• 中国出版政府奖提名奖

    中国百强科技报刊

    湖北出版政府奖

    中国高校百佳科技期刊

    中国最美期刊

    留言板

    尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

    姓名
    邮箱
    手机号码
    标题
    留言内容
    验证码

    微量磷灰石中磷酸根氧同位素分析方法

    杜勇 朱园园 宋虎跃 王宇航 宋海军 邱海鸥 童金南

    杜勇, 朱园园, 宋虎跃, 王宇航, 宋海军, 邱海鸥, 童金南, 2019. 微量磷灰石中磷酸根氧同位素分析方法. 地球科学, 44(2): 456-462. doi: 10.3799/dqkx.2018.557
    引用本文: 杜勇, 朱园园, 宋虎跃, 王宇航, 宋海军, 邱海鸥, 童金南, 2019. 微量磷灰石中磷酸根氧同位素分析方法. 地球科学, 44(2): 456-462. doi: 10.3799/dqkx.2018.557
    Du Yong, Zhu Yunayuan, Song Huyue, Wang Yuhang, Song Haijun, Qiu Haiou, Tong Jinnan, 2019. Analytical Method for δ18O of Phosphate in Trace Apatite. Earth Science, 44(2): 456-462. doi: 10.3799/dqkx.2018.557
    Citation: Du Yong, Zhu Yunayuan, Song Huyue, Wang Yuhang, Song Haijun, Qiu Haiou, Tong Jinnan, 2019. Analytical Method for δ18O of Phosphate in Trace Apatite. Earth Science, 44(2): 456-462. doi: 10.3799/dqkx.2018.557

    微量磷灰石中磷酸根氧同位素分析方法

    doi: 10.3799/dqkx.2018.557
    基金项目: 

    中国地质大学大型仪器设备改造项目 DY-201617

    生物地质与环境地质国家重点实验室自主课题 GBL11603

    国家自然基金项目 41530104

    生物地质与环境地质国家重点实验室自主课题 GKZ14Y663

    国家自然基金项目 41661134047

    国家自然基金项目 41402302

    详细信息
      作者简介:

      杜勇(1993-), 硕士研究生, 主要从事磷酸盐氧同位素分析方法研究

      通讯作者:

      宋虎跃

    • 中图分类号: P597

    Analytical Method for δ18O of Phosphate in Trace Apatite

    • 摘要: 生物磷灰石壳体的磷酸根氧同位素组成是重建古温度理想指标之一,在古环境研究中具有重要意义.针对牙形石等磷灰石量极少的情况,稳定可靠的前处理方法是分析其δ18OPO4的重要保障,目前仅有少数国外实验室已建立了相关提取分析方法.结合这些方法的优缺点对分析步骤进行改进优化,建立了微量磷灰石的磷酸根氧同位素分析方法,通过硝酸消解磷灰石并除去非磷酸根氧,利用KF溶液沉淀法分离Ca2+,采用氨缓冲溶液形式调节pH,并加入AgNO3溶液以氨挥发法将PO43-转化成Ag3PO4结晶分离,气体稳定同位素质谱仪在线测定Ag3PO4氧同位素组成.结果表明,方法全流程未产生明显的氧同位素分馏,样品最低仅需0.2 mg,标准偏差小于0.2‰(1σ),与目前国际报道的分析精度一致.

       

    • 图  1  PO43-提取流程图

      Fig.  1.  Flow chart of PO43- extraction from apatite

      图  2  仪器分析原理图

      Fig.  2.  Diagram of TC/EA-CF-IRMS

      图  3  不同样品量时NBS 120c和NBS 694的PO43-回收率

      Fig.  3.  Average PO43- yields of NBS 120c and NBS 694 under different sample amount

      图  4  NBS 120c和NBS 694在不同PO43-回收率下的δ18OPO4

      Fig.  4.  δ18OPO4 values of NBS 120c and NBS 694 under different PO43- yields

      图  5  本方法均相沉淀得到的磷酸银晶体(偏光显微镜)

      Fig.  5.  Ag3PO4 crystals precipitated by homogeneous precipitation method

      图  6  不同实验室对NBS 120c的δ18OPO4提取测试结果对比

      1.Vennemann et al.(2002): 22.09‰±0.51‰; 2.LaPorte et al.(2009): 22.4‰±0.3‰; 3.Joachimski et al.(2009): 22.4‰±0.16‰; 4.Halas et al.(2011): 21.8‰±0.2‰; 5.Rosenau et al.(2014): 21.8‰±0.4‰; 6.Griffin et al.(2015): 22.5‰±0.3‰; 7.本文: 21.9‰±0.17‰(精度1σ)

