Depositional Filling and Tectonic Settings of Provenance of Paleotethys Remnant Oceanic Basin in Zexue District, Tibet, China
-
摘要: 古特提斯残留洋盆沉积学和构造背景研究对于揭示青藏高原形成演化及其成矿规律具有重要意义.综合野外实测剖面、典型露头、岩石薄片、生物地层学和沉积地球化学等资料,开展了西藏则学地区晚古生代古特提斯残留洋盆的深水盆地地层学、沉积学、沉积演化和物源区构造背景研究.研究结果表明,研究区发育的晚古生代地层以含砾粉砂岩和泥岩、细砂岩为主,砂体以席状和透镜状为主,沉积构造丰富,晚古生代饱粉组合特征明显.残留洋盆经历了陆坡-深水盆地-陆架三角洲-滨浅海盆地-滨岸三角洲-海湾盆地的沉积充填演化历程.主量元素组成和比值具有较低的Fe2O3+MgO(5.1%~10.0%)、TiO2(0.44%~0.84%)、Al2O3/SiO2(0.12~0.26),以及较高的K2O/Na2O.微量和稀土元素组成和比值具有较高的∑REE、LREE明显富集、较高的La/Yb、(Gd/Yb)N、(La/Yb)N比值、弱的Eu负异常特征.碎屑岩主量、微量和稀土元素组成均指示物源区具有活动大陆边缘和大陆岛弧性质,研究区晚古生代处于伸展背景下的陆缘裂陷环境,构造-岩浆活动和隆升作用较为强烈,且具有较为稳定的继承性演化特征.盆地沉积充填和演化记录了海平面逐渐下降、古特提斯残留洋盆逐渐封闭的过程.Abstract: The study of the sedimentology and tectonic settings of the Paleotethys remnant oceanic basins is of great significance to reveal the formation, evolution, and its regularity of ore formation of the Tibetan plateau. The paleotethys remnant oceanic basin in Zexue district is located in the Lhasa block in south Gangdese zone. Based on the data such as field measured profiles, typical outcrops, rock sections, biostratigraphy and depo-geochemistry, we conducted the study on deep-water basin stratigraphy, sedimentology, sedimentary evolution and provenance tectonic settings of the Late Paleozoic paleotethys remnant oceanic basin. Current research indicates that the Late Paleozoic strata developed in the study area are mainly composed of pebbled fine clastic rocks and sandstone, which include pebbled-siltstone, mudstone and sandstone. The sand body is dominated by sheetlike and lenticular form, rich sedimentary structure, and the obvious Late Paleozoic sporo-pollen combination. The remnant oceanic basin experienced the evolutionary phases of sedimentary filling, which from continental slope-, deepwater basin-, continental shelf delta-, littoral-shallow basin-, coastal delta, to bay basin. The clastic sediment geochemical composition and their ratios of the main elements have characteristic of the lower Fe2O3+MgO (5.1%-10.0%), TiO2 (0.44%-0.84%), Al2O3/SiO2 (0.12-0.26), and higher K2O/Na2O. The results of the composition of trace and rare elements show higher ∑REE, LREE, La/Yb, (Gd/Yb)N, (La/Yb)N ratio, and weak Eu negative anomaly. It suggests that the provenance area has the characteristics of active continental margin and the continental island arc. It is concluded that the tectonic-sedimentary background of the Late Paleozoic in study area was in the continental margin rifting in extension background, intensive tectonic-magmatic activities and uplift, and the characteristic of more stable inheritance evolution. Sedimentary filling and evolution of the basin recorded the gradual regression process and the closure of the remnant oceanic basins in the Paleotethys.
-
Key words:
- sedimentary evolution /
- geochemistry /
- deep-water basin /
- Paleotethys /
- petroleum geology /
- Tibet /
- tectonics
-
图 1 研究区位置及地层分区
Ⅵ.华南地层大区:Ⅵ1.巴彦喀拉地层区,Ⅵ2.羌北-昌都-思茅地层区;Ⅶ.藏滇地层大区:Ⅶ1.羌南-保山地层区,Ⅶ2.冈底斯-腾冲地层区,Ⅶ3.喜马拉雅地层区;Ⅷ.印度地层大区:Ⅷ1.西瓦里克地层区;BNSZ.班公湖-怒江缝合带;YZSZ.雅鲁藏布江缝合带;据夏代祥和刘世坤(2008)
Fig. 1. Location of the study area and the stratigraphic divition
图 3 研究区晚古生代砂岩样品的镜下特征
a.中细粒石英杂砂岩,颗粒成分以石英为主, 昂杰组,正交偏光;b.石英细砂岩,含斑性, 杂基支撑,昂杰组,单偏光;c.泥质粉砂岩,颗粒成分以石英为主, 杂基支撑,昂杰组,单偏光;d.细粒石英杂砂岩,泥质杂基支撑, 含斑性, 拉嘎组,正交偏光;e.含砾细粒石英杂砂岩,泥质杂基充填, 含斑性, 拉嘎组,正交偏光;f.中细粒石英砂岩,泥质杂基充填, 褐铁矿化, 拉嘎组,正交偏光;g.细砂岩,颗粒成分以石英为主, 永珠组,正交偏光;h.泥质细砂岩,颗粒成分以石英为主, 含斑性明显, 永珠组,正交偏光;i.泥质细砂岩,颗粒成分以石英为主, 含斑性明显, 永珠组,正交偏光
