Unique Structure and Surface-Interface Reactivity of Nanostructured Minerals
-
摘要: 纳米矿物是纳米地球科学(Nanogeoscience)的核心研究对象之一.鉴于"纳米矿物"的概念在实际运用时较宽泛,有时与经典定义不符,建议用"纳米结构矿物"代替"纳米矿物",并简析了纳米结构矿物(Nanostructured Minerals)的概念.以管状纳米结构矿物(埃洛石和伊毛缟石)、球状纳米结构矿物(水铝英石)、层间纳米结构矿物(蒙脱石和伊/蒙混层矿物)和多孔纳米结构矿物(硅藻质蛋白石)为例,分析了纳米结构矿物的结构、表面基团的特殊性及其所衍生的特殊界面反应性,讨论了它们对矿物资源利用和油气生成等地球物质循环过程的重要意义.Abstract: Research on naturally occurring nanosized minerals is a central domain of Nanogeoscience. However, the use of the concept "Nanominerals" is acutally not as strict as it is supposed, i.e., sometimes the use of the concept is inconsistent with the classical definition of "Nanominerals". In this paper, the concept "Nanostructured Minerals" is proposed to replace the concept "Nanominerals", and a brief description on the suggested concept, as well as a related discussion, is given. A definition of the term nanostructured minerals is proposed and discussed. Exemplified by the tubular nanostructured minerals (halloysite and imogolite), the globular nanostructured mineral (allophane) and the porous nanostructured mineral (diatomaceous opal-A), the unique structure and surface-interface reactivity of nanostructured minerals are comprehensively discussed. The role of the above-mentioned uniqueness in the applications of the nanostructured minerals is summarized. In addition, the functions of the interlayer nanostructure exhibited by some nanostructured minerals such as montmorillonite on the earth matter circle (hydrocarbon generation and shale gas storage) are discussed.
-
图 1 (a) 埃洛石层间结构和(b)埃洛石纳米管结构示意
Fig. 1. Schematic diagram of crystalline structure of halloysite (a) and structure of halloysite particle (b)
图 2 不同产地埃洛石TEM图
a.新西兰Matauri Bay;b.澳大利亚Te Puke;c.澳大利亚Kalgoorlie;d.新西兰Opotiki;e.澳大利亚Camel Lake;f.新西兰Northland;g.美国Atlas Mine;h.中国贵州大方.据Joussein(2016)及本研究组前期工作(Yuan et al., 2008)
Fig. 2. TEM images of halloysite sourced from different mines
图 3 Hal-1100的TEM图(a~d)和Hal-700,Hal-800,Hal-900,Hal-700/D,Hal-800/D,Hal-700/M的漫反射红外光谱图(e~j)
Fig. 3. TEM images of Hal-1100 (a-d) and DRIFT spectra of Hal-700, Hal-800, Hal-900, Hal-700/D, Hal-800/D, Hal-700/M (e-j)
图 4 有机硅烷与埃洛石内腔表面羟基反应机制示意
据Yuan et al.(2008);a.低度聚合的硅烷通过多种作用力与内腔表面羟基形成交联结构;b.硅烷水解产物硅醇直接嫁接于表面羟基
Fig. 4. Schematic representation of the proposed reaction mechanism between organic silane and inner surface hydroxyl of halloysite
图 5 埃洛石表面断裂的TEM图(a)和埃洛石边缘和表面缺陷的AFM图(b~c)
Fig. 5. TEM image of the surface breakage of halloysite (a) and AFM images of the edges and surface defects of halloysite (b-c)
图 6 埃洛石管状端部附着的纳米级稀土矿物颗粒的形貌图及其EDX谱图
Fig. 6. Morphology of nano-sized REE grains attached on polar ends of halloysite tubes and EDX spectrum
图 7 伊毛缟石和水铝英石的结构与形貌
a, b, d, f, g.据本组未发表数据;c, e.据Levard et al.(2012)和Bishop et al.(2013).a.伊毛缟石结构示意图;b.合成伊毛缟石的AFM图;c.伊毛缟石和水铝英石结构单元示意图;d.天然水铝英石矿样;e.水铝英石结构示意图;f, g.合成水铝英石的STEM和AFM图
Fig. 7. Structure and morphology of imogolite and allophane
图 9 伊毛缟石六方堆积形成的管束示意
据Bonelli(2016).A、B和C是其中一管束对应的孔
Fig. 9. Ideal representation of three bundles formed by imogolite organized into a nearly hexagonal packing
图 10 硅藻质蛋白石表面羟基和吸附水类型、脱羟过程及硅烷接枝反应机理示意
Fig. 10. A schematic representation of the types of proton species on diatom-silica surface, the process of dehydroxylation and the roles of hydroxyl species in silylation reaction
图 11 不同温度热处理后的硅藻质蛋白石与三甲基氯硅烷发生接枝反应产物的1H MAS NMR谱(a)以及热处理硅藻质蛋白石与γ-氨丙基三乙氧基硅烷接枝反应产物的热重曲线(b)
PD.硅藻质蛋白石;PD-T.接枝反应产物;样品名中的数字为热处理温度(℃);TG曲线表示质量与温度的关系;DTG曲线表示失重速率与温度的关系.a.据Yuan et al.(2006);b.据Yuan et al.(2013a)
Fig. 11. 1H MAS NMR spectra of silylated diatom-silica samples (a) and TG and DTG curves of the γ-aminopropyl triethoxysilane-modified diatom-silica sample (b)
图 12 纳米磁铁矿(a)均匀负载于硅藻蛋白石(b)表面后所形成的硅藻蛋白石-磁铁矿复合体(c~h)的透射电镜(TEM)图
据Yuan et al.(2010).a.磁铁矿纳米颗粒;b.硅藻质蛋白石;c~h.硅藻质蛋白石-磁铁矿复合物的TEM图
Fig. 12. TEM images of magnetite nanoparticles (a); diatom-silica (b) and diatom-silica/magnetite nanocomposites (c-h)
图 14 硅藻蛋白石及硅藻蛋白石基多孔炭的扫描电镜图、透射电镜图及模板炭对亚甲基蓝的吸附等温线
据Liu et al.(2010, 2012).a~f.圆筛藻起源硅藻质蛋白石及利用其固体酸性制备的多孔炭:a.单颗粒硅藻质蛋白石的扫描电镜图;b.多孔炭的柱状形貌扫描电镜图;c.多孔炭的有序大孔排列扫描电镜图;d.有序的大孔炭形貌透射电镜图;e.炭柱形貌透射电镜图(插入部分为选区电子衍射图);f.炭柱中的介孔结构透射电镜图(插入部分为放大后的微孔结构);g.舟船藻起源硅藻质蛋白石所制备的多孔炭扫描电镜图(插入部分为炭管放大图);h.不同硅藻起源硅藻质蛋白石所制备多孔炭的亚甲基蓝吸附等温线
Fig. 14. The SEM, TEM of diatomceous silica of coscinodiscus sp. and porous carbon prepared by its solid acidity and methylene blue adsorption isotherms of different porous carbons
图 15 蒙脱石表面可能的固体酸性来源示意
B site.B酸位;L site.L酸位.据Bu et al.(2017)
Fig. 15. Schematic representation of the possible sources of solid acid sites of montmorillonite
图 16 ALA及蒙脱石-ALA层外复合体(Mt-ALA)和层间复合体(Mtinter-ALA)的3D红外光谱图和高压封闭体系下的总气态烃产率(∑C1-5),CO2产率和及异构烃/正构烃比值
a~c.据Liu et al.(2013b);d~f.据Yuan et al.(2013b).a.ALA的3D红外光谱图;b~c.层外复合体(Mt-ALA)和层间复合体(Mtinter-ALA)的3D红外光谱图;d.高压封闭体系下ALA及其蒙脱石层外(Mt-ALA)和层间复合体(Mtinter-ALA)的总气态烃产率(∑C1-5);e.CO2产率;f.异构烃/正构烃比值
Fig. 16. 3D FTIR spectrum and the total gaseous hydrocarbon (∑C1-5) and CO2 of ALA and the external clay-OM complex (Mt-ALA) and the interlayer clay-OM complex (Mtinter-ALA) in the high pressure closed system and the ratios of iso-alkanes/n-alkanes
图 17 纯相有机质热解(a)和蒙脱石层间有机质热解(b)
据Bu et al.(2017).a.纯相有机质热解以亲核反应为主;b.蒙脱石层间有机质热解以霍夫曼消除反应为主
Fig. 17. Schematic representation of the processes of Nucleophilic substitution reaction in the pyrolysis of pure OM (OTAB) (a) and Hoffmann elimination reaction in the pyrolysis of the interlayer clay-OM complex (Mtinter-OTAB) (b)
图 18 蒙脱石(Mt)、高岭石(Kaol)、累托石(Rt)和伊利石(Il)的甲烷吸附曲线(a)和蒙脱石热处理产物的甲烷吸附曲线(b)
a.据Liu et al.(2013c)及部分未发表数据;b.据Liu et al.(2013c)
Fig. 18. The adsorption isotherms of CH4 on montmorillonite (Mt), kaolinite (Kaol), rectorite (Rt) and illite (Il) (a) and Mt and its heated products (b)
-