      Fig.  6.  δ18OPO4values of NBS 120c from different laboratories and different methodsδ18OPO4values of NBS 120c from different laboratories and different methods

      表  1  微量磷灰石中δ18OPO4分析的TC/EA法比较

      Table  1.   Comparison of TC/EA method for δ18OPO4 analysis of trace apatite

      样品量(mg)1σ(‰)回收率(%)流程简介主要优缺点参考文献
      20
      0.51
      (氟化法0.09)
      -NaOCl除有机物,NaOH除腐殖酸,HF溶液溶解磷灰石并沉淀Ca2+,KOH中和溶液,银氨溶液回收PO43-.流程简单;要求样品量大,精度低,HF对仪器有损害Vennemann et al., 2002
      0.10~0.450.1585~970.5 mol/L HNO3溶解磷灰石,阳离子交换树脂除Ca2+,浓氨水中和,AgNO3回收PO43-.精度高,可分析44Ca、稀土元素等;使用阳离子交换树脂费时费力LaPorte et al., 2009
      0.5~1.00.1592~992.0 mol/L HNO3溶解磷灰石,KOH中和,HF沉淀Ca2+,银氨溶液回收PO43-.精度高;中和工作量大Joachimski et al., 2009
      0.3~0.80.10~0.4020~850.5 mol/L HNO3溶解磷灰石,KOH中和,KF沉淀Ca2+,银氨溶液回收PO43-.方法完整系统;溶液量低难操作,回收率不稳定
      Griffin et al., 2015
      下载: 导出CSV

      表  2  相关的仪器、材料和试剂

      Table  2.   Relative instrument, materials and reagents

      类别仪器、材料与试剂
      测试仪器Flash HT元素分析仪+Delta V气体稳定同位素比值质谱仪(Thermo Fisher公司)
      前处理设备材料高速离心机;隔膜真空泵抽滤设备一套;移液枪(1 mL);PFA烧杯(5 mL);离心管(2 mL);玻璃纤维滤膜(0.45 μm);阳离子交换树脂(AG50W-X12)
      试剂硝酸、硝酸银、氨水、氢氧化钾和氟化钾(分析纯)
      标准样品磷灰石标样NBS 120c(NIST);磷灰石标样NBS 694(NIST);磷酸银氧同位素标样(Elemental Microanalysis公司)
      实际样品大唇犀、三趾马和羚羊牙齿磷灰石(200目)
      下载: 导出CSV

      表  3  不同消解温度对PO43-回收率的影响

      Table  3.   PO43- yields in different digestion temperature

      样品名称PO43-回收率(±1σ,n=3,%)
      20 ℃70 ℃150 ℃
      NBS 120c93.9±2.194.0±4.193.3±2.2
      NBS 69492.8±0.893.2±1.192.9±1.6
      下载: 导出CSV

      表  4  不同除Ca2+方法对NBS 120c PO43-回收率和δ18OPO4的影响

      Table  4.   Average PO43- yields and δ18OPO4 values of NBS 120c under different Ca2+ removing options

      不除Ca2+(n=3)使用树脂(n=6)硝酸+KF(n=6)后加KF(n=6)
      PO43-回收率(±1σ, %)45.9±14.389.1±1.593.4±2.291.4±1.9
      δ18OVSMOW(±1σ, ‰)21.88±0.3122.04±0.1521.91±0.1721.97±0.14
      下载: 导出CSV

      表  5  不同pH调节方法对NBS 120c PO43-回收率和δ18OPO4的影响

      Table  5.   Average PO43- yields and δ18OPO4values of NBS 120c under different pH adjustment methods

      2 mol/L KOH2 mol/L氨水
      回收率(±1σ, n=6, %)91.0±1.793.4±2.2
      δ18OVSMOW(±1σ, n=6, ‰)21.70±0.2121.91±0.17
      下载: 导出CSV

      表  6  不同结晶温度和时间对NBS 120c PO43-回收率的影响

      Table  6.   Average PO43- yields of NBS 120c over different precipitation temperatures and times

      温度回收率(±1σ,n=3,%)
      12 h24 h48 h1周
      20 ℃(室温)27.6±4.979.9±2.491.8±0.9(93.1±2.2)%
      50 ℃55.0±3.393.6±2.192.7±1.9-
      下载: 导出CSV

