Geochronology, Geochemistry and Their Geological Significances of No.308 Pegmatite Vein in the Jiajika Deposit, Western Sichuan, China
-
摘要: 甲基卡稀有金属矿床是我国目前规模最大的伟晶岩型稀有金属矿床,308号伟晶岩脉为其中出露面积最大的伟晶岩脉,由于勘查及研究程度较低,其形成时代及成矿机制尚不明确.通过LA-MC-ICP-MS锡石U-Pb测年,首次获得产于308号伟晶岩脉中间带含锂辉石伟晶岩的年龄为210.9±4.6 Ma,表明其形成于印支晚期,为印支旋回强烈造山运动之后相对稳定阶段的产物.元素地球化学特征表明,308号伟晶岩脉中边缘带无矿细晶岩与矿床内二云母花岗岩具有相似的过铝质S型花岗岩特征,二者具有同源性,并认为其成矿机制为:花岗质岩浆在中浅成、偏还原的环境上升侵位,由细晶岩至伟晶岩演化过程中,相对分异程度升高,熔体相和富挥发分的流体相之间发生强烈碱交代作用,并在一定的结构分带中发生大规模稀有金属矿化.Abstract: No. 308 pegmatite vein has the maximal exposed area in the Jiajika rare metal deposit, which is the largest pegmatite type deposit in China. Because of the low degree of exploration and research, its metallogenic epoch and metallogenic mechanism remain unclear. Detailed geochronology and lithogeochemistry of the granitoids and pegmatites were carried out to explore the petrogenesis and tectonic setting cassiterite LA-MC-ICP-MS dating yields concordant ages with (210.9±4.6) Ma of spodumene-bearing pegmatite in the middle zone, which reflects that No.308 pegmatite vein in the Jiajika pegmatite deposit formed at the late stage of Indosinian and was the result of the relative stable period after the strong Indosinian Orogeny. Geochemical data show that REEs and other trace elements patterns of the barren aplite in marginal zone of No. 308 pegmatite vein are similar to the two-mica granite in the Jiajika deposit, and both of them are characterized by the peraluminous S-type granite and homology. Dfferentiation of the magmatic water gradually increased from granitic aplites to pegmatites. The granitic magma ascended and intruded under a medium-shallow deep and partial reducing environment. During the evolution of magma, there is a strong alkali metasomatism between the melt phase and the fluid phase rich in volatile, and resulting in that a large-scale rare metal mineralization occurred in the certain structural zoning of No.308 pegmatite vein in the Jiajika deposit.
-
Key words:
- cassiterite U-Pb dating /
- geochemistry /
- petrogenesis /
- lithium polymetallic pegmatite /
- Jiajika
-
图 1 川西地区区域构造及稀有金属矿床分布
a.甲基卡矿床所处大地构造位置;b.松潘-甘孜造山带花岗岩及稀有金属矿床分布概况.据李建康等(2014)和Li et al.(2015)
Fig. 1. Sketch of regional tectonics and distribution of rare metal ore deposits in western Sichuan, China
图 2 甲基卡稀有金属矿床地质简图