[1] Aringhieri, R., 2004.Nanoporosity Characteristics of Some Natural Clay Minerals and Soils.Clays and Clay Minerals, 52(6):700-704. https://doi.org/10.1346/CCMN.2004.0520604 [2] Bao, Z.W., 1992.A Geochemical Study of the Granitoid Weathering Crust in Southeast China.Geochimica, (2):166-174 (in Chinese with English abstract). https://www.deepdyve.com/lp/elsevier/geochemistry-of-mineralization-with-exchangeable-rey-in-the-weathering-oxILZOT0RM [3] Berthonneau, J., Grauby, O., Abuhaikal, M., et al., 2016.Evolution of Organo-Clay Composites with Respect to Thermal Maturity in Type Ⅱ Organic-Rich Source Rocks.Geochimica et Cosmochimica Acta, 195:68-83. https://doi.org/10.1016/j.gca.2016.09.008 [4] Bishop, J.L., Rampe, E.B., 2016.Evidence for a Changing Martian Climate from the Mineralogy at Mawrth Vallis.Earth and Planetary Science Letters, 448:42-48. https://doi.org/10.1016/j.epsl.2016.04.031 [5] Bishop, J.L., Rampe, E.B., Bish, D.L., et al., 2013.Spectral and Hydration Properties of Allophane and Imogolite.Clays and Clay Minerals, 61(1):57-74. https://doi.org/10.1346/CCMN.2013.0610105 [6] Bonelli, B., 2016. Surface Chemical Modification of Imogolite. In: Yuan, P., Thill, A., Bergaya, F., eds, Nanosized Tubular Clay Minerals. Elsevier, Amsterdam, 279-307. https://doi.org/10.1016/B978-0-08-100293-3.00012-1 [7] Bonelli, B., Bottero, I., Ballarini, N., et al., 2009.IR Spectroscopic and Catalytic Characterization of the Acidity of Imogolite-Based Systems.Journal of Catalysis, 264(1):15-30. https://doi.org/10.1016/j.jcat.2009.03.003 [8] Bowker, K.A., 2007.Barnett Shale Gas Production, Fort Worth Basin:Issues and Discussion.AAPG Bulletin, 91(4):523-533. https://doi.org/10.1306/06190606018 [9] Braun, J.J., Pagel, M., Muller, J.P., et al., 1990.Cerium Anomalies in Lateritic Profiles.Geochimica et Cosmochimica Acta, 54(3):781-795.https://doi.org/0.1016/0016-7037(90)90373-S doi: 10.1016/0016-7037(90)90373-S [10] Bu, H.L., Yuan, P., Liu, H., et al., 2017.Effects of Complexation between Organic Matter (OM) and Clay Mineral on OM Pyrolysis.Geochimica et Cosmochimica Acta, 212:1-15. https://doi.org/10.1016/j.gca.2017.04.045 [11] Cai, J.G., Bao, Y.J., Yang, S.Y., et al., 2007.Occurrence and Enrichment Mechanism of Organics in Muddy Sediments and Mudstones.Science China Earth Sciences, 37(2):244-253 (in Chinese). http://science.sciencemag.org/content/343/6169/386 [12] Cai, J.G., Lu, L.F., Ding, F., et al., 2009.Significance of Interaction between Soluble Organic Matter and Clay Minerals in Muddy Source Rocks.Journal of Tongji University (Natural Science), 37(12):1679-1684 (in Chinese with English abstract). https://doi.org/10.3969/j.issn.0253-374x.2009.12.022 [13] Cai, J.G., Lu, L.F., Song, M.S., et al., 2010.Characteristics of Extraction of Organo-Clay Complexes and Their Significance to Petroleum Geology.Oil & Gas Geology, 31(3):300-308 (in Chinese with English abstract). https://www.researchgate.net/publication/285478070_Characteristics_of_extraction_of_organo-clay_complexes_and_their_significance_to_petroleum_geology [14] Cardott, B.J., 2012.Thermal Maturity of Woodford Shale Gas and Oil Plays, Oklahoma, USA.International Journal of Coal Geology, 103(103):109-119. https://doi.org/10.1016/j.coal.2012.06.004 [15] Chalmers, G.R.L., Bustin, R.M., 2007.The Organic Matter Distribution and Methane Capacity of the Lower Cretaceous Strata of Northeastern British Columbia, Canada.International Journal of Coal Geology, 70(1-3):223-239. https://doi.org/10.1016/j.coal.2006.05.001 [16] Chen, J.Z., 1994.Development of Nano Science and Technology and Study of Nanomineralogy.Geological Science and Technology Information, 13(2):32-38 (in Chinese with English abstract). [17] Chen, T. H., Xie, Q. Q., Liu, H. B., et al., 2015. Nanominerals, Mineral Nanoparticles and Resource of Nanominerals. The 1st Chinese Academic Conference on Nanogeoscience in Conjunction with the Inaugural Meeting of Nanogeoscience Committee, Geological Society of China (in Chinese). [18] Cheng, A.L., Huang, W.L., 2004.Selective Adsorption of Hydrocarbon Gases on Clays and Organic Matter.Organic Geochemistry, 35(4):413-423. https://doi.org/10.1016/j.orggeochem.2004.01.007 [19] Chi, R.A., Tian, J., 2007.Review of Weathered Crust Rare Earth Ore.Journal of the Chinese Rare Earth Society, 25(6):641-650 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-XTXB200706000.htm [20] Chi, R.A., Tian, J., Luo, X.P., et al., 2012.The Basic Research on the Weathered Crust Elution-Deposited Rare Earth Ores.Nonferrous Metals Science and Engineering, 3(4):1-13 (in Chinese with English abstract). https://doi.org/10.13264/j.cnki.ysjskx.2012.04.010 [21] Cooper, J.E., Bray, E.E., 1963.A Postulated Role of Fatty Acids in Petroleum Formation.Geochimica et Cosmochimica Acta, 27(11):1113-1127. https://doi.org/10.1016/0016-7037(63)90093-0 [22] Dahlgren, R.A., Saigusa, M., Ugolini, F.C., 2004.The Nature, Properties and Management of Volcanic Soils.Advances in Agronomy, 82(3):113-182. https://doi.org/10.1016/S0065-2113(03)82003-5 [23] Ding, Z.H., 1999.Dilemma and Chance in Mineralogy-Enlightenment to Mineralogy from Nano-Science.Acta Mineralogica Sinica, 19(3):379-384 (in Chinese with English abstract). [24] Dong, F.Q., Zhou, S.P., Li, S., 2014.Research Advance on Biological Activities of Inorganic (Mineral) Nanoparticles.Acta Mineralogica Sinica, 34(1):1-6 (in Chinese with English abstract). doi: 10.1016/j.chnaes.2013.09.003 [25] Du, P.X., Yuan, P., Thill, A., et al., 2017.Insights into the Formation Mechanism of Imogolite from a Full-Range Observation of Its Sol-Gel Growth.Applied Clay Science, 150:115-124. https://doi.org/10.1016/j.clay.2017.09.021 [26] Edmeades, D.C., Metherell, A.K., Waller, J.E., 2006.Defining the Relationships between Pasture Production and Soil P and the Development of a Dynamic P Model for New Zealand Pastures:A Review of Recent Developments.New Zealand Journal of Agricultural Research, 49(2):207-222. https://doi.org/10.1080/00288233.2006.9513711 [27] Fan, C.Z., Zhang, Y., Chen, Z.H., et al., 2015.The Study of Clay Minerals from Weathered Crust Rare Earth Ores in Southern Jiangxi Province.Acta Petrologica et Mineralogica, 34(6):803-810 (in Chinese with English abstract). https://doi.org/10.3969/j.issn.1000-6524.2015.06.002 [28] Feller, C., Beare, M.H., 1997.Physical Control of Soil Organic Matter Dynamics in the Tropics.Geoderma, 79(1-4):69-116. https://doi.org/10.1016/S0016-7061(97)00039-6 [29] Fernandez-Martinez, A., Michot, L. J., 2016. Physicochemical Properties of Imogolite. In: Yuan, P., Thill, A., Bergaya, F., eds., Nanosized Tubular Clay Minerals. Elsevier, Amsterdam, 202-222. https://doi.org/10.1016/B978-0-08-100293-3.00009-1 [30] Gier, R.E., 2000.Clay Mineral and Organic Diagenesis of the Lower Oligocene Schöneck Fishshale, Western Austrian Molasse Basin.Clay Minerals, 35(4):709-717. https://doi.org/10.1180/000985500547151 [31] Grim, R.E., Asllaway, W.H., Cuthbert, F.L., 1947.Reaction of Different Clay Minerals with Some Organic Caions.Journal of the American Ceramic Society, 30(5):137-142. https://doi.org/10.1111/j.1151-2916.1947.tb19549.x [32] Guan, P., Xu, Y.C., Liu, W.H., 1998.Different Occurrences and Quantitative Estimation of Organic Matter in Source Rocks.Chinese Science Bulletin, 43(14):1556-1559 (in Chinese with English abstract). https://www.researchgate.net/publication/285068632_Quantitative_estimation_of_insoluble_inorganic_phosphate_solubilization [33] Guimarães, L., Enyashin, A.N., Frenzel, J., et al., 2007.Imogolite Nanotubes:Stability, Electronic, and Mechanical Properties.ACS Nano, 1(4):362-368. https://doi.org/10.1021/nn700184k [34] Hassink, J., 1997.The Capacity of Soils to Preserve Organic C and N by Their Association with Clay and Silt Particles.Plant and Soil, 191(1):77-87. https://doi.org/10.1023/A:1004213929699 [35] Heller-Kallai, L., Aizenshtat, Z., Miloslavski, I., 1984.The Effect of Various Clay Minerals on the Thermal Decomposition of Stearic Acid under 'Bulk Flow' Conditions.Clay Minerals, 19(5):779-788. https://doi.org/10.1180/claymin.1984.019.5.08 [36] Hochella, M.F.Jr., 2002.Nanoscience and Technology:The Next Revolution in the Earth Sciences.Earth and Planetary Science Letters, 203(2):593-605. https://doi.org/10.1016/S0012-821X(02)00818-X [37] Hochella, M.F.Jr., 2006.The Case for Nanogeoscience.Annals of the New York Academy of Sciences, 1093(1):108-122. https://doi.org/10.1196/annals.1382.008 [38] Hochella, M.F.Jr., 2008.Nanogeoscience:From Origins to Cutting-Edge Applications.Elements, 4(6):373-379. https://doi.org/10.2113/gselements.4.6.373 [39] Hochella, M.F.Jr., Lower, S.K., Maurice, P.A., et al., 2008.Nanominerals, Mineral Nanoparticles, and Earth Systems.Science, 19(5870):1631. https://doi.org/10.1126/science.1141134 [40] Hower, J., Eslinger, E.V., Hower, M.E., et al., 1976.Mechanism of Burial Metamorphism of Argillaceous Sediment:1.Mineralogical and Chemical Evidence.Geological Society of America Bulletin, 87(5):725-737.https://doi.org/10.1130/0016-7606(1976)87<725:MOBMOA>2.0.CO2 doi: 10.1130/0016-7606(1976)87<725:MOBMOA>2.0.CO2 [41] Huang, F., Wang, R.C., Zhang, W.L., et al., 2009.Morphologic Characteristics and Growth Interface Stability of Nano-Micron FeS2 Whiskers.Chinese Science Bulletin, 54(22):3491-3497 (in Chinese). https://doi.org/10.1007/s11434-009-0617-1 [42] Jha, A., Garade, A.C., Shirai, M., et al., 2013.Metal Cation-Exchanged Montmorillonite Clay as Catalysts for Hydroxyalkylation Reaction.Applied Clay Science, 74(4):141-146. https://doi.org/10.1016/j.clay.2012.10.005 [43] Ji, L.M., Zhang, T.W., Milliken, K.L., et al., 2012.Experimental Investigation of Main Controls to Methane Adsorption in Clay-Rich Rocks.Applied Geochemistry, 27(12):2533-2545. https://doi.org/10.1016/j.apgeochem.2012.08.027 [44] Jiang, Z.C., 1993.Nanoscience and Geoscience.Geology-Geochemistry, (2):22-25 (in Chinese). [45] Jiang, Z.C., 1995.Problems of Nanoscience in Geosciences.Bulletin of Mineralogy, Petrology and Geochemistry, 14(4):262-266 (in Chinese). [46] Joussein, E., 2016. Geology and Mineralogy of Nanosized Tubular Halloysite. In: Yuan, P., Thill, A., Bergaya, F., eds., Nanosized Tubular Clay Minerals. Elsevier, Amsterdam, 12-48. https://doi.org/10.1016/B978-0-08-100293-3.00002-9 [47] Joussein, E., Petit, S., Churchman, J., et al., 2005.Halloysite Clay Minerals-A Review.Clay Minerals, 40(4):383-426. https://doi.org/10.1180/0009855054040180 [48] Ju, Y.W., Sun, Y., Wan, Q., et al., 2016.Nanogeology:A Revolutionary Challenge in Geosciences.Bulletin of Mineralogy, Petrology and Geochemistry, 35(1):1-20 (in Chinese with English abstract). https://doi.org/10.3969/j.issn.1007-2802.2016.06.001 [49] Kaufhold, S., Kaufhold, A., Jahn, R., et al., 2009.A New Massive Deposit of Allophane Raw Material in Ecuador.Clays and Clay Minerals, 57(1):72-81. https://doi.org/10.1346/CCMN.2009.0570107 [50] Kennedy, M.J., Löhr, S.C., Fraser, S.A., et al., 2014.Direct Evidence for Organic Carbon Preservation as Clay-Organic Nanocomposites in a Devonian Black Shale; From Deposition to Diagenesis.Earth and Planetary Science Letters, 388(18):59-70. https://doi.org/10.1016/j.epsl.2013.11.044 [51] Kennedy, M.J., Pevear, D.R., Hill, R.J., 2002.Mineral Surface Control of Organic Carbon in Black Shale.Science, 295(5555):657. https://doi.org/10.1126/science.1066611 [52] Kennedy, M.J., Wagner, T., 2011.Clay Mineral Continental Amplifier for Marine Carbon Sequestration in a Greenhouse Ocean.Proceedings of the National Academy of Sciences of the United States of America, 108(24):9776-9781. https://doi.org/10.1073/pnas.1018670108 [53] Lei, H.Y., Shi, Y.X., Guan, P., et al., 1997.Study on the Catalytic Effect of Aluminosilicate Clay Minerals on the Formation of Transition Gas.Science China:Earth Science, 27(1):39-44 (in