• 中国出版政府奖提名奖

    中国百强科技报刊

    湖北出版政府奖

    中国高校百佳科技期刊

    中国最美期刊

    留言板

    尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

    姓名
    邮箱
    手机号码
    标题
    留言内容
    验证码

    黑河上游高寒山区降雨-径流形成过程的同位素示踪

    潘钊 孙自永 马瑞 常启昕 胡雅璐 刘源 王旭

    潘钊, 孙自永, 马瑞, 常启昕, 胡雅璐, 刘源, 王旭, 2018. 黑河上游高寒山区降雨-径流形成过程的同位素示踪. 地球科学, 43(11): 4226-4236. doi: 10.3799/dqkx.2018.552
    引用本文: 潘钊, 孙自永, 马瑞, 常启昕, 胡雅璐, 刘源, 王旭, 2018. 黑河上游高寒山区降雨-径流形成过程的同位素示踪. 地球科学, 43(11): 4226-4236. doi: 10.3799/dqkx.2018.552
    Pan Zhao, Sun Ziyong, Ma Rui, Chang Qixin, Hu Yalu, Liu Yuan, Wang Xu, 2018. Isotopic Investigation of Rainfall-Runoff Generation in an Alpine Catchment in Headwater Regions of Heihe River, Northeast Qinghai-Tibet Plateau. Earth Science, 43(11): 4226-4236. doi: 10.3799/dqkx.2018.552
    Citation: Pan Zhao, Sun Ziyong, Ma Rui, Chang Qixin, Hu Yalu, Liu Yuan, Wang Xu, 2018. Isotopic Investigation of Rainfall-Runoff Generation in an Alpine Catchment in Headwater Regions of Heihe River, Northeast Qinghai-Tibet Plateau. Earth Science, 43(11): 4226-4236. doi: 10.3799/dqkx.2018.552

    黑河上游高寒山区降雨-径流形成过程的同位素示踪

    doi: 10.3799/dqkx.2018.552
    基金项目: 

    国家重点研发计划课题 2017YFC0406105

    国家自然科学基金项目 4141070

    国家自然科学基金项目 91325101

    国家自然科学基金项目 91125009

    详细信息
      作者简介:

      潘钊(1993-), 男, 博士研究生, 主要从事寒区水文学研究

      通讯作者:

      孙自永

    • 中图分类号: P641.1

    Isotopic Investigation of Rainfall-Runoff Generation in an Alpine Catchment in Headwater Regions of Heihe River, Northeast Qinghai-Tibet Plateau

    • 摘要: 为揭示中、低纬度高寒山区降雨-径流的形成过程,指导水资源的合理开发利用,选择黑河上游红泥沟小流域为研究区,基于河道径流量及雨水和河水稳定同位素的观测数据,构建二元混合模型,计算了2013年7月23日及8月21日两次典型降雨-径流事件中事件水(降雨)和事件前水(流域前期储水)对河道径流的贡献及其动态变化.结果显示:两次降雨事件中事件前水的贡献比例分别为68.69%和54.46%;事件前水的贡献比例在涨水阶段减小,在退水阶段增大.结合河水电导率的观测结果,进一步分析了降雨-径流的形成过程:河道径流的形成主要受饱和区蓄满产流、河岸带地下径流和山坡地下径流3种产流机制控制;事件水主要源于蓄满产流,事件前水主要源于河岸带和山坡地下径流;事件初期和末期以河岸带地下水补给为主,涨水阶段后期和退水阶段前期转为以蓄满产流和山坡地下水补给为主,洪峰期间蓄满产流的贡献达到最大.两次事件的对比表明,事件前的湿度条件和降雨强度对降雨-径流的形成过程有着重要影响:前期越湿润,流域储水能力越弱,导水能力越强,事件水的贡献越大,河道径流对降雨的响应越迅速;降雨强度越大,蓄满产流及其中的事件水比例越高,河道径流中事件水的比例也越高.

