Garnet U-Pb Dating Constraints on the Timing of Breccia Pipes Formation and Genesis of Gold Mineralization in Yixingzhai Gold Deposit, Shanxi Province
-
摘要: 山西义兴寨金矿床是五台山-恒山金矿集区内最为典型的金矿床,也是山西省最大的金矿床.矿区产出有4个角砾岩筒,与金矿的形成具有紧密的联系.然而,有关该矿床角砾岩筒的形成时间和机制的研究十分欠缺,角砾岩筒与金矿化的关系仍不清楚.通过对角砾岩筒内的矽卡岩角砾中的石榴石和切割角砾岩的石英斑岩中的锆石开展了LA-ICPMS原位U-Pb同位素分析,结果表明角砾岩和石英斑岩的形成时间分别为140±2 Ma和141±1 Ma,从而精确限制了角砾岩筒的形成时间.以上研究表明,义兴寨矿区4个角砾岩筒的形成时间与石英斑岩侵位时代和金矿形成时间完全一致,表明角砾岩筒是岩浆分异的气液流体导致围岩发生隐爆而形成,而金矿化也可能与岩浆释放的热液流体直接相关.Abstract: Yixingzhai gold deposit, located in Wutaishan-Hengshan gold district, is the most important and largest gold deposit in Shanxi Province. Spatial distribution of the four breccia pipes shows the well relation with gold mineralization in Yixingzhai deposit. However, robust constraints on the timing of the breccia pipes formation in this deposit are lacking. The relationship between the gold mineralization and breccia formation is also ambiguous. In this paper, systematic U-Pb dating of garnet crystals from skarn breccia and zircon grains from the quartz porphyry were carried out by using laser ablation-inductively coupled plasma mass spectrometry (LA-ICPMS). The garnet grains yielded the 207Pb-corrected weighted mean 206Pb/238U dates of 140±2 Ma, which is remarkably consistent with U-Pb age of zircon grains (141±1 Ma) from the quartz porphyry in this deposit. This demonstrates that the formation of breccia pipes was genetically related to the coeval magmatism. Therefore, we proposed that gas and hydrothermal fluid released from magma increase the fluid pressure, causing the formation of breccia pipes by cryptoexplosion of the wall rocks. The age of the breccia pipes is also consistent with the formation time of gold mineralization, suggesting that the hydrothermal gold mineralization may link with the fluids released from magma.
-
Key words:
- garnet U-Pb dating /
- breccia pipes /
- cryptoexplosion /
- Yixingzhai gold deposit /
- petrology
-
图 2 铁塘硐直立的石英斑岩切割矽卡岩角砾(a);石英斑岩脉中包裹矽卡岩角砾(b);2号含金石英脉矿体切割铁塘硐中角砾岩(c);黑色自形的石榴石赋存于矽卡岩角砾中(d)
Fig. 2. Photographs showing the quartz porphyries cut through (a) and contain skarn breccias (b) at the Tietangdong; No. 2 gold-bearing quartz vein cut through the breccias (c); black and idiomorphic garnet in skarn breccia (d)
图 3 BSE图像显示角砾岩中石榴石结构较为均匀,且包裹有透辉石(Di)和赤铁矿(Hem)(a);石榴石中钙铁榴石(Ad)和钙铝榴石(Gs)成分相关性(b);石榴石中气液两相流体包裹体(c);石榴石中含NaCl子晶的流体包裹体(d)
Fig. 3. BSE image showing the homogenous garnet includes diopside (Di) and hematite (Hem) (a); the diagram of the correlation between andradite (Ad) and grossular (Gs) (b); microphotographs showing garnet includes vapor-liquid (c) and vapor- liquid-salt fluid (d) inclusions
图 4 石榴石稀土元素球粒陨石标准配分图(a);石榴石的U含量和稀土含量相关性(b);LA⁃ICPMS点分析时间和元素信号变化关系(c)
Fig. 4. Chondrite-normalized REE patterns of garnet (a); the diagram of the correlation between uranium and total REE contents (b); representative time-resolved signals by depth profile analysis (c) of garnets from the Yixingzhai deposit
-
