Sedimentary Forward Simulation and Application of Fan Delta in K Oil Field in Uganda
-
摘要: 乌干达K油田位于Albert盆地,由于钻井数较少,地震资料品质差,沉积储层空间分布预测存在严峻挑战.根据岩心、测井、古生物、重矿物、粒度分析等资料综合分析后认为,乌干达K油田属滨浅湖环境,发育受边界断层控制的近源扇三角洲沉积,物源方向位于油田东南部,以低能长期的水下分流河道牵引流搬运为主.在沉积主控因素定量分析的基础上,将可容纳空间变化、物源供应及沉积物搬运等参数定量表征,并在年代地层框架约束下,通过正演模拟,再现地质历史时期地层沉积演化过程,建立了三维储层砂岩分布概率模型,进一步认识了研究区各层砂体的空间分布特征.将沉积演化模拟的砂岩分布结果转化为三维地质建模的定量控制条件,对沉积相模型进行约束,建立了更符合沉积认识的高精度相控地质模型,实现了扇三角洲储层砂体定量预测与表征.Abstract: Due to the poor quality of seismic data and few wells, it is full of challenge to predict reservoir distribution in K oil field which is located at the south of Albert basin in Uganda. According to the comprehensive analyses of core, well logging, paleontology, heavy minerals and grain size, K oil field in Uganda is a shallow lake environment and developed near the source fan delta controlled by bounding fault. The direction of the sediment source located at southeast of this field and it was supplied by predominant distributary channel traction current in low energy and long term. On the basis of quantitative analysis of sedimentary impact factors, the quantified accommodation space variation, sedimentation supply and sediment transportation were put into sedimentary forward simulation under the control of chronostratigraphic framework to reconstruct stratigraphic evolution progress in geological history. Thus a three-dimension reservoir sand proportion distribution model was constructed to facilitate further understanding the spatial distribution characteristic of the sand in each zone. After transforming the results of sedimentary forward simulation into quantitative constraints for 3D geological modeling to control the facies model, a more accurate geological model which is consistent with the high accuracy of the sedimentary concept is established to predict and characterize the fan delta reservoir sand quantitatively.
-
Key words:
- fan delta /
- reservoir distribution /
- sedimentary forward simulation /
- 3D geological model /
- oil field
-
表 1 乌干达K油田米氏旋回周期与沉积速率估算
Table 1. Milankovitch cycles and sedimentary rate estimation of K oil field, Uganda
周期类型 理论周期(ka) 理论比例 旋回厚度(m) 实际比例 沉积速率(m/ka) 偏心率周期 209 11.06 13.98 10.86 0.067 96 5.08 6.52 5.07 0.068 斜率周期 54 2.85 3.62 2.81 0.067 40 2.14 2.61 2.03 0.065 24 1.25 1.55 1.21 0.065 岁差周期 22 1.18 1.46 1.13 0.065 19 1.00 1.29 1.00 0.068 表 2 乌干达K油田供应速率与供应量估计
Table 2. Supply rate and quantity of K oil field, Uganda
地层 平均厚度(m) 沉积时间(Ma) 时间跨度(Ma) 供应量(km3) 供应速率(km3/Ma) A 25.9 4.22~3.87 0.36 4.2 11.67 B 39.3 4.73~4.22 0.51 6.3 12.35 C 47.0 5.33~4.73 0.60 7.6 12.67 -
[1] Alzaga-Ruiz, H., Granjeon, D., Lopez, M., et al., 2009.Gravitational Collapse and Neogene Sediment Transfer across the Western Margin of the Gulf of Mexico:Insights from Numerical Models.Tectonophysics, 470(1-2):21-41. https://doi.org/ 10.1016/j.tecto.2008.06.017 [2] Benvenuti, M., 2003.Facies Analysis and Tectonic Significance of Lacustrine Fan-Deltaic Successions in the Pliocene-Pleistocene Mugello Basin, Central Italy.Sedimentary Geology, 157(3-4):197-234. https://doi.org/ 10.1016/s0037-0738(02)00234-8 [3] Berger, A., Loutre, M.F., Laskar, J., 1992.Stability of the Astronomical Frequencies over the Earth's History for Paleoclimate Studies.Science, 255(5044):560-566. https://doi.org/ 10.1126/science.255.5044.560 [4] Blair, T.C., 2000.Sedimentology and Progressive Tectonic