Fig. 3. Photomicrograph features of the Neopaleozoic sandstone samples
图 7 研究区晚古生代地层物源区判别图
Fig. 7. Discriminant function analysis classification plots for Neopaleozoic clastic sediments in the study area
图 8 晚古生代地层碎屑岩构造背景判别图
图c, d中,A.大洋岛弧;B.大陆岛弧;C.活动大陆边缘;D.被动大陆边缘;据Bhatia(1983);Roser and Korsch(1986)
Fig. 8. Discriminant diagrams for the tectonic setting of Neopaleozoic clastic sediments in the study area
图 9 晚古生代地层碎屑岩微量和稀土元素构造背景判别图
A.大洋岛弧;B.大陆岛弧;C.活动大陆边缘;D.被动大陆边缘;据Bhatia and Crook(1986)
Fig. 9. Discriminant diagram for the tectonic setting of trace element-REE of Neopaleozoic clastic sediments
图 10 晚古生代地层碎屑岩微量和稀土元素物源背景判别图
a.据Floyd and Leveridge(1987); b.据Allègre and Minster(1978)
Fig. 10. Discriminant diagrams for the provenance setting of trace element-REE of Neopaleozoic clastic sediments
图 12 研究区碎屑岩稀土元素分配模式
球粒陨石值据Rollinson(1993)
Fig. 12. Chondrite-normalized REE patterns for Neopaleozoic clastic rocks
图 13 研究区碎屑岩稀土元素分配模式
NASC值据Rollinson(1993)
Fig. 13. NASC-normalized REE patterns for Neopaleozoic clastic rocks
表 1 研究区碎屑岩主量元素测试结果(%)
Table 1. The major elements data of clastic rocks
样品编号 BP6-9-1 BP6-14-1 BP6-54-1 BP6-62-1 BP6-66-1 BP6-71-1 BP8-3-1 BP8-9-1 BP8-17-1 BP8-21-1 BP8-31-1 BP8-32-1 BP13-8-1 BP13-19-1 BP13-38-1 BP13-46-1 BP13-75-1 BP13-76-1 岩石名称 粉砂岩 细砂岩 泥岩 中细砂岩 细砂岩 粉砂岩 中细砂岩 中细砂岩 中细砂岩 中细砂岩 细砂岩 中细砂岩 中细砂岩 中细砂岩 中细砂岩 中细砂岩 中细砂岩 中细砂岩 地层 永珠组 永珠组 永珠组 永珠组 永珠组 永珠组 拉嘎组 拉嘎组 拉嘎组 拉嘎组 拉嘎组 拉嘎组 昂杰组 昂杰组 昂杰组 昂杰组 昂杰组 昂杰组 SiO2 69.552 60.941 65.901 76.241 73.363 72.654 71.980 74.470 64.853 74.369 74.739 63.668 72.162 68.225 68.114 69.035 67.815 67.859 TiO2 0.630 0.841 0.658 0.442 0.507 0.497 0.494 0.496 0.748 0.490 0.444 0.719 0.474 0.550 0.492 0.491 0.562 0.563 Al2O3 13.204 16.085 13.887 9.239 10.501 10.479 10.963 10.928 14.479 10.784 9.902 15.457 10.611 12.237 10.599 10.514 12.049 12.098 Fe2O3 0.29 0.53 0.65 0.14 0.18 0.25 0.56 0.89 0.65 0.55 0.82 0.70 0.58 0.48 0.41 0.61 1.40 1.01 MnO 0.060 0.115 0.182 0.057 0.062 0.071 0.071 0.055 0.065 0.038 0.071 0.050 0.060 0.072 0.089 0.070 0.083 0.081 MgO 1.320 2.816 2.282 1.746 1.974 1.977 1.996 1.625 2.796 1.671 1.483 3.153 1.859 2.402 2.448 2.531 1.921 2.019 CaO 1.194 2.248 2.762 1.958 2.161 2.779 2.024 0.952 0.862 1.162 1.871 0.485 2.077 2.276 3.459 3.094 2.601 2.522 Na2O 1.874 2.648 0.197 0.930 1.270 1.213 0.623 0.612 1.531 0.051 0.700 1.318 1.163 1.059 1.191 1.086 1.171 1.110 K2O 5.469 3.591 3.495 2.810 3.048 2.967 2.915 3.107 3.477 3.159 2.850 4.083 2.923 3.292 3.004 3.011 3.426 3.391 P2O5 0.134 0.197 0.185 0.096 0.107 0.108 0.119 0.120 0.114 0.122 0.109 0.157 0.117 0.135 0.121 0.116 0.142 0.138 FeO 3.49 6.67 4.76 3.31 3.94 3.70 3.70 3.12 5.90 3.36 3.07 5.74 3.35 4.23 3.68 3.36 3.36 3.70 烧失量 2.100 2.808 4.414 2.627 2.374 2.762 3.889 3.230 3.864 3.620 3.595 3.842 3.981 4.609 5.765 5.525 4.819 4.860 Fe2O3*+MgO 5.10 10.01 7.70 5.20 6.09 5.94 6.26 5.64 9.34 5.58 5.37 9.59 5.78 7.12 6.53 6.51 6.68 6.73 Al2O3/SiO2 0.19 0.26 0.21 0.12 0.14 0.14 0.15 0.15 0.22 0.15 0.13 0.24 0.15 0.18 0.16 0.15 0.18 0.18 K2O/Na2O 2.92 1.36 17.71 3.02 2.40 2.45 4.68 5.08 2.27 62.18 4.07 3.10 2.51 3.11 2.52 2.77 2.93 3.06 CaO*+NaO2 1.894 2.688 0.200 0.945 1.290 1.233 0.633 0.622 1.546 0.052 0.711 1.326 1.182 1.076 1.210 1.103 1.189 1.127 CIA 54.459 56.624 75.881 60.229 58.574 59.119 67.834 67.055 64.958 75.044 64.890 67.767 60.204 63.487 59.720 60.799 61.728 62.596 ICV 1.180 1.307 1.182 1.438 1.444 1.542 1.277 1.052 1.132 1.008 1.270 1.092 1.377 1.359 1.765 1.731 1.407 1.378 注:*测试单位为西南冶金地质测试所,X荧光法、重量法、滴定法;Fe2O3*是指全铁:Fe2O3+FeO;CaO*为硅酸盐组分中的CaO摩尔百分含量;化学蚀变指数CIA=[Al2O3/(Al2O3+CaO*+Na2O+K2O)]×100;成分变异指数ICV=[(Fe2O3+MgO+MnO+TiO2+CaO*+Na2O+K2O)/Al2O3]. 表 2 研究区碎屑岩微量元素测试结果(10-6)及有关比值