Chinese). [54] Letaief, S., Detellier, C., 2007.Functionalized Nanohybrid Materials Obtained from the Interlayer Grafting of Aminoalcohols on Kaolinite.Chemical Communications, 25(25):2613-2615. https://doi.org/10.1039/b701235g [55] Levard, C., Basile-Doelsch, I., 2016. Geology and Mineralogy of Imogolite-Type Materials. In: Yuan, P., Thill, A., Bergaya, F., eds., Nanosized Tubular Clay Minerals. Elsevier, Amsterdam, 49-65. https://doi.org/10.1016/B978-0-08-100293-3.00003-0 [56] Levard, C., Doelsch, E., Basile-Doelsch, I., et al., 2012.Structure and Distribution of Allophanes, Imogolite and Proto-Imogolite in Volcanic Soils.Geoderma, 183-184:100-108. https://doi.org/10.1016/j.geoderma.2012.03.015 [57] Levard, C., Doelsch, E., Rose, J., et al., 2009.Role of Natural Nanoparticles on the Speciation of Ni in Andosols of La Reunion.Geochimica et Cosmochimica Acta, 73(16):4750-4760. https://doi.org/10.1016/j.gca.2009.05.053 [58] Liao, L.B., Wang, L., Dong, F.Q.et al., 2012.Advances of Mineral Materials Studies in China during 2000-2010.Bulletin of Mineralogy, Petrology and Geochemistry, 31(4):323-339 (in Chinese with English abstract). [59] Lin, C.X, Zheng, Z.P., 1994.Experimental Studies on Metallogenetic Mechanism of Weathering Crust-Leaching REE Deposits in Southern China.Geochimica, 23(2):189-198 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-KWXB200201003.htm [60] Liou, K.H., Tsou, N.T., Kang, D.Y., 2015.Relationships among the Structural Topology, Bond Strength, and Mechanical Properties of Single-Walled Aluminosilicate Nanotubes.Nanoscale, 7(39):16222-16229. https://doi.org/10.1039/c5nr03365a [61] Liu, D., Yuan, P., Liu, H.M., et al., 2011.Influence of Heating on the Solid Acidity of Montmorillonite:A Combined Study by DRIFT and Hammett Indicators.Applied Clay Science, 52(4):358-363. https://doi.org/10.1016/j.clay.2011.03.016 [62] Liu, D., Yuan, P., Liu, H.M., et al., 2013a.High-Pressure Adsorption of Methane on Montmorillonite, Kaolinite and Illite.Applied Clay Science, 85(1):25-30. https://doi.org/10.1016/j.clay.2013.09.009 [63] Liu, H.M., Yuan, P., Liu, D., et al., 2013b.Effects of Solid Acidity of Clay Minerals on the Thermal Decomposition of 12-Aminolauric Acid.Journal of Thermal Analysis & Calorimetry, 114(1):125-130. https://doi.org/10.1007/s10973-012-2887-0 [64] Liu, H.M., Yuan, P., Qin, Z., et al., 2013c.Thermal Degradation of Organic Matter in the Interlayer Clay-Organic Complex:A TG-FTIR Study on a Montmorillonite/12-Aminolauric Acid System.Applied Clay Science, 81:398-406. https://doi.org/10.1016/j.clay.2013.07.005 [65] Liu, X.D., Lu, X.C., Sprik, M., et al., 2013d.Acidity of Edge Surface Sites of Montmorillonite and Kaolinite.Geochimica et Cosmochimica Acta, 117(5):180-190. https://doi.org/10.1016/j.gca.2013.04.008 [66] Liu, D., Yuan, P., Tan, D.Y., et al., 2010.Effects of Inherent/Enhanced Solid Acidity and Morphology of Diatomite Templates on the Synthesis and Porosity of Hierarchically Porous Carbon.Langmuir, 26(24):18624. https://doi.org/10.1021/la103980s [67] Liu, D., Yuan, P., Tan, D.Y., et al., 2012.Facile Preparation of Hierarchically Porous Carbon Using Diatomite as Both Template and Catalyst and Methylene Blue Adsorption of Carbon Products.Journal of Colloid & Interface Science, 388(1):176-84. https://doi.org/10.1016/j.jcis.2012.08.023 [68] Liu, J.M., 2002.Unconventional Mineral Resources Related to Natural nm-Sized Minerals.Mineral Deposits, 21(Suppl.):32-35 (in Chinese). [69] Liu, R., Wang, R.C., Lu, X.C., et al., 2016.Nano-Sized Rare Earth Minerals from Granite-Related Weathering-Type REE Deposits in Southern Jiangxi.Acta Petrologica et Mineralogica, 35(4):617-626 (in Chinese with English abstract). https://doi.org/10.3969/j.issn.1000-6524.2016.04.004 [70] Liu, X.D., Lu, X.C., Cheng, J., et al., 2015.Temperature Dependence of Interfacial Structures and Acidity of Clay Edge Surfaces.Geochimica et Cosmochimica Acta, 160:91-99. https://doi.org/10.1016/j.gca.2015.04.005 [71] Liu, X.F., 1995.Nanogeology:A Rising Strategic Geoscience Field.Scientific and Technological Management of Land and Resources, (1):22-24 (in Chinese). http://www.ga.gov.au/scientific-topics/positioning-navigation [72] Loucks, R.G., Reed, R.M., Ruppel, S.C., et al., 2009.Morphology, Genesis, and Distribution of Nanometer-Scale Pores in Siliceous Mudstones of the Mississippian Barnett Shale.Journal of Sedimentary Research, 79(12):848-861. https://doi.org/10.2110/jsr.2009.092 [73] Lu, L.F., Cai, J.G., Liu, W.H., et al., 2013.Occurrence and Thermostability of Absorbed Organic Matter on Clay Minerals in Mudstones and Muddy Sediments.Oil & Gas Geology, 34(1):16-26 (in Chinese with English abstract). http://industry.wanfangdata.com.cn/yj/Detail/Periodical?id=Periodical_syytrqdz201301003 [74] Lu, Q., Liu, H.F., Luo, L.J., et al., 1993.Studies of Kerogen from Baise Basin, Guangxi-Also on Relationship of Evolution of Kerogen and Clay Minerals.Acta Sedimentologica Sinica, 11(2):124-132 (in Chinese with English abstract). https://doi.org/10.14027/j.cnki.cjxb.1994.04.004 [75] Lu, S.F., Zhang, Y.N., Li, J.Q., et al., 2016.Nanotechnology and Its Application in the Exploration and Development of Unconventional Oil and Gas.Bulletin of Mineralogy, Petrology and Geochemistry, 35(1):28-36 (in Chinese with English abstract). http://thescipub.com/PDF/ajassp.2012.784.793.pdf [76] Lu, X.C., Hu, W.X., Fu, Q., et al., 1999.Study of Combination Pattern of Soluble Organic Matters and Clay Minerals in the Immature Source Rocks in Dongying Depression, China.Scientia Geologica Sinica, (1):69-77 (in Chinese with English abstract). https://www.researchgate.net/publication/279620637_Study_of_combination_pattern_of_soluble_organic_matters_and_clay_minerals_in_the_immature_source_rocks_in_Dongying_depression_China [77] Lu, X.C., Li, F.C., Watson, A.T., 