       

    • 图  1  研究区地理位置(a)及观测、采样点布设图(b)

      Fig.  1.  The Hongnigou catchment in the Heihe River basin (a) and the observation and sampling sites in the Hongnigou catchment (b)

      图  2  研究区2013年降水与径流量过程线

      Fig.  2.  Time series of precipitation and streamflow in the Hongnigou catchment during 2013

      图  3  降雨-径流事件Ⅰ期间降雨强度、河道径流量、河水中δ2H及电导率随时间的变化

      Fig.  3.  Variation in rainfall, streamflow, and the δ2H and electrical conductivity values of stream water over time during the rainfall-runoff event Ⅰ

      图  4  降雨-径流事件Ⅰ期间降雨强度、河道径流量、事件前水和事件水流量及其贡献比例的时间序列

      Fig.  4.  Time series of rainfall, streamflow, and the contribution amounts and fractions of pre-event water and event water to streamflow during the rainfall-runoff event Ⅰ

      图  5  降雨-径流事件Ⅱ期间降雨强度、河道径流量、河水中δ2H及电导率随时间的变化

      Fig.  5.  Variation in rainfall, streamflow, and the δ2H and electrical conductivity values of stream water over time during the rainfall-runoff event Ⅱ

      图  6  降雨-径流事件Ⅱ期间降雨强度、河道径流量、事件前水和事件水流量及其贡献比例的时间序列

      Fig.  6.  Time series of rainfall, streamflow, and the contribution amounts and fractions of pre-event water and event water to streamflow during the rainfall-runoff event Ⅱ