Table 2. The trace elements data and rations for the clastic rocks
样品编号 BP6-9-1 BP6-14-1 BP6-54-1 BP6-62-1 BP6-66-1 BP6-71-1 BP8-3-1 BP8-9-1 BP8-17-1 BP8-21-1 BP8-31-1 BP8-32-1 BP13-8-1 BP13-19-1 BP13-38-1 BP13-46-1 BP13-75-1 BP13-76-1 岩石名称 粉砂岩 细砂岩 泥岩 中细砂岩 细砂岩 粉砂岩 中细砂岩 中细砂岩 中细砂岩 中细砂岩 细砂岩 中细砂岩 中细砂岩 中细砂岩 中细砂岩 中细砂岩 中细砂岩 中细砂岩 地层 永珠组 永珠组 永珠组 永珠组 永珠组 永珠组 拉嘎组 拉嘎组 拉嘎组 拉嘎组 拉嘎组 拉嘎组 昂杰组 昂杰组 昂杰组 昂杰组 昂杰组 昂杰组 Ba 807.06 768.64 708.81 549.86 586.36 566.05 341.87 380.33 627.19 332.94 370.37 685.04 516.12 532.75 518.88 504.32 547.32 677.58 Co 11.69 17.04 13.48 8.35 8.31 8.74 10.77 9.46 15.74 9.12 8.94 15.04 9.59 10.62 9.01 9.12 9.85 11.15 Cr 66.42 106.40 79.17 53.15 58.90 58.99 60.66 58.41 75.28 49.81 49.76 96.39 53.54 60.35 52.29 47.45 59.43 62.40 Cu 5.46 13.05 43.71 12.86 19.20 23.69 21.44 20.54 21.17 18.10 19.48 42.80 38.59 20.69 20.66 19.61 20.44 36.47 Hf 8.14 5.30 6.74 7.17 7.29 7.16 6.33 6.38 6.36 6.39 6.23 5.96 6.29 6.33 6.31 6.26 6.76 6.71 Nb 15.13 20.69 19.09 10.41 13.12 12.97 6.98 8.22 17.66 9.00 8.61 14.24 8.67 9.60 7.74 8.20 7.28 7.06 Ni 23.13 47.13 30.24 17.32 20.23 19.73 22.50 23.11 38.77 22.93 20.89 44.10 20.64 24.15 21.06 19.18 23.55 23.78 Pb 33.41 29.70 31.92 20.97 24.27 22.42 22.96 20.49 4.33 21.81 21.40 36.19 23.72 24.35 21.73 21.81 20.77 23.68 Rb 154.89 177.45 185.90 117.05 123.52 120.98 151.80 150.17 163.81 150.33 137.85 195.22 134.15 160.53 135.36 133.28 165.43 163.35 Sc 11.49 16.62 14.62 7.86 9.79 9.10 10.17 9.79 15.10 9.49 9.03 18.17 9.29 10.30 9.94 9.41 10.22 11.38 Sr 121.26 204.67 140.78 144.87 137.28 152.68 54.70 36.33 58.62 25.98 41.00 47.06 67.65 83.83 102.42 82.67 55.57 59.67 Ta 1.13 1.51 1.42 0.79 1.08 1.02 0.61 0.67 1.33 0.72 0.71 1.00 0.75 0.77 0.64 0.68 0.62 0.58 Th 18.73 24.75 21.51 13.74 15.97 16.34 14.48 14.58 16.34 15.08 13.61 20.03 14.53 15.60 14.94 15.32 15.90 16.15 U 2.13 2.17 2.33 1.36 1.41 1.53 1.20 1.39 1.15 1.37 1.30 1.93 1.54 1.53 1.52 1.71 1.32 1.42 V 77.23 111.45 84.81 58.73 60.46 60.84 73.16 69.54 104.37 70.01 60.64 118.60 69.17 81.23 65.52 67.71 75.23 78.23 Zn 50.48 104.15 70.82 45.67 57.29 53.24 59.93 57.82 97.28 57.31 53.64 105.20 59.04 67.06 59.24 58.75 64.71 69.10 Zr 288.99 156.92 221.88 258.94 263.44 253.11 219.44 219.97 209.04 225.93 215.34 183.26 217.20 212.26 215.51 213.62 226.55 224.27 Sc/Cr 0.17 0.16 0.18 0.15 0.17 0.15 0.17 0.17 0.20 0.19 0.18 0.19 0.17 0.17 0.19 0.20 0.17 0.18 La/Th 2.58 2.49 2.78 2.58 2.67 2.48 2.54 2.68 2.40 2.32 2.55 2.41 2.46 2.92 2.66 2.47 2.76 2.67 注:*测试单位为西南冶金地质测试所,等离子发射光谱法、质谱法ICP-MS、X荧光法. 表 3 研究区碎屑岩稀土元素测试结果及特征参数表(10-6)
Table 3. The REE data and diagnostic parameters for the clastic rocks
样品编号 BP6-9-1 BP6-14-1 BP6-54-1 BP6-62-1 BP6-66-1 BP6-71-1 BP8-3-1 BP8-9-1 BP8-17-1 BP8-21-1 BP8-31-1 BP8-32-1 BP13-8-1 BP13-19-1 BP13-38-1 BP13-46-1 BP13-75-1 BP13-76-1 岩石名称 粉砂岩 细砂岩 泥岩 中细砂岩 细砂岩 粉砂岩 中细砂岩 中细砂岩 中细砂岩 中细砂岩 细砂岩 中细砂岩 中细砂岩 中细砂岩 中细砂岩 中细砂岩 中细砂岩 中细砂岩 地层 永珠组 永珠组 永珠组 永珠组 永珠组 永珠组 拉嘎组 拉嘎组 拉嘎组 拉嘎组 拉嘎组 拉嘎组 昂杰组 昂杰组 昂杰组 昂杰组 昂杰组 昂杰组 La 48.36 61.62 59.85 35.52 42.65 40.49 36.77 39.11 39.21 35.03 34.76 48.36 35.74 45.48 39.73 37.84 43.89 43.20 Ce 101.21 114.11 112.56 72.99 86.01 79.94 73.10 78.77 84.85 70.81 68.48 99.75 73.59 91.52 80.13 76.92 89.02 87.94 Pr 11.27 13.11 12.51 8.10 9.60 8.97 8.11 8.67 9.06 7.78 7.50 11.41 8.30 10.21 8.91 8.60 9.78 9.78 Nd 45.83 54.47 52.49 33.77 39.89 36.68 33.39 35.29 37.73 