1995.Adsorption Measurements in Devonian Shales.Fuel, 74(4):599-603. https://doi.org/10.1016/0016-2361(95)98364-K [78] Ma, Y.J., Huo, R.K., Xu, Z.F., et al., 2004.REE Behavior and Influence Factors during Chemical Weathering.Advance in Earth Sciences, 19(1):87-94 (in Chinese with English abstract). https://www.researchgate.net/publication/285839688_REE_behavior_and_influence_factors_during_chemical_weathering [79] Mango, F.D., 1997.The Light Hydrocarbons in Petroleum:A Critical Review.Organic Geochemistry, 26(7-8):417-440. https://doi.org/10.1016/S0146-6380(97)00031-4 [80] Matusik, J., Wcisło, A., 2014.Enhanced Heavy Metal Adsorption on Functionalized Nanotubular Halloysite Interlayer Grafted with Aminoalcohols.Applied Clay Science, 100(4):50-59. https://doi.org/10.1016/j.clay.2014.06.034 [81] Newman, A. C. D., 1987. Chemistry of Clays and Clay Minerals. Wiley, New York. https://doi.org/10.1180/claymin.1987.022.4.12 [82] Ohashi, F., Wada, S., Suzuki, M., et al., 2002.Synthetic Allophane from High Concentration Solutions:Nanoengineering of the Porous Solid.Clay Minerals, 37(3):451-456. https://doi.org/10.1180/0009855023730052 [83] Ouyang, J., Zhou, Z., Zhang, Y., et al., 2014.High Morphological Stability and Structural Transition of Halloysite (Hunan, China) in Heat Treatment.Applied Clay Science, 101:16-22. https://doi.org/10.1016/j.clay.2014.08.010 [84] Pan, C.C., Geng, A.S., Zhong, N.N., et al., 2008.Kerogen Pyrolysis in the Presence and Absence of Water and Minerals.1.Gas Components.Energy & Fuels, 22(1):416-427. https://doi.org/10.1021/ef700227e [85] Parfitt, R.L., Hemni, T., 1980.Structure of Some Allophanes from New Zealand.Clays and Clay Minerals, 28(4):285-294. https://doi.org/10.1346/CCMN.1980.0280407 [86] Pasbakhsh, P., Churchman, G.J., Keeling, J.L., 2013.Characterisation of Properties of Various Halloysites Relevant to Their Use as Nanotubes and Microfibre Fillers.Applied Clay Science, 74(Suppl.1):47-57. https://doi.org/10.1016/j.clay.2012.06.014 [87] Penn, R.L, Banfield, J.F., 1998.Imperfect Oriented Attachment:Dislocation Generation in Defect-Free Nanocrystals.Science, 281(5379):969-971. https://doi.org/10.1126/science.281.5379.969 [88] Qin, S., Liu, J.Q., Chi, Z.Q., 2016.The Development and Prospect of Mineralogy in China.Geological Review, 62(4):970-978 (in Chinese with English abstract). https://doi.org/10.16509/j.georeview.2016.04.014 [89] Ren, L.F., 1980.Study on Some Clay Minerals in China under Electron Microscope.Journal of the Chinese Ceramic Society, (2):1-14, 67 (in Chinese). [90] Ren, L.F., 1981.The Significance of Clay Minerals to Petroleum Geology.Petroleum Geology and Experiment, 3(1):46-49 (in Chinese). http://minersoc.org/pages/Archive-CM/Volume_17/17-1-91.pdf [91] Ren, L. F., Guan, P., 1992. The Particle Minerals in the Formation of Oil and Gas. Geological Publishing House, Beijing (in Chinese). [92] Rexer, T.F., Mathia, E.J., Aplin, A.C., et al., 2014.High-Pressure Methane Adsorption and Characterization of Pores in Posidonia Shales and Isolated Kerogens.Energy and Fuels, 28(5):2886-2901. https://doi.org/10.1021/ef402466m [93] Ross, D.J.K., Bustin, R.M., 2008.Characterizing the Shale Gas Resource Potential of Devonian-Mississippian Strata in the Western Canada Sedimentary Basin:Application of an Integrated Formation Evaluation.AAPG Bulletin, 92(1):87-125. https://doi.org/10.1306/09040707048 [94] Ross, D.J.K., Bustin, R.M., 2009.The Importance of Shale Composition and Pore Structure upon Gas Storage Potential of Shale Gas Reservoirs.Marine and Petroleum Geology, 26(6):916-927. https://doi.org/10.1016/j.marpetgeo.2008.06.004 [95] Rupert, J.P., Granquist, W.T., Pinnavaia, T.J., 1987.Catalytic Properties of Clay Minerals.Monograph Mineralogical Society, 6:275-318. http://minersoc.org/pages/Archive-CM/Volume_0/0-2-47.pdf [96] Schettler, P., Parmoly, C., 1990.The Measurement of Gas Desorption Isotherms for Devonian Shale.GRI Devonian Gas Shale Technology Review, 7(1):4-9. https://www.deepdyve.com/lp/elsevier/adsorption-measurements-in-devonian-shales-J02B3ogK7f [97] Shimoyama, A., Johns, W.D., 1971.Catalytic Conversion of Fatty Acids to Petroleum-Like Paraffins and Their Maturation.Nature, 232(33):140-144. https://doi.org/10.1038/physci232140a0 [98] Singh, B., 1996.Why does Halloysite Roll? -A New Model.Clays and Clay Minerals, 44(2):191-196. https://doi.org/10.1346/CCMN.1996.0440204 [99] Smith, M.E., Neal, G., Trigg, M.B., et al., 1993.Structural Characterization of the Thermal Transformation of Halloysite by Solid State NMR.Applied Magnetic Resonance, 4(1-2):157-170. https://doi.org/10.1007/BF03162561 [100] Song, Y.H., Shen, L.P., 1982.Discussion on Clay Minerals Occurring in the Weathered Crust of a Certain Acid Volcanic Rock in Jiangxi Province and Their Formation Conditions.Acta Mineralogica Sinica, (3):208-212 (in Chinese with English abstract). https://www.deepdyve.com/lp/elsevier/geochemistry-of-mineralization-with-exchangeable-rey-in-the-weathering-oxILZOT0RM [101] Sun, Y., Ju, Y.W., Lu, X.C., et al., 2016.To Re-Recognize Deformable Geological Bodies on the Nano-Level.Bulletin of Mineralogy, Petrology and Geochemistry, 35(1):52-55 (in Chinese with English abstract). http://industry.wanfangdata.com.cn/yj/Detail/Periodical?id=Periodical_kwysdqhxtb201601006 [102] Tan, D.Y., Yuan, P., Bergaya, F., et al., 2015a.A Comparative Study of Tubular Halloysite and Platy Kaolinite as Carriers for the Loading and Release of the Herbicide Amitrole.Applied Clay Science, 114:190-196. https://doi.org/10.1016/j.clay.2015.05.024 [103] Tan, D.Y., Yuan, P., Bergaya, F., et al., 2015b.Methoxy-Modified Kaolinite as a Novel Carrier for High-Capacity Loading and Controlled-Release of the Herbicide Amitrole.Scientific Reports, 5:8870. https://doi.org/10.1038/srep08870 [104] Tan, D. Y., Yuan, P., Liu, D., et