      表  7  实际磷灰石样品的PO43-回收率和δ18OPO4

      Table  7.   The average PO43- yields and δ18OPO4 values of practical samples

      样品名称样品来源回收率(±1σ, n=5, %)δ18OVSMOW(±1σ, n=5, ‰)
      DCX1大唇犀195.6±2.510.14±0.19
      DCX2大唇犀296.4±1.910.08±0.18
      SZM三趾马89.3±2.79.18±0.13
      LY羚羊82.5±3.09.62±0.18
      下载: 导出CSV
    • [1] Amiot, R., Wang, X., Zhou, Z., et al., 2015.Environment and Ecology of East Asian Dinosaurs during the Early Cretaceous Inferred from Stable Oxygen and Carbon Isotopes in Apatite.Journal of Asian Earth Sciences, 98:358-370.doi: 10.1016/j.jseaes.2014.11.032
      [2] Chen, J., Shen, S.Z., Li, X.H., et al., 2016.High-Resolution SIMS Oxygen Isotope Analysis on Conodont Apatite from South China and Implications for the End-Permian Mass Extinction.Palaeogeography, Palaeoclimatology, Palaeoecology, 448(448):26-38.doi: 10.1016/j.palaeo.2015.11.025
      [3] Elrick, M., Witzke, B., 2016.Orbital-Scale Glacio-Eustasy in the Middle Devonian Detected Using Oxygen Isotopes of Conodont Apatite:Implications for Long-Term Greenhouse-Icehouse Climatic Transitions.Palaeogeography, Palaeoclimatology, Palaeoecology, 445:50-59.doi: 10.1016/j.palaeo.2015.12.019
      [4] Gehler, A., Gingerich, P.D., Pack, A., 2016.Temperature and Atmospheric CO2 Concentration Estimates through the PETM Using Triple Oxygen Isotope Analysis of Mammalian Bioapatite.Proceedings of the National Academy of Sciences, 113(28):7739-7744.doi: 10.1073/pnas.1518116113
      [5] Griffin, J.M., Montanez, I.P., Matthews, J.A., 2015.A Refined Protocol for δ18OPO4 Analysis of Conodont Bioapatite.Chemical Geology, 417:11-20.doi: 10.1016/j.chemgeo.2015.08.025
      [6] Halas, S., Skrzypek, G., Meier-Augenstein, W., et al., 2011.Inter-Laboratory Calibration of New Silver Orthophosphate Comparison Materials for the Stable Oxygen Isotope Analysis of Phosphates.Rapid Communications in Mass Spectrometry Rcm., 25(5):579-584.doi: 10.1002/rcm.4892
      [7] Joachimski, M.M., Breisig, S., Buggisch, W., et al., 2009.Devonian Climate and Reef Evolution:Insights from Oxygen Isotopes in Apatite.Earth & Planetary Science Letters, 284(3-4):599-609.doi: 10.1016/j.epsl.2009.05.028
      [8] LaPorte, D.F., Holmden, C., Patterson, W.P., 2009.Oxygen Isotope Analysis of Phosphate:Improved Precision Using TC/EA CF-IRMS+.Journal of Mass Spectrometry, 44(6):879-890.doi: 10.1002/jms.1549
      [9] O'Neil, J.R., Vennemann, T.W., Mckenzie, W.F., 2003.Effects of Speciation on Equilibrium Fractionations and Rates of Oxygen Isotope Exchange between (PO4) aq, and H2O.Geochimica et Cosmochimica Acta, 67(17):3135-3144.oi:10.1016/s0016-7037(02)00970-5 doi: 10.1016/S0016-7037(02)00970-5
      [10] Pucéat, E., Joachimski, M.M., Bouilloux, A., et al., 2010.Revised Phosphate-Water Fractionation Equation Reassessing Paleotemperatures Derived from Biogenic Apatite.Earth & Planetary Science Letters, 298(1-2):135-142.doi: 10.1016/j.epsl.2010.07.034
      [11] Qiao, P.J., Zhu, W.L., Shao, L., et al., 2015.Carbonate Stable Isotope Stratigraphy of Well Xike-1, Xisha Islands.Earth Science, 40(4):725-732 (in Chinese with English abstract). http://d.old.wanfangdata.com.cn/Periodical/dqkx201504014