31.57 30.99 47.66 34.50 41.52 36.50 35.60 40.86 39.99 Sm 8.34 9.22 9.67 5.93 6.98 6.59 5.87 6.16 6.70 5.55 5.44 8.58 6.22 7.32 6.47 6.25 7.14 7.03 Eu 1.66 1.77 2.18 1.26 1.34 1.24 1.13 1.18 1.31 1.02 1.04 1.61 1.18 1.34 1.25 1.19 1.33 1.29 Gd 7.89 8.44 9.44 5.58 6.37 6.07 5.33 5.77 6.11 5.03 5.18 7.93 5.61 6.68 6.09 5.82 6.68 6.31 Tb 1.09 1.14 1.34 0.77 0.85 0.83 0.73 0.80 0.86 0.69 0.72 1.05 0.76 0.89 0.84 0.81 0.90 0.87 Dy 5.75 6.06 7.51 4.21 4.72 4.63 4.05 4.52 4.68 3.85 4.02 5.68 4.13 4.73 4.58 4.42 4.81 4.69 Ho 1.12 1.19 1.49 0.83 0.94 0.93 0.82 0.92 0.93 0.75 0.80 1.11 0.83 0.92 0.89 0.86 0.97 0.91 Er 3.16 3.31 4.26 2.38 2.69 2.65 2.37 2.65 2.62 2.22 2.27 3.13 2.40 2.62 2.55 2.54 2.74 2.60 Tm 0.50 0.51 0.64 0.38 0.42 0.41 0.37 0.42 0.39 0.35 0.35 0.48 0.37 0.41 0.40 0.39 0.43 0.41 Yb 2.81 3.01 3.81 2.20 2.39 2.41 2.22 2.54 2.29 2.09 2.01 2.80 2.21 2.48 2.36 2.33 2.47 2.44 Lu 0.40 0.44 0.54 0.32 0.33 0.35 0.33 0.39 0.32 0.31 0.30 0.43 0.32 0.36 0.36 0.35 0.36 0.36 Y 28.45 31.05 38.96 22.01 23.76 23.52 21.23 24.39 23.16 19.21 20.23 28.68 21.30 24.11 24.15 22.76 24.96 24.12 LREE 216.66 254.29 249.25 157.57 186.46 173.90 158.37 169.17 178.85 151.76 148.22 217.38 159.54 197.38 172.97 166.40 192.01 189.24 HREE 51.17 55.14 67.99 38.68 42.46 41.80 37.44 42.40 41.36 34.49 35.87 51.28 37.93 43.19 42.21 40.28 44.32 42.71 ∑REE 267.83 309.44 317.24 196.25 228.92 215.71 195.81 211.58 220.22 186.25 184.09 268.66 197.47 240.58 215.18 206.68 236.33 231.95 LREE/HREE 4.23 4.61 3.67 4.07 4.39 4.16 4.23 3.99 4.32 4.40 4.13 4.24 4.21 4.57 4.10 4.13 4.33 4.43 δEu 0.62 0.60 0.69 0.66 0.60 0.59 0.61 0.59 0.61 0.58 0.59 0.59 0.60 0.58 0.60 0.59 0.58 0.58 δCe 1.01 0.92 0.94 1.00 0.98 0.97 0.98 0.99 1.05 0.99 0.98 0.99 0.99 0.98 0.99 0.99 0.99 0.99 (La/Yb)N 11.61 13.80 10.60 10.90 12.02 11.33 11.15 10.37 11.56 11.31 11.66 11.65 10.89 12.35 11.36 10.95 11.98 11.92 (La/Lu)N 12.60 14.46 11.42 11.49 13.63 12.11 11.48 10.44 12.66 11.91 12.05 11.79 11.49 13.09 11.35 11.28 12.59 12.48 (Ce/Yb)N 9.32 9.81 7.65 8.59 9.30 8.58 8.51 8.01 9.60 8.77 8.82 9.22 8.60 9.54 8.79 8.54 9.32 9.31 (Gd/Yb)N 2.27 2.26 2.00 2.05 2.15 2.03 1.94 1.83 2.16 1.94 2.08 2.29 2.05 2.17 2.08 2.02 2.18 2.08 La/Y 1.70 1.98 1.54 1.61 1.80 1.72 1.73 1.60 1.69 1.82 1.72 1.69 1.68 1.89 1.64 1.66 1.76 1.79 La/Ce 0.48 0.54 0.53 0.49 0.50 0.51 0.50 0.50 0.46 0.49 0.51 0.48 0.49 0.50 0.50 0.49 0.49 0.49 注:*测试单位为西南冶金地质测试所,等离子质谱法ICP-MS. 表 4 研究区碎屑岩稀土元素含量(10-6)及特征参数
Table 4. The REE contents and diagnostic parameters for the clastic rocks
时代 组名 样品数 LREE HREE LREE/HREE ∑REE δEu δCe (Gd/Yb)N (La/Yb)N NP1a 昂杰组 6 159.54~197.38 37.93~44.32 4.10~4.57 197.47~240.58 0.58~0.60 0.98~0.99 2.02~2.18 10.89~12.35 179.58 41.77 4.29 221.36 0.59 0.99 2.1 11.57 C2-P1l 拉嘎组 6 148.22~217.38 34.49~51.28 3.99~4.40 184.09~268.66 0.58~0.61 0.98~1.05 1.83~2.29 10.37~11.66 170.63 40.48 4.22 211.1 0.6 1.00 2.04 11.28 C2y 永珠组 6 157.57~254.29 38.68~67.99 3.67~4.62 196.25~317.24 0.59~3.76 0.92~1.01 2.0~2.27 10.6~13.8 206.36 49.54 4.19 255.9 0.63 0.97 2.13 11.71 -