    • [1] Arnold, J.G., Allen, P.M., 1999.Automated Methods for Estimating Baseflow and Ground Water Recharge from Streamflow Records.Journal of the American Water Resources Association, 35(2):411-424. https://doi.org/10.1111/j.1752-1688.1999.tb03599.x
      [2] Boucher, J.L., Carey, S.K., 2010.Exploring Runoff Processes Using Chemical, Isotopic and Hydrometric Data in a Discontinuous Permafrost Catchment.Hydrology Research, 41(6):508-519. https://doi.org/10.2166/nh.2010.146
      [3] Boyer, E.W., Hornberger, G.M., Bencala, K.E., et al., 1997.Response Characteristics of DOC Flushing in an Alpine Catchment.Hydrological Processes, 11(12):1635-1647. doi: 10.1002/(ISSN)1099-1085
      [4] Brassard, P., Waddington, J.M., Hill, A.R., et al., 2000.Modelling Groundwater-Surface Water Mixing in a Headwater Wetland:Implications for Hydrograph Separation.Hydrological Processes, 14(15):2697-2710.https://doi.org/10.1002/1099-1085(20001030)14:15<2697::aid-hyp 87>3.0.co;2-d doi: 10.1002/1099-1085(20001030)14:15<2697::aid-hyp87>3.0.co;2-d
      [5] Brown, V.A., McDonnell, J.J., Burns, D.A., et al., 1999.The Role of Event Water, a Rapid Shallow Flow Component, and Catchment Size in Summer Stormflow.Journal of Hydrology, 217(3/4):171-190. https://doi.org/10.1016/s0022-1694(98)00247-9
      [6] Burns, D.A., Hooper, R.P., McDonnell, J.J., et al., 1998.Base Cation Concentrations in Subsurface Flow from a Forested Hillslope:The Role of Flushing Frequency.Water Resources Research, 34(12):3535-3544. https://doi.org/10.1029/98wr02450
      [7] Buttle, J.M., 1994.Isotope Hydrograph Separations and Rapid Delivery of Pre-Event Water from Drainage Basins.Progress in Physical Geography, 18(1):16-41. https://doi.org/10.1177/030913339401800102
      [8] Carey, S.K., Quinton, W.L., 2005.Evaluating Runoff Generation during Summer Using Hydrometric, Stable Isotope and Hydrochemical Methods in a Discontinuous Permafrost Alpine Catchment.Hydrological Processes, 19(1):95-114. https://doi.org/10.1002/hyp.5764
      [9] Chang, Q.X., Sun, Z.Y., Ma, R., et al., 2016.A Review of Groundwater Flow and Its Interaction with Surface Water in Permafrost Region.Advances in Science and Technology of Water Resources, 36(5):87-94 (in Chinese with English abstract).
      [10] Chen, H., Li, Z.Q., Wang, P.Y., et al., 2015a.Five Decades of Glacier Changes in the Hulugou Basin of Central Qilian Mountains, Northwest China.Journal of Arid Land, 7(2):159-165. https://doi.org/10.1007/s40333-014-0011-y
      [11] Chen, R.S., Liu, J.F., Kang, E.S., et al., 2015b.Precipitation Measurement Intercomparison in the Qilian Mountains, North-Eastern Tibetan Plateau.Cryosphere Discussions, 9(2):2201-2230. doi: 10.5194/tcd-9-2201-2015
      [12] Chen, R.S., Kang, E.S., Ji X.B., et al., 2007.Preliminary Study of the Hydrological Processes in the Alpine Meadow and Permafrost Regions at the Headwaters of Heihe River.Journal of Glaciology and Geocryology, 29(3):387-396 (in Chinese with English abstract). http://en.cnki.com.cn/article_en/cjfdtotal-bcdt200703007.htm
      [13] Chen, R.S., Kang, E.S., Lu, S.H., et al., 2008.A Distributed Water-Heat Coupled Model for Mountainous Watershed of an Inland River Basin in Northwest China (Ⅱ) Using Meteorological and Hydrological Data.Environmental Geology, 55(1):17-28. https://doi.org/10.1007/s00254-007-0960-y
      [14] Chen, R.S., Kang, E.S., Ding, Y.J., 2014.Some Knowledge on and Parameters of China's Alpine Hydrology.Advances in Water Science, 25(3):307-317 (in Chinese with English abstract). http://d.old.wanfangdata.com.cn/Periodical/skxjz201403001
      [15] Chen, R.S., Song, Y.X., Kang, E.S., et al., 2014b.A Cryosphere-Hydrology Observation System in a Small Alpine Watershed in the Qilian Mountains of China and Its Meteorological Gradient.Arctic Antarctic and Alpine Research, 46(2):505-523. https://doi.org/10.1657/1938-4246-46.2.505
      [16] Dahlke, H.E., Lyon, S.W., Jansson, P., et al., 2014.Isotopic Investigation of Runoff Generation in a Glacierized Catchment in Northern Sweden.Hydrological Processes, 28(3):1383-1398. https://doi.org/10.1002/hyp.9668