Unconformities of the Sheetflood-Dominated Hell's Gate Alluvial Fan, Death Valley, California.Sedimentary Geology, 132(3-4):233-262. https://doi.org/ 10.1016/s0037-0738(00)00010-5 [5] Cao, Y.C., Song, L., Wang, J., et al., 2011.Application of Heavy Mineral Data in the Analysis of Sediment Source:A Case Study in the Paleogene Lower Submember of the Third Member of the Liushagang Formation, Weixinan Depression.Acta Sedimentologica Sinica, 29(5):835-841 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-CJXB201105004.htm [6] Chen, C., Sun, Y.M., Jia, A.L., 2006.Development and Application of Geological Knowledge Database for Fan-Delta Front in the Dense Spacing Area.Acta Petrolei Sinica, 27(2):53-57(in Chinese with English abstract). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=syxb200602011 [7] Csato, I., Granjeon, D., Catuneanu, O., et al., 2013.A Three-Dimensional Stratigraphic Model for the Messinian Crisis in the Pannonian Basin, Eastern Hungary.Basin Research, 25(2):121-148. https://doi.org/ 10.1111/j.1365-2117.2012.00553.x [8] Dou, L.R., Wang, J.J., Cheng, D.S., et al., 2004.Geological Conditions and Petroleum Exploration Potential of the Albertine Graben of Uganda.Acta Geologica Sinica (English Edition), 78(4):1002-1010. https://doi.org/ 10.1111/j.1755-6724.2004.tb00222.x [9] Edmonds, D.A., Slingerland, R.L., 2009.Significant Effect of Sediment Cohesion on Delta Morphology.Nature Geoscience, 3(2):105-109. https://doi.org/ 10.1038/ngeo730 [10] Harbaugh, J.W., Bonham, C.G., 1970.Computer Simulation in Geology.John Wiley & Sons, New York. [11] Huang, X., Liu, K.Y., Zou, C.N., et al., 2013.Forward Stratigraphic Modelling of the Depositional Process and Evolution of Shallow Water Deltas in the Poyang Lake, Southern China.Earth Science, 38(5):1005-1013 (in Chinese with English abstract). http://d.old.wanfangdata.com.cn/Periodical/dqkx201305010 [12] Jia, A.L., Mu, L.X., Chen, L., et al., 2000.Approach for Detailed Study of Reservoir Outcrop.Acta Petrolei Sinica, 21(4):105-108 (in Chinese with English abstract). http://en.cnki.com.cn/article_en/cjfdtotal-syxb200004025.htm [13] Laskar, J., Fienga, A., Gastineau, M., et al., 2011.La2010:A New Orbital Solution for the Long-Term Motion of the Earth.Astronomy & Astrophysics, 532:A89. https://doi.org/ 10.1051/0004-6361/201116836 [14] Lü, M., Wang, Y., Xu, W., 2010.An Application of Sedimentation Simulation in Bonaparte Basin.China Offshore Oil and Gas, 22(2):83-90 (in Chinese with English abstract). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=zghsyq-gc201002003 [15] Muravchik, M., Bilmes, A., D'Elia, L., et al., 2014.Alluvial Fan Deposition along a Rift Depocentre Border from the Neuquén Basin, Argentina.Sedimentary Geology, 301:70-89. https://doi.org/ 10.1016/j.sedgeo.2013.12.007 [16] Salles, T., Lopez, S., Eschard, R., et al., 2008.Turbidity Current Modeling on Geological Time Scales.Marine Geology, 248(3-4):127-150. https://doi.org/ 10.1016/j.margeo.2007.10.004 [17] Su, X., Ding, X., Jiang, Z.X., et al., 2012.Using of Multi-Microfossil Proxies for Reconstructing Quantitative Paleo-Water Depth during the Deposit Period of LST of Ess4 in Dongying Depression.Earth Science Frontiers, 19(1):188-199 (in Chinese with English abstract). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=dxqy201201025 [18] Thomas, W., 2001.Gamma-Ray Measurement in the KirchrodeⅠand Ⅱ Boreholes.Palaeogeography, Palaeoclimatology, Palaeoecology, 174:97-105. https://doi.org/ 10.1016/S0031-0182(01)00288-7 [19] Wang, G.Y., Liu, J.P., Jian, X.L., et al., 2016.Characteristics and Genetic Mechanism of Tight Sandstone Reservoirs of Lower Cretaceous in North Yellow Sea Basin.Earth Science, 41(3):523-532 (in Chinese with English abstract). http://www.en.cnki.com.cn/Article_en/CJFDTotal-DQKX201603018.htm [20] Warrlich, G., Bosence, D., Waltham, D., et al., 2008.3D Stratigraphic Forward Modelling for Analysis and Prediction of Carbonate Platform Stratigraphies in Exploration and Production.Marine and Petroleum Geology, 25(1):35-58. https://doi.org/ 10.1016/j.marpetgeo.2007.04.005 [21] Wei, H.T., 2015.Numerical Simulation of Sublacustrine Fan Deposition of Lower Ed2 Formation and Its Application in Northern Liaozhong Depression.Lithologic Reservoirs, 27(5):183-188 (in Chinese with English abstract). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=yxyqc201505031 [22] Wu, S.Y., Liu, J., 2015.Characteristics of Milankovitch Cycle in Eocene Formation, Eastern Depression of the North Yellow Sea Basin.Earth Science, 40(11):1933-1944 (in Chinese with English abstract). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=dqkx201511018 [23] Xu, W., Xie, X.N., 2012.A New Method to Calculate Sedimentary Rates Based on Milankovitch Cycles:A Case Study on Middle Section of 3rd Member of Shahejie Formation in Well Niu 38, Dongying Sag, Bohai Bay Basin.Petroleum Geology & Experiment, 34(2):207-214 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-SYSD201202021.htm [24] Xu, W., Yang, X.L., Li, X., et al., 2015.Milankovitch Cyclostratigraphy of Pliocene in the North Albert Basin, Uganda.Geological Science and Technology Information, 34(1):57-62 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTotal-DZKQ201501009.htm [25] Yang, H., Fu, Q., Qi, Y.L., et al., 2016.The Paleontology Phase Zones and Its Geological Significance on the Late Triassic Yanchang Stage Palaeo-Lacustrine Ordos Basin.Acta Sedimentologica Sinica, 34(4):688-693 (in Chinese with English abstract). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=cjxb201604009 [26] Yang, T., Cao, Y.C., Wang, Y.Z., et al., 2015.Genesis of High-Quality Reservoirs of Fan Delta Front in Lower Part of the Fourth Member of Shahejie Formation in Bonan Subsag.Earth Science, 40(12):2067-2080 (in Chinese with English abstract). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=dqkx201512009 [27] Yang, X.L., Fang, L., Xu, W., et al., 2016.Fan Delta Deposition Evolution of High Pour-Point Oil Reservoir in Albert Rift Basin.Special Oil & Gas Rerservoir, 23(2):18-21 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-TZCZ201602005.htm [28] Yang, X.L., Hu, G.Y., Pang, Y.M., et al., 2015.Retrogradation Shallow Water Delta Sedimentary Model and Reservoir Characteristics in North Area of Albert Lacustrine Basin.China Offshore Oil and Gas, 27(5):55-61, 75 (in Chinese with English abstract). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=zghsyq-gc201505009 [29] Yin, X.D., Huang, W.H., Lu, S.F., et al., 2016.The Connectivity of Reservoir Sand Bodies in the Liaoxi Sag, Bohai Bay Basin:Insights from Three-Dimensional Stratigraphic Forward Modeling.Marine and Petroleum Geology, 77:1081-1094. https://doi.org/ 10.1016/j.marpetgeo.2016.08.00a9 [30] Yin, X.D., Huang, W.H., Wang, P.F., et al., 2017.Sedimentary Evolution of Overlapped Sand Bodies in Terrestrial Faulted Lacustrine Basin:Insights from 3D Stratigraphic Forward Modeling.Marine and Petroleum Geology, 86:1431-1443. https://doi.org/ 10.1016/j.marpetgeo.2015.09.010 [31] Yin, X.D., Lu, S.F., Wang, P.F., et al., 2017.A Three-Dimensional High-Resolution Reservoir Model of the Eocene Shahejie Formation in Bohai Bay Basin, Integrating Stratigraphic Forward Modeling and Geostatistics.Marine and Petroleum Geology, 82:362-370. https://doi.org/ 10.1016/j.marpetgeo.2017.02.007 [32] Yu, S., Han, W.M., Zhao, W., et al., 2013.Delta Sedimentation and Origin Model within Steep Faulted Zones in Rift Basins:A Case of Albertine Graben in East African Rift Valley.China Offshore Oil and Gas, 25(6):31-35(in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-ZHSD201306005.htm [33] Zhu, H.T., Liu, K.Y., Du, Y.S., et al., 2007.Progress and Developing Tendency of Sequence Stratigraphy Simulation.Geological Science and Technology Information, 26(5):27-34(in Chinese with English abstract). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=dzkjqb200705006 [34] Zhu, X.M., 2008.Sedimentary Petrology.Petroleum Industry Press, Beijing, 76-79, 305-311 (in Chinese). [35] 操应长, 宋玲, 王健, 等, 2011.重矿物资料在沉积物物源分析中的应用-以涠西南凹陷古近系流三段下亚段为例.沉积学报, 29(5):835-841. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=QK201102771501 [36] 陈程, 孙义梅, 贾爱林, 2006.扇三角洲前缘地质知识库的建立及应用.石油学报, 27(2):53-57. doi: 10.3321/j.issn:0253-2697.2006.02.011 [37] 黄秀, 刘可禹, 邹才能, 等, 2013.鄱阳湖浅水三角洲沉积体系三维定量正演模拟.地球科学, 38(5):1005-1013. http://earth-science.net/WebPage/Article.aspx?id=2775 [38] 贾爱林, 穆龙新, 陈亮, 等, 2000.扇三角洲储层露头精细研究方法.石油学报, 21(4):105-108. doi: 10.3321/j.issn:0253-2697.2000.04.020 [39] 吕明, 王颖, 徐微, 2010.沉积模拟方法在Bonaparte盆地的应用.中国海上油气, 22(2):83-90. doi: 10.3969/j.issn.1673-1506.2010.02.003 [40] 苏新, 丁旋, 姜在兴, 等, 2012.用微体古生物定量水深法对东营凹陷沙四上亚段沉积早期湖泊水深再造.地学前缘, 19(1):188-199. http://d.old.wanfangdata.com.cn/Periodical/dxqy201201025 [41] 王改云, 刘金萍, 简晓玲等, 2016.北黄海盆地下白垩统致密砂岩储层特征及成因.地球科学, 41(3):523-532. http://earth-science.net/WebPage/Article.aspx?id=3267 [42] 魏洪涛, 2015.辽中凹陷北部东二下亚段湖底扇沉积数值模拟及应用.岩性油气藏, 27(5):183-188. doi: 10.3969/j.issn.1673-8926.2015.05.031 [43] 吴淑玉, 刘俊, 2015.北黄海东部坳陷始新统米兰科维奇旋回特征.地球科学, 40(11):1933-1944. http://earth-science.net/WebPage/Article.aspx?id=3200 [44] 徐伟, 解习农, 2012.基于米兰科维奇周期的沉积速率计算新方法-以东营凹陷牛38井沙三中为例.石油实验地质, 34(2):207-214. doi: 10.3969/j.issn.1001-6112.2012.02.019 [45] 徐伟, 杨小丽, 李雪, 等, 2015.乌干达Albert盆地北部上新统旋回地层学研究.地质科技情报, 34(1):57-62. http://www.cnki.com.cn/Article/CJFDTOTAL-DZKQ201501009.htm [46] 杨华, 傅强, 齐亚林, 等, 2016.鄂尔多斯盆地晚三叠世延长期古湖盆生物相带划分及地质意义.沉积学报, 34(4):688-693. http://d.old.wanfangdata.com.cn/Periodical/cjxb201604009 [47] 杨田, 操应长, 王艳忠, 等, 2015.渤南洼陷沙四下亚段扇三角洲前缘优质储层成因.地球科学, 40(12):2067-2080. http://earth-science.net/WebPage/Article.aspx?id=3209 [48] 杨小丽, 房磊, 徐伟, 等, 2016.裂谷盆地高凝油藏扇三角洲沉积演化模式.特种油气藏, 23(2):18-21. doi: 10.3969/j.issn.1006-6535.2016.02.005 [49] 杨小丽, 胡光义, 庞玉茂, 等, 2015.Albert湖盆北区退积型浅水三角洲沉积及储层特征.中国海上油气, 27(5):55-61, 75. http://d.old.wanfangdata.com.cn/Periodical/zghsyq-gc201505009 [50] 于水, 韩文明, 赵伟, 2013.裂谷盆地陡断带三角洲沉积特征与成因模式-以东非裂谷Albertine地堑为例.中国海上油气, 25(6):31-35. http://www.cnki.com.cn/Article/CJFDTotal-ZHSD201306005.htm [51] 朱红涛, Liu Keyu, 杜远生, 等, 2007.层序地层学模拟研究进展及趋势.地质科技情报, 26(5):27-34. doi: 10.3969/j.issn.1000-7849.2007.05.006 [52] 朱筱敏.沉积岩石学, 2008.北京:石油工业出版社, 76-79, 305-311.