[1] Allègre, C.J., Minster, J.F., 1978.Quantitative Models of Trace Element Behavior in Magmatic Processes.Earth and Planetary Science Letters, 38(1):1-25. https://doi.org/10.1016/0012-821x(78)90123-1 [2] Bhatia, M.R., 1983.Plate Tectonics and Geochemical Composition of Sandstones.The Journal of Geology, 91(6):611-627. https://doi.org/10.1086/628922 [3] Bhatia, M.R., 1985.Rare Earth Element Geochemistry of Australian Paleozoic Graywackes and Mudrocks:Provenance and Tectonic Control.Sedimentary Geology, 45(1-2):97-113. https://doi.org/10.1016/0037-0738(85)90025-9 [4] Bhatia, M.R., Crook, K.A.W., 1986.Trace Element Characteristics of Graywackes and Tectonic Setting Discrimination of Sedimentary Basins.Contributions to Mineralogy and Petrology, 92(2):181-193. https://doi.org/10.1007/bf00375292 [5] Bureau of Geology and Mineral Resources of Xizang Autonomous Region, 1993.Regional Geology of Xizang.Geological Publishing House, Beijing (in Chinese). [6] Cai, F.L., Ding, L., Yao, W., et al., 2017.Provenance and Tectonic Evolution of Lower Paleozoic-Upper Mesozoic Strata from Sibumasu Terrane, Myanmar.Gondwana Research, 41:325-336. https://doi.org/10.1016/j.gr.2015.03.005 [7] Campos Alvarez, N.O., Roser, B.P., 2007.Geochemistry of Black Shales from the Lower Cretaceous Paja Formation, Eastern Cordillera, Colombia:Source Weathering, Provenance, and Tectonic Setting.Journal of South American Earth Sciences, 23(4):271-289. https://doi.org/10.1016/j.jsames.2007.02.003 [8] Chen, Q.H., Li, W.H., Hu, X.L., et al., 2012.Tectonic Setting and Provenance Analysis of Late Paleozoic Sedimentary Rocks in the Ordos Basin.Acta Geologica Sinica, 86(7):1150-1162 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-DZXE201207011.htm [9] Das, B.K., Al-Mikhlafi, A.S., Kaur, P., 2006.Geochemistry of Mansar Lake Sediments, Jammu, India:Implication for Source-Area Weathering, Provenance, and Tectonic Setting.Journal of Asian Earth Sciences, 26(6):649-668. https://doi.org/10.1016/j.jseaes.2005.01.005 [10] Du, D.X., Luo, J.N., Chen, M., et al., 1999.Tectonic Settings of the Provenances for the Triassic Bayan Har Basin Deduced from Petrogeochemical Characteristics:Examples from the Aba-Zoige, Xiaojin-Barkam and Yajiang Basins in Western Sichuan.Sedimentary Facies and Palaeogeography, 19(2):1-20(in Chinese with English abstract). https://www.deepdyve.com/lp/elsevier/tectonostratigraphic-and-geochronologic-constraints-on-evolution-of-aFOLfFJtJr [11] Feng, Y., Wen, Z.H., Hou, F.H., et al., 2013.Tectonic Evolution and Paleocontinent Reconstruction of Qinghai-Tibet Plateau and Its Adjacent Area since the Late Paleozoic.Marine Geology & Quaternary Geology, 33(1):33-44 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-HYDZ201301008.htm [12] Floyd, P.A., Leveridge, B.E., 1987.Tectonic Environment of the Devonian Gramscatho Basin, South Cornwall:Framework Mode and Geochemical Evidence from Turbiditic Sandstones.Journal of the Geological Society, 144(4):531-542. https://doi.org/10.1144/gsjgs.144.4.0531 [13] Geng, Q.R., Wang, L.Q., Pan, G.T., et al., 2007.Carboniferous Marginal Rifting in Gangdese:Volcanic Rocks and Stratigraphic Constraints, Xizang (Tibet), China.Acta Geologica Sinica, 81(9):1259-1276 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-DZXE200709011.htm [14] Huang, J.Q., Chen, B.W., 1987.The Evolution of the Tethys in China and Adjacent Regions.Geological Publishing House, Beijing (in Chinese). [15] Jiang, Q.Y., Li, C., Su, L., et al., 2015.Carboniferous Arc Magmatism in the Qiangtang Area, Northern Tibet:Zircon U-Pb Ages, Geochemical and Lu-Hf Isotopic Characteristics, and Tectonic Implications.Journal of Asian Earth Sciences, 100:132-144. https://doi.org/10.1016/j.jseaes.2015.01.012 [16] Li, L., Sun, F.Y., Li, B.L., et al., 2017.Geochronology of Ershi'erzhan Formation Sandstone in Mohe Basin and Tectonic Environment of Its Provenance.Earth Science, 42(1):35-52(in