al., 2016. Surface Modifications of Halloysite. In: Yuan, P., Thill, A., Bergaya, F, eds., Nanosized Tubular Clay Minerals. Elsevier, Amsterdam, 167-201. https://doi.org/10.1016/B978-0-08-100293-3.00008-X [105] Tang, S.H., Fan, E.P., 2014.Methane Adsorption Characteristics of Clay Minerals in Organic-Rich Shales.Journal of China Coal Society, 39(8):1700-1706 (in Chinese with English abstract). https://doi.org/10.13225/j.cnki.jccs.2014.9015 [106] Tannenbaum, E., Huizinga, B.J., Kaplan, I.R., 1986.Role of Minerals in Thermal Alteration of Organic Matter-Ⅱ:A Material Balance.AAPG Bulletin, 70(9):1156. [107] Tannenbaum, E., Kaplan, I.R., 1985.Role of Minerals in the Thermal Alteration of Organic Matter-Ⅰ:Generation of Gases and Condensates under Dry Condition.Geochimica et Cosmochimica Acta, 49(12):2589-2604. https://doi.org/10.1016/0016-7037(85)90128-0 [108] Thill, A., 2016. Characterisation of Imogolite by Microscopic and Spectroscopic Methods. In: Yuan, P., Thill, A., Bergaya, F., eds., Nanosized Tubular Clay Minerals. Elsevier, Amsterdam, 223-253. https://doi.org/10.1016/B978-0-08-100293-3.00010-8 [109] Tunney, J.J., Detellier, C., 1996.Chemically Modified Kaolinite.Grafting of Methoxy Groups on the Interlamellar Aluminol Surface of Kaolinite.Journal of Materials Chemistry, 6(10):1679-1685. https://doi.org/10.1039/jm9960601679 [110] Wada, K., 1987.Minerals Formed and Mineral Formation from Volcanic Ash by Weathering.Chemical Geology, 60(1-4):17-28. https://doi.org/10.1016/0009-2541(87)90106-9 [111] Wada, K., 1989. Allophane and Imogolite, In: Dixon, J. B., Weed, S. B., eds., Minerals in Soil Environments. Soil Science Society of America, Madison, 1051-1087. https://doi.org/10.2136/sssabookser1.2ed.c21 [112] Wada, K., Harward, M.E., 1974.Amorphous Clay Constituents of Soils.Advances in Agronomy, 26(26):211-260. https://doi.org/10.1016/S0065-2113(08)60872-X [113] Wada, S.I., Wada, K., 1977.Density and Structure of Allophane.Clay Minerals, 12(4):289-298. https://doi.org/10.1180/claymin.1977.012.4.02 [114] Wan, Q., 2012.Some Thoughts about Nanogeoscience.Acta Mineralogica Sinica, (Suppl.):50-51 (in Chinese). https://www.researchgate.net/profile/Keld_West [115] Wan, Q., Qin, Z.H., Ju, Y.W., et al., 2016.Nanogeochemistry:Origin, Recent Advances and Future Directions.Bulletin of Mineralogy, Petrology and Geochemistry, 35(1):21-27 (in Chinese with English abstract). [116] Wang, X.X., Cai, J.G., Bao, Y.J., 2006.Catalysis of Clay Mineral to Organic Matter in Hydrocarbon Genesis.Marine Petroleum Geology, 11(3):27-38 (in Chinese with English abstract). https://www.deepdyve.com/lp/elsevier/catalysis-and-hydrogenation-volcanic-activity-and-hydrocarbon-b4jYpmZWTh [117] Wang, Y.F., 2014.Nanogeochemistry:Nanostructures, Emergent Properties and Their Control on Geochemistry Reactions and Mass Transfers.Chemical Geology, 378-379(1):1-23. https://www.researchgate.net/publication/261717788_Nanogeochemistry_Nanostructures_emergent_properties_and_their_control_on_geochemical_reactions_and_mass_transfers [118] Wang, Y.F., Xu, H.F., 2005.Nanogeochemistry:Geochemical Reactions in Nanopores.Geochimica et Cosmochimica Acta Supplement, 69(10):517. https://www.researchgate.net/publication/252985131_Nanogeochemistry_Geochemical_reactions_in_nanopores [119] Wang, Y.X., Mao, X.M., DePaolo, D., 2011.Nanoscale Fluid-Rock Interaction in CO2 Geological Storage.Earth Science, 36(1):163-171 (in Chinese with English abstract). https://gsa.confex.com/gsa/2014AM/webprogram/Paper241911.html [120] Wang, Y.X., Tian, X.K., 2016.New Opportunities for the Study of Geology:Nano Geology.Bulletin of Mineralogy, Petrology and Geochemistry, 35(1):79-86 (in Chinese with English abstract). https://doi.org/10.3969/j.issn.1007-2802.2016.01.010 [121] Wu, D.Q., Diao, G.Y., Wei, J.F., et al., 2000.Surface Function Groups and Surface Reactions of Minerals.Geological Journal of China Universities, 6(2):225-232 (in Chinese with English abstract). [122] Yah, W.O., Takahara, A., Lvov, Y.M., 2012a.Selective Modification of Halloysite Lumen with Octadecylphosphonic Acid:New Inorganic Tubular Micelle.Journal of the American Chemical Society, 134(3):1853-1859. https://doi.org/10.1021/ja210258y [123] Yah, W.O., Xu, H., Soejima, H., et al., 2012b.Biomimetic Dopamine Derivative for Selective Polymer Modification of Halloysite Nanotube Lumen.Journal of the American Chemical Society, 134(29):12134-12137. https://doi.org/10.1021/ja303340f [124] Yang, S.Q., Yuan, P., He, H.P., et al., 2012.Effect of Reaction Temperature on Grafting of Gamma-Aminopropyltriethoxysilane (Aptes) onto Kaolinite.Applied Clay Science, 62-63:8-14. https://doi.org/10.1016/j.clay.2012.04.006 [125] Yang, X.M., Zhang, P.S., 1992.The Occurrence State and Mass Balance of REE in Granite.Chinese Rare Earth, 13(5):6-11 (in Chinese). https://www.researchgate.net/profile/David_Dolejs/publication/264038555_Garnet_as_a_major_carrier_of_the_Y_and_REE_in_the_granitic_rocks_An_example_from_the_layered_anorogenic_granite_in_the_Brno_Batholith_Czech_Republic/links/544602220cf22b3c14ddf387.pdf [126] Yang, Z.M., 1987.A Study on Clay Minerals from the REE-Rich Weathered Crust Developed on the Longnan Granite in Jiangxi.Chinese Scientia Geologica Sinica, (1):70-80 (in Chinese with English abstract). https://www.deepdyve.com/lp/elsevier/geochemistry-of-mineralization-with-exchangeable-rey-in-the-weathering-oxILZOT0RM [127] Yuan, P., Fan, M.D., Yang, D., et al., 2010.Montmorillonite-Supported Magnetite Nanoparticles for the Removal of Hexavalent Chromium[Cr(Ⅵ)] from Aqueous Solutions.Journal of Hazardous Materials, 173(1):614-621. https://doi.org/10.1016/j.jhazmat.2008.11.083 [128] Yuan, P., He, H.P., Wu, D.Q., et al., 2004a.Characterization of Diatomaceous Silica by Raman Spectroscopy.Spectrochimica Acta Part A Molecular & Biomolecular Spectroscopy, 60(12):2941-2945. https://doi.org/10.1016/j.saa.2004.02.005 [129] Yuan, P., Wu, D.Q., He, H.P., et al., 2004b.The Hydroxyl Species and Acid Sites on Diatomite Surface:A Combined IR and Raman Study.Applied Surface Science, 227(1):30-39. https://doi.org/10.1016/j.apsusc.2003.10.031 [130] Yuan, P., Liu, D., Tan, D.Y., et al., 2013a.Surface Silylation of Mesoporous/Macroporous Diatomite (Diatomaceous Earth) and Its Function in Cu (Ⅱ) Adsorption:The Effects of Heating Pretreatment.Microporous and Mesoporous Materials, 170(8):9-19. https://doi.org/10.1016/j.micromeso.2012.11.030 [131] Yuan, P., Liu, H.M., Liu, D., et al., 2013b.Role of the Interlayer Space of Montmorillonite in Hydrocarbon Generation:An Experimental Study Based on High Temperature-Pressure Pyrolysis.Applied Clay Science, 75-76:82-91. https://doi.org/10.1016/j.clay.2013.03.007 [132] Yuan, P., Southon, P.D., Liu, Z.W., et al., 2008.Functionalization of Halloysite Clay Nanotubes by Grafting with γ-Aminopropyltriethoxysilane.Journal of Physical Chemistry C, 112(40):15742-15751. https://doi.org/10.1021/jp805657t [133] Yuan, P., Tan, D.Y., Bergaya, F., 2015.Properties and Applications of Halloysite Nanotubes:Recent Research Advances and Future Prospects.Applied Clay Science, s112-113:75-93. https://doi.org/10.1016/j.clay.2015.05.001 [134] Yuan, P., Tan, D.Y., Bergaya, F., et al., 2012.Changes in Structure, Morphology, Porosity, and Surface Activity of Mesoporous Halloysite Nanotubes under Heating.Clays and Clay Minerals, 60(6):561-573. https://doi.org/10.1346/CCMN.2012.0600602 [135] Yuan, P., Thill, A., Bergaya, F., 2016. Nanosized Tubular Clay Minerals. Elsevier, Amsterdam. [136] Yuan, P., Wu, D.Q., Lin, Z.Y., et al., 2001.Study on the Surface Hydroxyl Species of Diatomite Using DRIFT Spectroscopy.Spectroscopy and Spectral Analysis, 21(6):783-786. https://www.researchgate.net/publication/10579788_Study_on_the_Surface_Hydroxyl_Species_of_Diatomite_using_DRIFT_Spectroscopy [137] Yuan, P., Yang, D., Lin, Z., et al., 2006.Influences of Pretreatment Temperature on the Surface Silylation of Diatomaceous Amorphous Silica with Trimethylchlorosilane.Journal of Non-Crystalline Solids, 352(36-37):3762-3771. https://doi.org/10.1016/j.jnoncrysol.2006.05.035 [138] Yucelen, G.I., Choudhury, R.P., Leisen, J., et al., 2012.Defect Structures in Aluminosilicate Single-Walled Nanotubes:A Solid-State Nuclear Magnetic Resonance Investigation.Journal of Physical Chemistry C, 116(32):17149-17157. https://doi.org/10.1021/jp3059728 [139] Zeng, Q., Dong, H.L., Zhao, L.D., et al., 2016.Preservation of Organic Matter in Nontronite against Iron Redox Cycling.American Mineralogist, 101(1):120-133. https://doi.org/10.2138/am-2016-5410 [140] Zhang, H.Z., Banfield, J.F., 1999.New Kinetic Model for the Nanocrystalline Anatase-to-Rutile Transformation Revealing Rate Dependence on Number of Particles.American Mineralogist, 84(4):528-535. https://doi.org/10.2138/am-1999-0406 [141] Zhang, H.Z., Gilbert, B., Huang, F.et al., 2003.Water-Driven Structure Transformation in Nanoparticles at Room Temperature.Nature, 424(6952):1025-1029. https://doi.org/10.1038/nature01845 [142] Zhang, L., Wu, K.X., Chen, L.K., et al., 2015.Overview of Metallogenic Features of Ion-Adsorption Type REE Deposits in Southern Jiangxi Province.Journal of the Chinese Society of Rare Earths, 33(1):10-17 (in Chinese with English abstract). https://www.researchgate.net/publication/282209652_Overview_of_metallogenic_features_of_ion-adsorption_type_REE_deposits_in_southern_Jiangxi_Province [143] Zhang, T.L., Wang, Z.L., 1992.A Study of Kaolin Minerals from the Guoshan Kaolin Deposit, Fujian Province.Acta Petrologica et Mineralogica, 11(2):146-156, 190-191 (in Chinese with English abstract). doi: 10.1007/s12583-014-0439-1 [144] Zhang, T.W., Ellis, G.S., Ruppel, S.C., et al., 2012.Effect of Organic-Matter Type and Thermal Maturity on Methane Adsorption in Shale-Gas Systems.Organic Geochemistry, 47(6):120-131. https://doi.org/10.1016/j.orggeochem.2012.03.012 [145] Zhang, Z.G., Jiang, Z.C., 1993.Nano-Level Ore Deposit Research-A New Promising Branch of Geoscience.Mineral Resources and Geology, 7(3):161-165 (in Chinese with English abstract). https://www.deepdyve.com/lp/springer-journals/potential-applications-of-nano-scale-science-and-technology-in-7SwWiddiGW [146] Zhang, Z.H., 1990.A Study on Weathering Crust Ion Adsorption Type REE Deposits, South China.Contributions to Geology and Mineral Resources Research, 5(1):57-71 (in Chinese with English abstract). https://www.researchgate.net/publication/309174046_So-called_ion-adsorption_type_REE_deposits_found_in_weathered_crust_of_ilmenite-series_granite_in_Northern_Vietnam [147] Zhao, H.M., Yuan, B.Y., 1989.Discovery of Imogolite in Luochuan Loess Profile.Chinese Science Bulletin, 34(18):1402-1404 (in Chinese). http://www.oalib.com/paper/1667022 [148] Zhao, X. Y., Zhang, Y. Y., 1990. Some Mineralogical Characteristics of Clay Minerals in China Oil-Bearing Basins. China Ocean Press, Beijing (in Chinese). [149] Zhou, Y.R., 1994.Situ-Study on Generative Kerogen in Sedimentary Rock by FTIR-Microspectrometry Technique.Acta Sedimentologica Sinica, 12(4):22-30 (in Chinese with English abstract). https://www.deepdyve.com/lp/elsevier/simulation-of-the-fluorescence-evolution-of-live-oils-from-kerogens-in-bTP5SwECzh [150] Zou, C.N., Zhu, R.K., Bai, B., et al., 2011.First Discovery of Nanopores in Chinese Oil and Gas in China and Scientific Value Reservoirs.Acta Petrologica Sinica, 27(6):1857-1864 (in Chinese with English abstract). https://www.researchgate.net/publication/307964063_First_discovery_of_nano-pore_throat_in_oil_and_gas_reservoir_in_China_and_its_scientific_value [151] 包志伟, 1992.华南花岗岩风化壳稀土元素地球化学研究.地球化学, (2):166-174. http://mall.cnki.net/magazine/Article/KXTB198709014.htm [152] 蔡进功, 包于进, 杨守业, 等, 2007.