      [17] Dunn, S.M., Birkel, C., Tetzlaff, D., et al., 2010.Transit Time Distributions of a Conceptual Model:Their Characteristics and Sensitivities.Hydrological Processes, 24(12):1719-1729. https://doi.org/10.1002/hyp.7560
      [18] Frey, K.E., Siegel, D.I., Smith, L.C., 2007.Geochemistry of West Siberian Streams and Their Potential Response to Permafrost Degradation.Water Resources Research, 43(3):W03406. https://doi.org/10.1029/2006wr004902
      [19] Fritz, P., Clark, I., 1997.Environmental Isotopes in Hydrogeology.CRC Press, Boca Raton, FL.
      [20] Gao, Y.H., Liu, W., Cheng, G.D., et al., 2007.Setup and Validation of the Soil Texture Type Distribution Data in the Heihe River Basin.Plateau Meteorology, 26(5):967-974 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-GYQX200705009.htm
      [21] Hill, A.R., Waddington, J.M., 1993.Analysis of Storm Run-off Sources Using O-18 in a Headwater Swamp.Hydrological Processes, 7(3):305-316. https://doi.org/10.1002/hyp.3360070308
      [22] Hinton, M.J., Schiff, S.L., English, M.C., 1994.Examining the Contributions of Glacial Till Water to Storm Runoff Using 2-Component and 3-Component Hydrograph Separations.Water Resources Research, 30(4):983-993. https://doi.org/10.1029/93wr03246
      [23] Hoeg, S., Uhlenbrook, S., Leibundgut, C., 2000.Hydrograph Separation in a Mountainous Catchment-Combining Hydrochemical and Isotopic Tracers.Hydrological Processes, 14(7):1199-1216.https://doi.org/10.1002/(sici)1099-1085(200005)14:7<1199::aid-hyp35>3.0.co;2-k doi: 10.1002/(sici)1099-1085(200005)14:7<1199::aid-hyp35>3.0.co;2-k
      [24] Kendall, C., Doctor, D.H., Young, M.B., 2014.Environmental Isotope Applications in Hydrologic Studies.Treatise on Geochemistry, 5(March):273-327. http://www.sciencedirect.com/science/article/pii/B9780128001370000017
      [25] Klaus, J., McDonnell, J.J., 2013.Hydrograph Separation Using Stable Isotopes:Review and Evaluation.Journal of Hydrology, 505:47-64. https://doi.org/10.1016/j.jhydrol.2013.09.006
      [26] Li, H., Liang, X., Liu, Y.F., et al., 2017.Application of Hydrogen and Oxygen Stable Isotopes for Determining Water Sources Used by Cotton in Xinjiang Arid Region.Earth Science, 42(5):843-852 (in Chinese with English abstract).
      [27] Liu, Y.G., 2013.Using Hydrochemical and Isotope Tracers Analyzing to Delineate Hydrologic Process in Cold Alpine Watershed in Rainy Season (Dissertation).China University of Geosciences, Wuhan (in Chinese with English abstract).
      [28] Liu, Z.W., Chen, R.S., Song, Y.X., et al., 2014.Water Holding Capacity of Mosses under Alpine Shrubs in Qilian Mountains.Arid Land Geography, 37(4):696-703 (in Chinese with English abstract). http://d.old.wanfangdata.com.cn/Periodical/ghqdl201404007
      [29] McGuire, K.J., McDonnell, J.J., 2006.A Review and Evaluation of Catchment Transit Time Modeling.Journal of Hydrology, 330(3-4):543-563. https://doi.org/10.1016/j.jhydrol.2006.04.020
      [30] McGuire, K.J., McDonnell, J.J., 2010.Hydrological Connectivity of Hillslopes and Streams:Characteristic Time Scales and Nonlinearities.Water Resources Research, 46(10):W10543. https://doi.org/10.1029/2010wr009341
      [31] Meriano, M., Howard, K.W.F., Eyles, N., 2011.The Role of Midsummer Urban Aquifer Recharge in Stormflow Generation Using Isotopic and Chemical Hydrograph Separation Techniques.Journal of Hydrology, 396(1-2):82-93. https://doi.org/10.1016/j.jhydrol.2010.10.041
      [32] Mueller, M.H., Alaoui, A., Alewell, C., 2016.Water and Solute Dynamics during Rainfall Events in Headwater Catchments in the Central Swiss Alps under the Influence of Green Alder Shrubs and Wetland Soils.Ecohydrology, 9(6):950-963. https://doi.org/10.1002/eco.1692
      [33] Ogunkoya, O.O., Jenkins, A., 1993.Analysis of Storm Hydrograph and Flow Pathways Using a Three-Component Hydrograph Separation Model.Journal of Hydrology, 142(1-4):71-88. https://doi.org/10.1016/0022-1694(93)90005-t