Chinese with English abstract). https://doi.org/10.3799/dqkx.2017.003 [17] Li, P.W., Gao, R., Guan, Y., et al., 2009.The Closure Time of the Paleo-Asian Ocean and the Paleo-Tethys Ocean:Implication for the Tectonic Cause of the End-Permian Mass Extinction.Journal of Jilin Unviersity(Earth Science Edition), 39(3):521-527(in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-CCDZ200903024.htm [18] Li, X.H., Wu, G., Wang, C.S., et al., 2001.Paleozoic to Mesozoic Changes of Lithofacies and Paleogeography of the Coqen Basin, Central Tibet.Journal of Chengdu University of Technology, 28(4):331-339 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-CDLG200104000.htm [19] Liang, D.Y., Nie, Z.T., Guo, T.Y., et al., 1983.Permo-Carboniferous Gondwana-Tethys Facies in Southern Karakoran, Ali, Xizang(Tibet).Earth Science, 8(1):9-27(in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-DQKX198301001.htm [20] Mi, W.T., Zhu, L.D., Yang, W.G., et al., 2017.Provenance of the Niubao Formation and Its Geological Implications in the North Depression of the Nima Basin in the Tibet.Earth Science, 42(2):240-257 (in Chinese with English abstract). https://doi.org/10.3799/dqkx.2017.018 [21] Moghadam, H.S., Li, X.H., Ling, X.X., et al., 2015.Devonian to Permian Evolution of the Paleo-Tethys Ocean:New Evidence from U-Pb Zircon Dating and Sr-Nd-Pb Isotopes of the Darrehanjir-Mashhad "Ophiolites", NE Iran.Gondwana Research, 28(2):781-799. https://doi.org/10.1016/j.gr.2014.06.009 [22] Pan, G.T., Wang, L.Q., Li, R.S., et al., 2012.Tectonic Model of Archipelagic Arc-Basin Systems:The Key to the Continental Geology.Sedimentary Geology and Tethyan Geology, 32(3):1-20 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-TTSD201203000.htm [23] Rollinson, H.R., 1993.Using Geochemical Data:Evaluation, Presentation, Interpretation.Longman Scientific and Technical, John Wiley, UK. [24] Roser, B.P., Korsch, R.J., 1986.Determination of Tectonic Setting of Sandstone-Mudstone Suites Using SiO2 Content and K2O/Na2O Ratio.Journal of Geology, 94(5):635-650. https://doi.org/10.1086/629071 [25] Roser, B.P., Korsch, R.J., 1988.Provenance Signatures of Sandstone-Mudstone Suites Determined Using Discriminant Function Analysis of Major-Element Data.Chemical Geology, 67(1-2):119-139. https://doi.org/10.1016/0009-2541(88)90010-1 [26] Shao, L., Liu, Z.W., Zhu, W.L., 2000.Application of Sedimentary Geochemistry of Terrigenous Clastic Rock to Basin Analysis.Earth Science Frontiers, 7(3):297-304 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-DXQY200003038.htm [27] Shao, L., Stattegger, K., Li, W.H., 1998.Probe into Basin Tectonic Setting from Sandstone Geochemistry.Chinese Science Bulletin, 43(9):985-988 (in Chinese). [28] Shi, H., 2001.Remarks on the Carboniferous-Permian Lithostratigraphic Division in the Shenzha Area, Tibet, China.Journal of Chengdu University of Technology, 28(3):246-250 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-CDLG200103005.htm [29] Wang, C.S., Chen, W.X., Shan, F.L., 2016.Geochemical Characteristic of the Xungba Formation Sandstones in the Xungba Basin, Tibet, and Its Constraints on Provenance and Tectonic Setting.Acta Geologica Sinica, 90(6):1195-1207 (in Chinese with English abstract). http://www.en.cnki.com.cn/Article_en/CJFDTotal-DZXE201606011.htm [30] Wang, G.H., Han, F.L., Yang, Y.J., et al., 2009.Discovery and Geologic Significance of Late Paleozoic Accretionary Complexes in Central Qiangtang, Northern