的Pb同位素地球化学示踪.地球化学, 30 (4):395-401. doi: 10.3321/j.issn:0379-1726.2001.04.014
      [86] 张鹏, 张爱民, 刘文灿, 1997.北淮阳晚侏罗世金刚台火山岩岩石化学和地球化学特征及构造环境.现代地质, 11(2):244-252. http://www.cqvip.com/Main/Detail.aspx?id=2491333
      [87] 张旗, 王焰, 钱青, 等, 2001.中国东部燕山期埃达克岩的特征及其构造-成矿意义.岩石学报, 17 (2):236-244. http://d.old.wanfangdata.com.cn/Periodical/ysxb98200102008
      [88] 赵新福, 李建威, 马昌前, 等, 2007.北淮阳古碑花岗闪长岩侵位时代及地球化学特征:对大别山中生代构造体制转换的启示.岩石学报, 23(6):1392-1402. doi: 10.3969/j.issn.1000-0569.2007.06.015
      [89] 赵子福, 郑永飞, 魏春生, 等, 2004.大别山中生代中酸性岩浆岩锆石U-Pb定年、元素和氧同位素地球化学研究.岩石学报, 20(5):1151-1174. http://d.old.wanfangdata.com.cn/Periodical/ysxb98200405012
      [90] 朱江, 吴昌雄, 彭三国, 等. 2018.大别山皇城山银矿区及外围陈棚组火山岩U-Pb年代学、地球化学和成矿构造背景.地球科学, 43(7):2404-2419. doi: 10.3799/dqkx.2018.187
    • 加载中
    图(10) / 表(4)
    计量
    • 文章访问数:  2635
    • HTML全文浏览量:  1096
    • PDF下载量:  65
    • 被引次数: 0
    出版历程
    • 收稿日期:  2018-12-08
    • 刊出日期:  2019-11-15

    目录

      /

      返回文章
      返回