[1] Barrie, C. T., 1990. U-Pb Garnet and Titanite Age for the Bristol Township Lamprophyre Suite, Western Abitibi Subprovince, Canada. Canadian Journal of Earth Sciences, 27(11):1451-1456. https://doi.org/10.1139/e90-153 [2] Baxter, E. F., Scherer, E. E., 2013. Garnet Geochronology:Timekeeper of Tectonometamorphic Processes. Elements, 9(6):433-438. https://doi.org/10.2113/gselements.9.6.433 [3] Burton, K. W., O'Nions, R. K., 1991. High-Resolution Garnet Chronometry and the Rates of Metamorphic Processes. Earth and Planetary Science Letters, 107(3-4):649-671. https://doi.org/10.1016/0012-821x(91)90109-u [4] Burton, K. W., Kohn, M. J., Cohen, A. S., et al., 1995. The Relative Diffusion of Pb, Nd, Sr and O in Garnet. Earth and Planetary Science Letters, 133(1-2):199-211. https://doi.org/10.1016/0012-821x(95)00067-m [5] Burton, K. W., O'Nions, R. K., 1992. The Timing of Mineral Growth across a Regional Metamorphic Sequence. Nature, 357(6375):235-238. https://doi.org/10.1038/357235a0 [6] Chen, W., Zhang, W. Q., Simonetti, A., et al., 2016. Mineral Chemistry of Melanite from Calcitic Ijolite, the Oka Carbonatite Complex, Canada:Implications for Multi-Pulse Magma Mixing. Journal of Earth Science, 27(4):599-610. https://doi.org/10.1007/s12583-016-0715-3 [7] Deng, X. D., Li, J. W., Luo, T., et al., 2017. Dating Magmatic and Hydrothermal Processes Using Andradite-Rich Garnet U-Pb Geochronometry. Contributions to Mineralogy and Petrology, 172(9):71. https://doi.org/10.1007/s00410-017-1389-2 [8] Dewolf, C. P., Zeissler, C. J., Halliday, A. N., et al., 1996. The Role of Inclusions in U-Pb and Sm-Nd Garnet Geochronology:Stepwise Dissolution Experiments and Trace Uranium Mapping by Fission Track Analysis. Geochimica et Cosmochimica Acta, 60(1):121-134. https://doi.org/10.1016/0016-7037(95)00367-3 [9] Ding, Q. F., Yan, W., Zhang, B. L., 2016. Sulfur- and Lead-Isotope Geochemistry of the Balugou Cu-Pb-Zn Skarn Deposit in the Wulonggou Area in the Eastern Kunlun Orogen, NW China. Journal of Earth Science, 27(5):740-750. https://doi.org/10.1007/s12583-015-0574-3 [10] Gaspar, M., Knaack, C., Meinert, L. D., et al., 2008. REE in Skarn Systems:A LA-ICP-MS Study of Garnets from the Crown Jewel Gold Deposit. Geochimica et Cosmochimica Acta, 72(1):185-205. https://doi.org/10.1016/j.gca.2007.09.033 [11] Hu, Z. C., Zhang, W., Liu, Y. S., et al., 2015. "Wave" Signal-Smoothing and Mercury-Removing Device for Laser Ablation Quadrupole and Multiple Collector ICPMS Analysis:Application to Lead Isotope Analysis. Analytical Chemistry, 87(2):1152-1157. https://doi.org/10.1021/ac503749k [12] Jamtveit, B., Hervig, R. L., 1994. Constraints on Transport and Kinetics in Hydrothermal Systems from Zoned Garnet Crystals. Science, 263(5146):505-508. https://doi.org/10.1126/science.263.5146.505 [13] Jia, Y. S., Ge, Q. H., 1994. Geological Characteristics and Genesis of Yixingzhai Gold Deposit, Shanxi Province. Gold, 15(10):13-16 (in Chinese). [14] Jung, S., Mezger, K., 2003. U-Pb Garnet Chronometry in High-Grade Rocks-Case Studies from the Central Damara Orogen (Namibia) and Implications