Tibet, China.Geological Bulletin of China, 28(9):1181-1187 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTotal-ZQYD200909004.htm [31] Wang, L.Q., Pan, G.T., Zhu, D.C., et al., 2008.Carboniferous-Permian Island Arc Orogenesis in the Gangdise Belt, Tibet, China:Evidence from Volcanic Rocks and Geochemistry.Geological Bulletin of China, 27(9):1509-1534 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-ZQYD200809014.htm [32] Xia, D.X., Liu, S.K., 2008.Stratigraphy (Lithostratic) of Xizang Autonomous Region.China University of Geosciences Press, Wuhan(in Chinese). [33] Xu, Z.Q., Yang, J.S., Li, W.C., et al., 2013.Paleo-Tethys System and Accretionary Orogen in the Tibet Plateau.Acta Petrologica Sinica, 29(6):1847-1860(in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-YSXB201306002.htm [34] Yang, J.H., Du, Y.S., Yu, X., et al., 2017.Early Permian Volcanic Fragment-Bearing Sandstone in Babu of Southeast Yunan:Indicative of Paleo-Tethyan Ocean Subduction.Earth Science, 42(1):24-34(in Chinese with English abstract). https://doi.org/10.3799/dqkx.2017.002 [35] Yao, J.X., Ji, Z.S., Wu, G.C., et al., 2007.Deri'angma-Xiala Section in the Xainza Area, Tibet, China:A Bridge for the Stratigraphic and Paleontological Correlation between Gondwana and Tethys during the Late Carboniferous and Early Permian.Geological Bulletin of China, 26(1):31-41 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTotal-ZQYD200701005.htm [36] Ye, H.F., Luo, J.N., Li, Y.T., et al., 2000.Tethyan Tectonic Domain and Petroleum Exploration.Sedimentary Geology and Tethyan Geology, 20(1):1-27(in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-TTSD200001000.htm [37] Yu, F., Li, Z.G., Zhao, Z.D., et al., 2010.Geochemistry and Implication of the Linzizong Volcanic Succession in Cuomai Area, Central-Western Gangdese, Tibet.Acta Petrologica Sinica, 26(7):2217-2225 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-YSXB201007023.htm [38] Zhai, Q.G., Wang, J., Hu, P.Y., et al., 2017.Late Paleozoic Granitoids from Central Qiangtang, Northern Tibetan Plateau:A Record of Paleo-Tethys Ocean Subduction.Journal of Asian Earth Sciences. https://doi.org/10.1016/j.jseaes.2017.07.030 [39] Zhang, H.F., Xu, W.C., Guo, J.Q., et al., 2007.Zircon U-Pb and Hf Isotopic Composition of Deformed Granite in the Southern Margin of the Gangdise Belt, Tibet:Evidence for Early Jurassic Subduction of Neo-Tethyan Oceanic Slab.Acta Petrologica Sinica, 23(6):1347-1353 (in Chinese with English abstract). http://www.ysxb.ac.cn/ysxb/ch/reader/create_pdf.aspx?file_no=200706128 [40] Zhang, Y.C., Shi, G.R., Shen, S.Z., 2013.A Review of Permian Stratigraphy, Palaeobiogeography and Palaeogeography of the Qinghai-Tibet Plateau.Gondwana Research, 24(1):55-76. https://doi.org/10.1016/j.gr.2012.06.010 [41] Zhu, D.C., Mo, X.X., Niu, Y.L., et al., 2009.Zircon U-Pb Dating and In-Situ Hf Isotopic Analysis of Permian Peraluminous Granite in the Lhasa Terrane, Southern Tibet:Implications for Permian Collisional Orogeny and Paleogeography.Tectonophysics, 469(1-4):48-60. https://doi.org/10.1016/j.tecto.2009.01.017 [42] Zhu, D.C., Mo, X.X., Zhao, Z.D., et al., 2009.Permian and Early Cretaceous Tectonomagmatism in Southern Tibet and Tethyan Evolution:New Perspective.Earth Science Frontiers, 16(2):1-20 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-DXQY200902002.htm [43] Zhu, L.D., Liu, D.Z., Tao, X.F., et al., 2004.Evolution the Lithofacies and Paleogeography in the Coqen Area of Tibet during the Carboniferious to Earlier Permian.Advance in Earth Sciences, 19(Suppl.):46-49(in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-DXJZ2004S1008.htm [44] 陈全红, 李文厚, 胡孝林, 等, 2012.