1.Nb-Tb矿化伟晶岩; 2.Nb-Tb工业品位伟晶岩; 3.Li-Nb-Ta矿化伟晶岩; 4.Li矿化伟晶岩; 5.Li工业品位伟晶岩; 6.Li-Be矿化伟晶岩; 7.Be矿化伟晶岩; 8.Be工业品位伟晶岩; 9.Be-Nb-Ta矿化伟晶岩; 10.无矿化伟晶岩; 11.花岗细晶岩; 12.石英脉; 13.伟晶岩编号; 14.二云母花岗岩; 15.三叠系上统新都桥组上段(T3xd2); 16.三叠系上统新都桥组下段(T3xd1); 17.三叠系上统侏倭组上段(T3zh2); 18.三叠系上统侏倭组上段(T3zh1); 19.实测断层; 20.推测断层; 21.伟晶岩分带及编号; 22.矿化类型; 23.微斜长石伟晶岩带; 24.微斜长石-钠长石伟晶岩带; 25.钠长石伟晶岩带; 26.锂辉石伟晶岩带; 27.锂云母(白云母)伟晶岩带.综合唐国凡和吴盛先(1984)、Li et al.(2013)和王登红等(2017b)修改,其中X03号脉为隐伏矿体形态在平面中投影
Fig. 2. Simplified geological map showing the distribution of pegmatite in the Jiajika rare mining area, western Sichuan, China
图 3 甲基卡矿床308号伟晶岩脉垂向(a)及走向(b)地质地球化学特征
Fig. 3. Geological and geochemical characteristics in vertical (a) and strike (b) of No.308 pegmatite vein in the Jiajika deposit
图 4 甲基卡矿床308号伟晶岩脉中花岗质细晶岩及伟晶岩典型野外、手标本及显微照片
a.308号伟晶岩脉结构分带局部特征及采样位置示意图;b.308号伟晶岩脉近南北走向钠长石-锂辉石伟晶岩带;c.边缘带花岗质细晶岩与外侧带无矿微斜长石伟晶岩接触部位;d.中间带含绿柱石微斜长石伟晶岩;e.边缘带花岗质细晶岩与中间带钠长石锂辉石伟晶岩带接触部位;f.图c边缘带花岗质细晶岩局部显微照片特征;g.图c中外侧带无矿微斜长石伟晶岩局部显微照片特征;h.图d中间带含绿柱石微斜长石伟晶岩局部显微照片特征;i, j, k.图e中间带钠长石锂辉石伟晶岩局部显微照片特征
Fig. 4. Representive field photographs, hand specimen and photomicrographs of the granitic pegmatites and granitic aplites from the No.308 pegematite vein in the Jiajika deposit
图 7 花岗岩和花岗伟晶岩微量元素蛛网图和稀土元素配分图
原始地幔数值据McDonough and Sun(1995);球粒陨石数值据Sun and McDonough(1989).c, d图例同a, b
Fig. 7. Primitive mantle-normalized spidergrams and chondrite-normalized REE distribution patterns of granites and granitic pegmatites
图 8 花岗岩、细晶岩和伟晶岩的选择性地球化学图解
图a据Middlemost(1994);图b据Maniar and Piccoli(1989);图c据Yang(2007),区域A代表非造山带的熔浆,区域B代表造山带和岛弧的熔浆,区域C代表A和B的衍生物,其中钠质类型与A相关,钾质类型与B相关; 图d据Chappell(1999)
Fig. 8. Selected geochemical diagrams of the granites, aplites and pegmatites
图 9 花岗岩、细晶岩和伟晶岩Rb-Ba-Sr三角图解和SiO2-K/Rb图解
图a中区域范围据Bouseily and Sokkary(1975);图b中区域范围据Blevin(2004)
Fig. 9. Rb-Ba-Sr ternary diagram and SiO2 vs. K/Rb diagram for granites, aplites and pegmatites
图 10 花岗岩和无矿细晶岩Y-Nb和Yb-Ta构造环境判别图解
图 10据Pearce et al.(1984);VAG.火山弧花岗岩,ORG.洋脊花岗岩,WPG.板内花岗岩,syn-COLG.同碰撞花岗岩
Fig. 10. Y vs. Nb and Y vs. Ta diagrams of tectonic setting for the granitites and barren aplites
图 11 花岗岩、细晶岩和伟晶岩R1-R2构造环境判别图解
R1=4Si-11(Na+K)-2(Fe+Ti),R2=6Ca+2Mg+Al,均为原子数; 图中区域据Batchelor and Bowden(1985)
Fig. 11. R1 vs. R2 diagram of tectonic setting for granites, aplites and pegmatites
图 12 花岗岩、细晶岩和伟晶岩氧化还原图解
Fig. 12. Oxidation-reduction diagrams of the granites, aplites and pegmatites
表 1 甲基卡矿床308号伟晶岩脉内部结构分带
Table 1. List of the internal structure zone of the No.308 pegmatite vein in the Jiajika deposit