      [12] Quinton, P.C., Macleod, K.G., 2014.Oxygen Isotopes from Conodont Apatite of the Midcontinent, US:Implications for Late Ordovician Climate Evolution.Palaeogeography, Palaeoclimatology, Palaeoecology, 404(3):57-66.doi: 10.1016/j.palaeo.2014.03.036
      [13] Rosenau, N.A., Tabor, N.J., Herrmann, A.D., 2014.Assessing the Paleoenvironmental Significance of Middle-Late Pennsylvanian Conodont Apatite δ18O Values in the Illinois Basin.Palaios, 29(6):250-265.doi: 10.2110/palo.2013.112
      [14] Sun, Y., Joachimski, M.M., Wignall, P.B., et al., 2012.Lethally Hot Temperatures during the Early Triassic Greenhouse.Science, 338(6105):366-370.doi: 10.1126/science.1224126
      [15] Sun, Y.D., Wignall, P.B., Joachimski, M.M., et al., 2016a.Climate Warming, Euxinia and Carbon Isotope Perturbations during the Carnian (Triassic) Crisis in South China.Earth & Planetary Science Letters, 444:88-100.doi: 10.1016/j.epsl.2016.03.037
      [16] Sun, Y.D., Wiedenbeck, M., Joachimski, M.M., 2016b.Chemical and Oxygen Isotope Composition of Gem-Quality Apatites:Implications for Oxygen Isotope Reference Materials for Secondary Ion Mass Spectrometry (SIMS).Chemical Geology, 440:164-178.doi: 10.1016/j.chemgeo.2016.07.013
      [17] Vennemann, T.W., Fricke, H.C., Blake, R.E., 2002.Oxygen Isotope Analysis of Phosphates:A Comparison of Techniques for Analysis of Ag3PO4.Chemical Geology, 185(3-4):321-336.doi: 10.1016/s0009-2541(01)00413-2
      [18] Wang, R., Chen, J.B., Zhao, L.S., et al., 2013.In Situ Oxygen Isotope Analysis of Conodonts by SIMS and Its Application for Paleo-Sea Surface Temperature.Global Geology, 32(4):652-658(in Chinese with English abstract). http://adsabs.harvard.edu/abs/2013agufm.v32c..05z
      [19] Yang, K.H., Yu, X.G., Chu, F.Y., et al., 2016.Environmental Changes in Methane Seeps Recorded by Carbon and Oxygen Isotopes in the Northern South China Sea.Earth Science, 41(9):1206-1215(in Chinese with English abstract). http://www.en.cnki.com.cn/Article_en/CJFDTotal-DQKX201607010.htm
      [20] Zhang, H., Wang, J.N., Zhu, Y.G., et al., 2015.Research and Application of Analytical Technique on δ18Op of Inorganic Phosphate in Soil.Chinese Journal of Analytical Chemistry, 43(2):187-192(in Chinese with English abstract). doi: 10.1016/S1872-2040(15)60806-4
      [21] Zhou, L.Q., Ian, S., Liu, J.H., et al., 2012.Methodology of SHRIMP In-Situ O Isotope Analysis on Conodont.Acta Geologica Sinica, 86(4):611-618(in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-DZXE201204007.htm
      [22] 乔培军, 朱伟林, 邵磊, 等, 2015.西沙群岛西科Ⅰ井碳酸盐岩稳定同位素地层学.地球科学, 40(4):725-732. http://www.earth-science.net/WebPage/Article.aspx?id=3068
      [23] 王润, 陈剑波, 赵来时, 等, 2013.二次离子质谱微区原位牙形石氧同位素分析及其在古海表水温记录中的应用.世界地质, 32(4):652-658. doi: 10.3969/j.issn.1004-5589.2013.04.002
      [24] 杨克红, 于晓果, 初凤友, 等, 2016.南海北部甲烷渗漏系统环境变化的碳、氧同位素记录.地球科学, 41(7):1206-1215. http://www.earth-science.net/WebPage/Article.aspx?id=3329
      [25] 张晗, 王佳妮, 朱永官, 等, 2015.土壤无机磷酸盐中氧同位素分析方法的研究及应用.分析化学, 43(2):187-192. http://d.old.wanfangdata.com.cn/Periodical/fxhx201502005
      [26] 周丽芹, Ian, S., 刘建辉, 等, 2012.牙形石SHRIMP微区原位氧同位素分析方法.地质学报, 86(4):611-618. doi: 10.3969/j.issn.0001-5717.2012.04.007
    • 加载中
    图(6) / 表(7)
    计量
    • 文章访问数:  3678
    • HTML全文浏览量:  1653
    • PDF下载量:  27
    • 被引次数: 0
    出版历程
    • 收稿日期:  2018-12-08
    • 刊出日期:  2019-02-15

    目录

      /

      返回文章
      返回