鄂尔多斯盆地晚古生代沉积岩源区构造背景及物源分析.地质学报, 86(7):1150-1162. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=dizhixb201207011 [45] 杜德勋, 罗建宁, 陈明, 等, 1999.巴颜喀拉三叠纪沉积盆地岩石地球化学特征与物源区构造背景的探讨.岩相古地理, 19(2):1-20. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=yxgdl199902001 [46] 冯岩, 温珍河, 侯方辉, 等, 2013.青藏高原及其邻区晚古生代以来构造演化与古大陆再造.海洋地质与第四纪地质, 33(1):33-44. http://www.cqvip.com/QK/96122X/201301/45675248.html [47] 耿全如, 王立全, 潘桂棠, 等, 2007.西藏冈底斯带石炭纪陆缘裂陷作用:火山岩和地层学证据.地质学报, 81(9):1259-1276. http://www.cqvip.com/Main/Detail.aspx?id=25730352 [48] 黄汲清, 陈炳蔚, 1987.中国及邻区特提斯海的演化.北京:地质出版社. [49] 李良, 孙丰月, 李碧乐, 等, 2017.漠河盆地二十二站组砂岩形成时代及物源区构造环境判别.地球科学, 42(1):35-52. https://doi.org/10.3799/dqkx.2017.003 [50] 李朋武, 高锐, 管烨, 等, 2009.古亚洲洋和古特提斯洋的闭合时代——论二叠纪末生物灭绝事件的构造起因.吉林大学学报(地球科学版), 39(3):521-527. http://mall.cnki.net/magazine/Article/CCDZ200903024.htm [51] 李祥辉, 吴铬, 王成善, 等, 2001.西藏措勤盆地古生界-中生界岩相古地理演化.成都理工学院学报, 28(4):331-339. http://www.cqvip.com/Main/Detail.aspx?id=5724205 [52] 梁定益, 聂泽同, 郭铁鹰, 等, 1983.西藏阿里喀喇昆仑南部的冈瓦纳-特提斯相石炭二叠系.地球科学, 8(1):9-27. http://kns.cnki.net/KCMS/detail/detail.aspx?filename=dqkx198301001&dbname=CJFD&dbcode=CJFQ [53] 密文天, 朱利东, 杨文光, 等, 2017.西藏尼玛盆地北部古近系牛堡组物源及地质意义.地球科学, 42(2):240-257. https://doi.org/10.3799/dqkx.2017.018 [54] 潘桂棠, 王立全, 李荣社, 等, 2012.多岛弧盆系构造模式:认识大陆地质的关键.沉积与特提斯地质, 32 (3):1-20. http://www.cnki.com.cn/Article/CJFDTOTAL-TTSD201203000.htm [55] 邵磊, 刘志伟, 朱伟林, 2000.陆源碎屑岩地球化学在盆地分析中的应用.地学前缘, 7(3):297-304. http://mall.cnki.net/magazine/Article/GXDZ199301000.htm [56] 邵磊, Stattegger, K., 李文厚, 1998.从砂岩地球化学探讨盆地构造背景.科学通报, 43(9):985-988. http://www.oalib.com/paper/1677571 [57] 石和, 2001.西藏申扎地区石炭-二叠纪岩石地层划分之我见.成都理工学院学报, 28(3):246-250. http://www.cqvip.com/qk/91405A/200103/5286664.html [58] 王丛山, 陈文西, 单福龙, 2016.西藏雄巴地区中新世雄巴组砂岩地球化学特征及对物源区、构造背景的指示.地质学报, 90(6):1195-1207. http://www.cqvip.com/QK/95080X/201606/669314737.html [59] 王根厚, 韩芳林, 杨运军, 等, 2009.藏北羌塘中部晚古生代增生杂岩的发现及其地质意义.地质通报, 28(9):1181-1187. http://www.oalib.com/paper/4897708 [60] 王立全, 潘桂棠, 朱弟成, 等, 2008.西藏冈底斯带石炭纪-二叠纪岛弧造山作用:火山岩和地球化学证据.地质通报, 27(9):1509-1534. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=zgqydz200809012 [61] 西藏自治区地质矿产局, 1993.西藏自治区区城地质志.北京:地质出版社. [62] 夏代祥, 刘世坤, 2008.西藏自治区岩石地层.武汉:中国地质大学出版社. [63] 许志琴, 杨经绥, 李文昌, 等, 2013.青藏高原中的古特提斯体制与增生造山作用.岩石学报, 29(6):1847-1860. http://mall.cnki.net/magazine/article/YSXB201306002.htm [64] 杨江海, 杜远生, 于鑫, 等, 2017.滇东南八布早二叠世含火山岩屑砂岩指示古特提斯洋俯冲.地球科学, 42(1):24-34. https://doi.org/10.3799/dqkx.2017.002 [65] 姚建新, 纪占胜, 武桂春, 等, 2007.西藏申扎地区德日昂玛-下拉剖面:冈瓦纳和特提斯晚石炭世-早二叠世地层和古生物对比的桥梁.地质通报, 26(1):31-41. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=zgqydz200701005 [66] 叶和飞, 罗建宁, 李永铁, 等, 2000.特提斯构造域与油气勘探.沉积与特提斯地质, 20(1):1-27. http://mall.cnki.net/magazine/article/TTSD200001000.htm [67] 于枫, 李志国, 赵志丹, 等, 2010.西藏冈底斯带中西部措麦地区林子宗火山岩地球化学特征及意义.岩石学报, 26(7):2217-2225. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=ysxb98201007022 [68] 张宏飞, 徐旺春, 郭建秋, 等, 2007.冈底斯南缘变形花岗岩锆石U-Pb年龄和Hf同位素组成:新特提斯洋早侏罗世俯冲作用的证据.岩石学报, 23(6):1347-1353. http://kns.cnki.net/KCMS/detail/detail.aspx?filename=ysxb200706010&dbname=CJFD&dbcode=CJFQ [69] 朱弟成, 莫宣学, 赵志丹, 等, 2009.西藏南部二叠纪和早白垩世构造岩浆作用与特提斯演化:新观点.地学前缘, 16(2):1-20. http://www.cqvip.com/Main/Detail.aspx?id=30002512 [70] 朱利东, 刘登忠, 陶晓风, 等, 2004.西藏措勤地区石炭纪-早二叠世古地理演化.地球科学进展, 19(增刊):46-49. http://www.cqvip.com/QK/94287X/2004S1/1000335774.html