结构分带及伟晶岩类型 在伟晶岩脉中的位置和其他带的过渡关系 结构带规模及形态特征 主要矿物成分及其含量 矿化特征 边缘带 Ⅰ 细晶岩带 在伟晶岩与围岩接触带呈不连续带状分布,接触界线较清晰 为细粒结构.带状不连续分布,宽2~35 cm 石英(±55%)、白云母(25%~30%)、钠长石(±15%),另含微量磷灰石等 局部可见绿柱石矿化 外侧带 Ⅱ 粗至中粒石英微斜长石伟晶岩 脉南段较发育,于东西段接触带附近也较为普通,中段及北段次之.与Ⅲ带和Ⅳ带过渡界线较清晰 以团块状为主,不连续带状构造次之,带的形态不一 石英(40%~45%)、微斜长石(40%~45%)、钠长石(10%~15%),次有少量白云母、电气石、石榴石、黄铁矿及偶含锂辉石等 偶见绿柱石矿化,矿化弱 Ⅲ 粗至中粒石英微斜长石钠长石伟晶岩 位于脉的中、南段,与Ⅳ、Ⅴ带呈渐变过渡关系 为不规则团块状,长为60~100 m,宽为30~60 m 石英(35%~40%)、微斜长石(5%~10%)、钠长石(25%~30%)、电气石(3%~5%)、白云母(8%),另含微量石榴石、磷灰石和锂辉石 偶见锂辉石、绿柱石、铌钽矿化 中间带 Ⅳ 粗至中粒石英微斜长石钠长石锂辉石伟晶岩 位于脉的中段,与Ⅴ带及Ⅲ带成相向交替产出 呈长条状,长为30~50 m,宽为5~15 m 石英(35%~40%)、微斜长石(10%~15%)、钠长石(30%~35%)、锂辉石(±10%),次有电气石(3%~5%)、白云母(< 5%),另含微量绿柱石、铌钽铁矿等 发育锂辉石矿化及偶见绿柱石和铌钽矿化 Ⅴ 中至细粒石英钠长石锂辉石伟晶岩 主要位于脉的北段,中段亦有发育,南段偶见.与Ⅰ带、Ⅳ带及Ⅲ带呈渐变过渡关系 呈带状分布,与Ⅳ带规模相近. 石英(30%~35%)、微斜长石(5%~10%)、钠长石(25%~35%)、锂辉石(10%~20%),次有白云母(5%),另含少量绿柱石、电气石、绢云母等 为锂辉石主要矿化结构带,次有绿柱石和铌钽矿化 表 2 308号伟晶岩脉中含锂辉石伟晶岩中锡石电子探针成分分析(%)
Table 2. EMPA analysis (%) of cassiterite in spodumene-bearing pegmatite from the No.308 pegmatite vein
样品号/元素 SnO2 Ta2O5 Nb2O5 MgO Al2O3 SiO2 CaO FeO TiO2 Cr2O3 ThO2 Total JJKYG162-3-1 96.06 1.17 0.29 0.14 0.03 0.69 0.46 0.35 0.04 0.07 0.05 99.35 JJKYG162-3-2 96.29 1.16 0.32 0.12 0.02 0.71 0.39 0.31 0.06 0.05 0.03 99.47 JJKYG162-3-3 95.73 1.39 0.33 0.16 0.03 0.68 0.68 0.51 0.06 0.09 0.06 99.73 表 3 308号伟晶岩脉锡石LA-MC-ICP-MS U-Pb同位素测试数据
Table 3. LA-MC-ICP-MS cassiterite U-Pb isotopic data of the No.308 pegmatite vein
测试点号 238U/206Pb ERR(%) 207Pb/206Pb ERR(%) 238U/207Pb ERR(%) 206Pb/207Pb ERR(%) JJKYG162.3.1 30.94 1.32 0.045 7 18.57 628.12 17.85 21.90 18.57 JJKYG162.3.2 29.54 1.32 0.064 2 13.44 448.12 13.25 15.57 13.44 JJKYG162.3.3 30.48 1.12 0.073 0 7.68 399.71 7.75 13.69 7.68 JJKYG162.3.4 27.57 2.47 0.077 0 20.89 301.00 21.14 12.99 20.89 JJKYG162.3.5 29.58 1.09 0.077 6 6.70 364.21 6.75 12.88 6.70 JJKYG162.3.6 28.17 1.40 0.151 9 7.60 180.27 7.40 6.58 7.60 JJKYG162.3.7 25.72 3.48 0.190 5 17.18 116.78 14.42 5.25 17.18 JJKYG162.3.8 28.82 1.60 0.086 0 14.92 319.49 14.34 11.63 14.92 JJKYG162.3.9 26.85 1.88 0.181 3 8.01 144.94 7.74 5.52 8.01 JJKYG162.3.10 26.18 2.23 0.161 7 9.05 151.69 8.95 6.19 9.05 JJKYG162.3.11 27.69 1.17 0.121 7 5.66 218.75 5.71 8.21 5.66 JJKYG162.3.12 29.82 1.92 0.087 0 15.16 310.73 14.34 11.50 15.16 JJKYG162.3.13 27.53 4.89 0.068 3 16.76 210.43 17.94 14.64 16.76 JJKYG162.3.14 26.86 2.18 0.178 3 9.32 141.23 9.88 5.61 9.32 JJKYG162.3.15 22.45 4.84 0.372 2 11.54 56.47 11.38 2.69 