for the Interpretation of Sm-Nd Garnet Ages and the Role of High U-Th Inclusions. Contributions to Mineralogy and Petrology, 146(3):382-396. https://doi.org/10.1007/s00410-003-0506-6 [15] Kwak, T. A. P., Abeysinghe, P. B., 1987. Rare Earth and Uranium Minerals Present as Daughter Crystals in Fluid Inclusions, Mary Kathleen U-REE Skarn, Queensland, Australia. Mineralogical Magazine, 51(363):665-670. https://doi.org/10.1180/minmag.1987.051.363.05 [16] Li, S. R., Santosh, M., Zhang, H. F., et al., 2014. Metallogeny in Response to Lithospheric Thinning and Craton Destruction:Geochemistry and U-Pb Zircon Chronology of the Yixingzhai Gold Deposit, Central North China Craton. Ore Geology Reviews, 56:457-471. https://doi.org/10.1016/j.oregeorev.2012.10.008 [17] Lima, S. M., Corfu, F., Neiva, A. M. R., et al., 2012. U-Pb ID-TIMS Dating Applied to U-Rich Inclusions in Garnet. American Mineralogist, 97(5-6):800-806. https://doi.org/10.2138/am.2012.3930 [18] Liu, L. D., Li, Y., Lan, X., 1999. A Discussion on Breccia/Stockwork-Porphyry Type Gold Deposits. Mineral Deposits, 18(1):29-36 (in Chinese with English abstract). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=kcdz199901004 [19] Liu, Y. S., Gao, S., Hu, Z. C., et al., 2010. Continental and Oceanic Crust Recycling-Induced Melt-Peridotite Interactions in the Trans-North China Orogen:U-Pb Dating, Hf Isotopes and Trace Elements in Zircons from Mantle Xenoliths. Journal of Petrology, 51(1-2):537-571. https://doi.org/10.1093/petrology/egp082 [20] Liu, Y. S., Hu, Z. C., Gao, S., et al., 2008. In Situ Analysis of Major and Trace Elements of Anhydrous Minerals by LA-ICP-MS without Applying an Internal Standard. Chemical Geology, 257(1-2):34-43. https://doi.org/10.1016/j.chemgeo.2008.08.004 [21] Ludwig, K. R., 2003. ISOPLOT 3.00: A Geochronological Toolkit for Microsoft Excel. Berkeley Geochronology Center, Berkeley. [22] Meinert, L. D., Dipple, G. M., Nicolescu, S., 2005. World Skarn Deposits. Economic Geology 100th Anniversary Volume, Society of Economic Geologists, Littleton. [23] Mezger, K., Hanson, G. N., Bohlen, S. R., 1989. U-Pb Systematics of Garnet:Dating the Growth of Garnet in the Late Archean Pikwitonei Granulite Domain at Cauchon and Natawahunan Lakes, Manitoba, Canada. Contributions to Mineralogy and Petrology, 101(2):136-148. https://doi.org/10.1007/bf00375301 [24] Park, C., Song, Y., Kang, I. M., et al., 2017. Metasomatic Changes during Periodic Fluid Flux Recorded in Grandite Garnet from the Weondong W-Skarn Deposit, South Korea. Chemical Geology, 451:135-153. https://doi.org/10.1016/j.chemgeo.2017.01.011 [25] Shao, Y. J., Zhang, Y. Z., Zhang, J. D., et al., 2008. Formation Mechanism of Breccia Pipe Type in Yixingzhai Gold Deposit. Journal of Central South University of Technology, 15(1):89-94. https://doi.org/10.1007/s11771-008-0018-7 [26] Seman, S., Stockli, D. F., McLean, N. M., 2017. U-Pb Geochronology of Grossular-Andradite Garnet. Chemical Geology, 460:106-116. https://doi.org/10.1016/j.chemgeo.2017.04.020 [27] Smith, M. P., Henderson, P., Jeffries, T. E. R., et al., 2004. The Rare Earth Elements and Uranium in Garnets from the Beinn an Dubhaich Aureole, Skye, Scotland, UK:Constraints on Processes in a Dynamic Hydrothermal System. Journal of Petrology, 45(3):457-484. https://doi.org/10.1093/petrology/egg087 [28] Song, B. C., Zhang, B. L., Wang, J., et al., 2002. Discuss on Minerogenesis Mechanism of Crypto-Explosion Type Gold Deposit. Mineral Deposits, 21(S1):662-665 (in Chinese). [29] Vance, D., Holland, T., 1993. A Detailed Isotopic and Petrological Study of a Single Garnet from the Gassetts Schist, Vermont. Contributions to Mineralogy and Petrology, 114(1):101-118. https://doi.org/10.1007/bf00307868 [30] Vance, D., Meier, M., Oberli, F., 1998. The Influence of High U-Th Inclusions on the U-Th-Pb Systematics of Almandine-Pyrope Garnet:Results of a Combined Bulk Dissolution, Stepwise-Leaching, and SEM Study. Geochimica et Cosmochimica Acta, 62(21-22):3527-3540. https://doi.org/10.1016/s0016-7037(98)00252-x [31] Wiedenbeck, M., Allé, P., Corfu, F., et al., 1995. Three Natural Zircon Standards for U-Th-Pb, Lu-Hf, Trace Element and Ree Analyses. Geostandards and Geoanalytical Research, 19(1):1-23. https://doi.org/10.1111/j.1751-908x.1995.tb00147.x [32] Ye, R., Zhao, L. S., Shen, Y. L., 1999. Geochemistry Features of Yixingzhai Gold Deposit in Shanxi Province. Geoscience, 13(4):415-418 (in Chinese with English abstract). [33] Zhang, J. Q., Li, S. R., Santosh, M., et al., 2015. Timing and Origin of Mesozoic Magmatism and Metallogeny in the Wutai-Hengshan Region:Implications for Destruction of the North China Craton. Journal of Asian Earth Sciences, 113:677-694. https://doi.org/10.1016/j.jseaes.2015.05.004 [34] Zhang, J. Q., Li, S. R., Santosh, M., et al., 2017. The Magmatic-Hydrothermal Mineralization Systems of the Yixingzhai and Xinzhuang Gold Deposits in the Central North China Craton. Ore Geology Reviews, 88:416-435. https://doi.org/10.1016/j.oregeorev.2017.05.030 [35] Zhao, B., Li, T. J., Li, Z. P., et al., 1982. A Study on Garnet from some Skarn Deposits in China. Acta Mineralogica Sinica, 2(4):296-304 (in Chinese with English abstract). [36] Zong, K. Q., Klemd, R., Yuan, Y., et al., 2017. The Assembly of Rodinia:The Correlation of Early Neoproterozoic (ca. 900 Ma) High-Grade Metamorphism and Continental Arc Formation in the Southern Beishan Orogen, Southern Central Asian Orogenic Belt (CAOB). Precambrian Research, 290:32-48. https://doi.org/10.1016/j.precamres.2016.12.010 [37] 贾永山, 戈全厚, 1994.山西省义兴寨金矿床地质特征及成因探讨.黄金, 15(10):13-16. [38] 刘连登, 李颖, 兰翔, 1999.论角砾/网脉-斑岩型金矿.矿床地质, 18(1):29-36. doi: 10.3969/j.issn.0258-7106.1999.01.004 [39] 宋保昌, 张宝林, 王杰, 等, 2002.隐爆角砾岩型金矿的成矿机理探讨.矿床地质, 21(S1):662-665. http://d.old.wanfangdata.com.cn/Conference/4400571 [40] 叶荣, 赵伦山, 沈镛立, 1999.山西义兴寨金矿床地球化学研究.现代地质, 13(4):415-418. http://d.old.wanfangdata.com.cn/Thesis/Y1324863 [41] 赵斌, 李统锦, 李昭平, 等, 1982.我国一些矿区矽卡岩中石榴石的研究.矿物学报, 2(4):296-604. doi: 10.3321/j.issn:1000-4734.1982.04.009 -
dqkx-45-1-108-Table1-3.pdf