      [34] Penna, D., Tromp-van Meerveld, H.J., Gobbi, A., et al., 2011.The Influence of Soil Moisture on Threshold Runoff Generation Processes in an Alpine Headwater Catchment.Hydrology and Earth System Sciences, 15(3):689-702. https://doi.org/10.5194/hess-15-689-2011
      [35] Penna, D., Mantese, N., Hopp, L., et al., 2015.Spatio-Temporal Variability of Piezometric Response on Two Steep Alpine Hillslopes.Hydrological Processes, 29(2):198-211. https://doi.org/10.1002/hyp.10140
      [36] Penna, D., van Meerveld, H.J., Zuecco, G., et al., 2016.Hydrological Response of an Alpine Catchment to Rainfall and Snowmelt Events.Journal of Hydrology, 537:382-397. https://doi.org/10.1016/j.jhydrol.2016.03.040
      [37] Scanlon, T.M., Raffensperger, J.P., Hornberger, G.M., et al., 2000.Shallow Subsurface Storm Flow in a Forested Headwater Catchment:Observations and Modeling Using a Modified TOPMODEL.Water Resources Research, 36(9):2575-2586. https://doi.org/10.1029/2000wr900125
      [38] Segura, C., James, A.L., Lazzati, D., et al., 2012.Scaling Relationships for Event Water Contributions and Transit Times in Small-Forested Catchments in Eastern Quebec.Water Resources Research, 48(7):W07502. https://doi.org/10.1029/2012wr011890
      [39] Shanley, J.B., Kendall, C., Smith, T.E., et al., 2002.Controls on Old and New Water Contributions to Stream Flow at Some Nested Catchments in Vermont, USA.Hydrological Processes, 16(3):589-609. https://doi.org/10.1002/hyp.312
      [40] Sklash, M.G., Farvolden, R.N., 1982.The Use of Environmental Isotopes in the Study of High-Runoff Episodes in Streams.Isotope Studies of Hydrologic Processes:65-73.
      [41] Stotler, R.L., Frape, S.K., Ruskeeniemi, T., et al., 2009.Hydrogeochemistry of Groundwaters in and below the Base of Thick Permafrost at Lupin, Nunavut, Canada.Journal of Hydrology, 373(1/2):80-95. https://doi.org/10.1016/j.jhydrol.2009.04.013
      [42] Waterloo, M.J., Oliveira, S.M., Drucker, D.P., et al., 2006.Export of Organic Carbon in Run-off from an Amazonian Rainforest Blackwater Catchment.Hydrological Processes, 20(12):2581-2597. https://doi.org/10.1002/hyp.6217
      [43] Xu, L.L., Liu, J.L., Jin, C.J., et al., 2011.Baseflow Separation Methods in Hydrological Process Research:A Review.Chinese Journal of Applied Ecology, 22(11):3073-3080 (in Chinese with English abstract). http://d.old.wanfangdata.com.cn/Periodical/yystxb201111040
      [44] Yang, K.H., Yu, X.G., Chu, F.Y., et al., 2016 Environmental Changes in Methane Seeps Recorded by Carbon and Oxygen Isotopes in the Northern South China Sea.Earth Science, 41(7):1206-1215 (in Chinese with English abstract). http://www.en.cnki.com.cn/Article_en/CJFDTotal-DQKX201607010.htm
      [45] 常启昕, 孙自永, 马瑞, 等, 2016.冻土区地下水流过程及其与地表水转化关系研究进展.水利水电科技进展, 36(5):87-94. http://d.old.wanfangdata.com.cn/Periodical/slsdkjjz201605022
      [46] 陈仁升, 康尔泗, 吉喜斌, 等, 2007.黑河源区高山草甸的冻土及水文过程初步研究.冰川冻土, 29(3):387-396. doi: 10.3969/j.issn.1000-0240.2007.03.008
      [47] 陈仁升, 康尔泗, 丁永建, 2014.中国高寒区水文学中的一些认识和参数.水科学进展, 25(3):307-317. http://d.old.wanfangdata.com.cn/Periodical/skxjz201403001
      [48] 高艳红, 刘伟, 程国栋, 等, 2007.黑河流域土壤质地分类数据建立及其模拟效果检验.高原气象, 26(5):967-974. http://d.old.wanfangdata.com.cn/Periodical/gyqx200705010
      [49] 李惠, 梁杏, 刘延峰, 等, 2017.基于氢氧稳定同位素识别干旱区棉花水分利用来源.地球科学, 42(5):843-852. http://earth-science.net/WebPage/Article.aspx?id=3564
      [50] 刘彦广, 2013.基于水化学和同位素的高寒山区雨季径流过程示踪(博士学位论文).武汉:中国地质大学.
      [51] 刘章文, 陈仁升, 宋耀选, 等, 2014.祁连山高寒灌丛苔藓持水性能.干旱区地理, 37(4):696-703. http://d.old.wanfangdata.com.cn/Periodical/ghqdl201404007
      [52] 徐磊磊, 刘敬林, 金昌杰, 等, 2011.水文过程的基流分割方法研究进展.应用生态学报, 22(11):3073-3080. http://d.old.wanfangdata.com.cn/Periodical/yystxb201111040
      [53] 杨克红, 于晓果, 初凤友, 等, 2016.南海北部甲烷渗漏系统环境变化的碳、氧同位素记录.地球科学, 41(7):1206-1215. http://earth-science.net/WebPage/Article.aspx?id=3329
    • 加载中
    图(6)
    计量
    • 文章访问数:  3310
    • HTML全文浏览量:  1207
    • PDF下载量:  24
    • 被引次数: 0
    出版历程
    • 收稿日期:  2017-12-07
    • 刊出日期:  2018-11-15

    目录

      /

      返回文章
      返回