泥质沉积物和泥岩中有机质的赋存形式与富集机制.中国科学:地球科学, 37(2):244-253. http://www.cqvip.com/QK/98491X/200702/24085509.html [153] 蔡进功, 卢龙飞, 丁飞, 等, 2009.烃源岩中黏土与可溶有机质相互作用研究展望.同济大学学报(自然科学版), 37(12):1679-1684. doi: 10.3969/j.issn.0253-374x.2009.12.022 [154] 蔡进功, 卢龙飞, 宋明水, 等, 2010.有机粘土复合体抽提特征及其石油地质意义.石油与天然气地质, 31(3):300-308. doi: 10.11743/ogg20100305 [155] 陈敬中, 1994.纳米科技的发展与纳米矿物学研究.地质科技情报, 13(2):32-38. http://www.cnki.com.cn/Article/CJFDTOTAL-DZKQ402.007.htm [156] 陈天虎, 谢巧勤, 刘海波, 等, 2015. 纳米矿物、矿物纳米颗粒及纳米矿物资源. 全国纳米地球科学学术研讨会暨中国地质学会纳米地质专业委员会成立大会. [157] 池汝安, 田君, 2007.风化壳淋积型稀土矿评述.中国稀土学报, 25(6):641-650. http://edu.wanfangdata.com.cn/Periodical/Detail/jxkx201205007 [158] 池汝安, 田君, 罗仙平, 等, 2012.风化壳淋积型稀土矿的基础研究.有色金属科学与工程, 3(4):1-13. http://mall.cnki.net/magazine/Article/JXYS201204003.htm [159] 丁振华, 1999.矿物学面临的困难与机遇——纳米科学对矿物学的启示.矿物学报, 19(3):379-384. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=kwxb199903019 [160] 董发勤, 周世平, 李帅, 2014.无机纳米(矿物)颗粒的生物活性研究进展.矿物学报, 34(1):1-6. http://mall.cnki.net/magazine/Article/KXTB201402007.htm [161] 范晨子, 张誉, 陈郑辉, 等, 2015.江西赣南风化淋滤型稀土矿床中的粘土矿物研究.岩石矿物学杂志, 34(6):803-810. http://www.cqvip.com/QK/94932X/201506/666723389.html [162] 关平, 徐永昌, 刘文江, 1998.烃源岩有机质的不同赋存状态及定量估算.科学通报, 43(14):1556-1559. doi: 10.3321/j.issn:0023-074X.1998.14.026 [163] 黄菲, 王汝成, 张文兰, 等, 2009.纳米-微米FeS2晶须微形貌及其生长界面稳定性研究.科学通报, 54(22):3491-3497. http://www.cqvip.com/QK/94252X/200922/32538719.html [164] 姜泽春, 1993.纳米科学与地学.地质地球化学, (2):22-25. http://www.cnki.com.cn/Article/CJFDTotal-DXQY201401010.htm [165] 姜泽春, 1995.地学领域里的纳米科学问题.矿物岩石地球化学通报, 14(4):262-266. http://www.cnki.com.cn/Article/CJFDTOTAL-KYDH504.012.htm [166] 琚宜文, 孙岩, 万泉, 等, 2016.纳米地质学:地学领域革命性挑战.矿物岩石地球化学通报, 35(1):1-20. http://www.cqvip.com/QK/84215X/201601/668146269.html [167] 雷怀彦, 师育新, 关平, 等, 1997.铝硅酸盐粘土矿物对形成过渡带气的催化作用研究.中国科学:地球科学, 27(1):39-44. http://www.oalib.com/paper/4151594 [168] 廖立兵, 汪灵, 董发勤, 等, 2012.我国矿物材料研究进展(2000-2010).矿物岩石地球化学通报, 31(4):323-339. http://industry.wanfangdata.com.cn/dl/Detail/Periodical?id=Periodical_kwysdqhxtb201204003 [169] 林传仙, 郑作平, 1994.风化壳淋积型稀土矿床成矿机理的实验研究.地球化学, (2):189-198. http://cdmd.cnki.com.cn/Article/CDMD-82501-2007213390.htm [170] 刘建明, 2002.与天然纳米-亚微米矿物有关的非传统(非常规)矿产资源.矿床地质, 21(增刊):32-35. http://cpfd.cnki.com.cn/Article/CPFDTOTAL-DZDQ200212001301.htm [171] 刘容, 王汝成, 陆现彩, 等, 2016.赣南花岗岩风化壳型稀土矿床中纳米级稀土矿物的研究.岩石矿物学杂志, 35(4):617-626. http://cdmd.cnki.com.cn/Article/CDMD-82501-2007213390.htm [172] 刘岫峰, 1995.纳米地质学:一个正在兴起的战略性地学科技领域.国土资源科技管理, (1):22-24. http://www.cnki.com.cn/Article/CJFDTOTAL-DZKG501.005.htm [173] 卢龙飞, 蔡进功, 刘文汇, 等, 2013.泥岩与沉积物中粘土矿物吸附有机质的三种赋存状态及其热稳定性.石油与天然气地质, 34(1):16-26. doi: 10.11743/ogg20130103 [174] 卢双舫, 张亚念, 李俊乾, 等, 2016.纳米技术在非常规油气勘探开发中的应用.矿物岩石地球化学通报, 35(1):28-36. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=kwysdqhxtb201601003 [175] 陆琦, 刘惠芳, 罗莉绢, 等, 1993.广西百色盆地干酪根的研究——兼探干酪根的演化与粘土矿物的关系.沉积学报, 11(2):124-132. http://www.cnki.com.cn/Article/CJFDTOTAL-CJXB404.003.htm [176] 陆现彩, 胡文宣, 符琦, 等, 1999.烃源岩中可溶有机质与粘土矿物结合关系——以东营凹陷沙四段低熟烃源岩为例.地质科学, (1):69-77. http://cdmd.cnki.com.cn/Article/CDMD-10284-1011126568.htm [177] 马英军, 霍润科, 徐志方, 等, 2004.化学风化作用中的稀土元素行为及其影响因素.地球科学进展, 19(1):87-94. doi: 10.11867/j.issn.1001-8166.2004.01.0087 [178] 秦善, 刘金秋, 迟振卿, 2016.矿物学发展现状及我国矿物学前景展望.地质论评, 62(4):970-978. http://www.cqvip.com/QK/91067X/201604/669572915.html [179] 任磊夫, 1980.我国某些粘土矿物在电子显微镜下的研究.硅酸盐通报, (2):1-14, 67. http://mall.cnki.net/magazine/Article/DZKX199201009.htm [180] 任磊夫, 1981.谈谈粘土矿物对石油地质研究的意义.石油实验地质, 3(1):46-49. doi: 10.11781/sysydz198101046 [181] 任磊夫, 关平, 1992.油气生成过程中的微粒, 质点矿物.北京:地质出版社. [182] 宋云华, 沈丽璞, 1982.江西某酸性火山岩风化壳中粘土矿物及其形成条件的讨论.矿物学报, (3):208-212. http://www.cnki.com.cn/Article/CJFDTOTAL-KWXB198203006.htm [183] 孙岩, 琚宜文, 陆现彩, 等, 2016.从纳米层次重新认识变形的地质体.矿物岩石地球化学通报, 35(1):52-55. http://industry.wanfangdata.com.cn/yj/Detail/Periodical?id=Periodical_kwysdqhxtb201601006 [184] 唐书恒, 范二平, 2014.富有机质页岩中主要黏土矿物吸附甲烷特性.煤炭学报, 39(8):1700-1706. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=mtxb201408042 [185] 万泉, 2012.关于纳米地球科学的一些思考.矿物学报, (S1):50-51. http://www.cqvip.com/QK/96984X/200406/11309951.html [186] 万泉, 覃宗华, 琚宜文, 等, 2016.纳米地球化学刍析:起源、研究进展和发展方向.矿物岩石地球化学通报, 35(1):21-27. http://industry.wanfangdata.com.cn/yj/Detail/Periodical?id=Periodical_kwysdqhxtb201601002 [187] 王行信, 蔡进功, 包于进, 2006.粘土矿物对有机质生烃的催化作用.海相油气地质, 11(3):27-38. doi: 10.3969/j.issn.1672-9854.2006.03.005 [188] 王焰新, 毛绪美, DePaolo, D., 2011.CO2地质储存的纳米尺度流体-岩石相互作用研究.地球科学, 36(1):163-171. http://www.earth-science.net/WebPage/Article.aspx?id=2075 [189] 王焰新, 田熙科, 2016.地学研究的新机遇——纳米地质学.矿物岩石地球化学通报, 35(1):79-86. http://industry.wanfangdata.com.cn/yj/Detail/Periodical?id=Periodical_kwysdqhxtb201601010 [190] 吴大清, 刁桂仪, 魏俊峰, 等, 2000.矿物表面基团与表面作用.高校地质学报, 6(2):225-232. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=gxdzxb200002019 [191] 杨学明, 张培善, 1992.花岗岩中稀土元素的赋存状态及质量平衡研究.稀土, 13(5):6-11. http://mall.cnki.net/magazine/Article/XTZZ199205001.htm [192] 杨主明, 1987.江西龙南花岗岩稀土风化壳中粘土矿物的研究.地质科学, (1):70-80. http://www.adearth.ac.cn/CN/abstract/abstract2983.shtml [193] 张恋, 吴开兴, 陈陵康, 等, 2015.赣南离子吸附型稀土矿床成矿特征概述.中国稀土学报, 33(1):10-17. http://www.cnki.com.cn/Article/CJFDTotal-XTXB201501002.htm [194] 张天乐, 王宗良, 1992.福建郭山高岭土矿床中高岭矿物的研究.岩石矿物学杂志, 11(2):146-156, 190-191. http://www.oalib.com/paper/4338947 [195] 章振根, 姜泽春, 1993.纳米矿床学——一门有前途的新科学.矿产与地质, (3):161-165. http://www.cnki.com.cn/Article/CJFDTOTAL-GZDZ199303008.htm [196] 张祖海, 1990.华南风化壳离子吸附型稀土矿床.地质找矿论丛, 5(1):57-71. http://www.cqvip.com/QK/90755X/199001/229939.html [197] 赵惠敏, 袁宝印, 1989.洛川黄土剖面中伊毛缟石的发现.科学通报, 34(18):1402-1404. http://www.cqvip.com/QK/94252X/198918/93584.html [198] 赵杏媛, 张有瑜, 1990.中国含油气盆地粘土矿物的某些矿物学特征.北京:海洋出版社. [199] 周炎如, 1994.应用显微FT-IR光谱技术"原位"研究沉积岩中生油母质——干酪根.沉积学报, 12(4):22-30. http://www.cnki.com.cn/Article/CJFDTOTAL-CJXB404.002.htm [200] 邹才能, 朱如凯, 白斌, 等, 2011.中国油气储层中纳米孔首次发现及其科学价值.岩石学报, 27(6):1857-1864. http://www.cnki.com.cn/Article/CJFDTOTAL-YSXB201106024.htm