11.54 JJKYG162.3.16 27.31 2.38 0.142 0 13.81 185.25 12.85 7.04 13.81 JJKYG162.3.17 27.84 2.66 0.187 3 13.92 150.40 11.86 5.34 13.92 JJKYG162.3.18 30.02 1.35 0.096 3 9.93 296.71 9.54 10.38 9.93 JJKYG162.3.19 30.06 1.41 0.069 2 12.45 417.36 12.65 14.45 12.45 JJKYG162.3.20 28.43 1.04 0.084 0 3.54 324.96 3.75 11.91 3.54 表 4 花岗岩、细晶岩和伟晶岩的全岩主量(%)、微量(10-6)和稀土元素(10-6)分析数据
Table 4. Whole-rock major and trace elements data of the granitites, aplites and pegmatites
样品号 岩石类型 SiO2 Al2O3 K2O Na2O CaO Fe2O3 FeO FeOT MgO MnO P2O5 TiO2 LOI Total A/CNK A/NK JD304-b1 马颈子二云母花岗岩* 73.17 14.98 4.73 3.42 0.75 0.11 0.84 0.94 0.3 0.04 0.23 0.06 0.92 99.55 1.24 1.39 JD337-b1 74.53 14.91 4.07 3.79 0.65 0.26 0.58 0.81 0.2 0.04 0.23 0.05 0.75 100.06 1.26 1.40 PD23-b1 73.51 14.95 4.8 3.44 0.71 0.23 0.72 0.93 0.23 0.04 0.22 0.06 / 98.91 1.23 1.38 PD23-b3 73.83 14.61 4.74 3.24 0.76 0.02 0.86 0.88 0.23 0.03 0.21 0.06 / 98.59 1.23 1.40 JD572-H1 73.12 14.69 4.77 3.13 0.59 0.39 0.68 1.03 0.31 0.04 0.2 0.08 / 98.00 1.29 1.42 JJKYG162-02 无矿细晶岩 73.38 14.88 4.89 3.35 0.64 0.31 0.75 1.03 0.24 0.04 0.2 0.06 0.76 99.50 1.24 1.38 JJKYG089-06 73.92 14.92 5.01 3.32 0.73 0.23 0.79 1.00 0.25 0.04 0.21 0.06 0.72 100.20 1.22 1.37 JJKYG157-02 74.59 14.37 4.62 3.2 0.64 0.07 0.79 0.85 0.18 0.04 0.18 0.06 0.85 99.59 1.26 1.40 JJKYG089-19 含Be细晶岩 76.84 13.74 1.22 5.99 0.41 0.21 0.79 0.98 0.05 0.08 0.29 0.01 0.35 99.98 1.15 1.23 JJKYG157-03 无矿伟晶岩 76.52 13.57 2.13 5.03 0.46 0.16 0.52 0.66 0.07 0.04 0.15 0.02 0.53 99.20 1.19 1.28 JJKYG160-02 Be伟晶岩 72.11 17.53 1.59 7.08 0.16 0.05 0.5 0.54 0.06 0.11 0.05 0.03 0.86 100.13 1.28 1.31 JJKYG162-03 73.39 15.89 1.53 7.07 0.18 0.05 0.5 0.54 0.05 0.11 0.14 0.02 0.54 99.47 1.17 1.20 JJKYG089-18 Li伟晶岩 77.84 15.34 1.67 2.09 0.19 0.19 0.65 0.82 0.05 0.13 0.14 0.01 0.71 99.01 2.74 2.92 JJKYG089-16 74.91 17.4 2.31 1.52 0.22 0.26 0.57 0.80 0.06 0.15 0.11 0.01 0.56 98.08 3.22 3.48 样品号 岩石类型 Li Be Ta Nb Rb Sr V Y Zr Hf Sn Cs Ba Th U REE JD304-b1 马颈子二云母花岗岩 334 20.3 4.18 12.6 357 30.1 / 3.8 24.4 1.54 30.8 60.5 54.7 3.51 2.6 33.27 JD337-b1 443 66.4 13.3 26.2 440 23.4 / 3.24 20.5 1.38 53 168 41.4 3.35 3.93 28.79 PD23-b1 279 17.8 3.45 11.8 321 23.7 / 3.03 23.8 1.56 20.5 40.5 37.2 3.35 2.85 28.27 PD23-b3 329 16.1 3.73 13.8 336 28.2 / 3.81 25.8 1.71 26.4 73.3 50.8 4.09 6.08 34.27 JD572-H1 227 7.23 2.78 13.9 329 32.7 / 5.77 31.1 1.35 23.1 60.4 / 3.33 2.49 35.88 JJKYG162-02 无矿细晶岩 292.48 7.32 3.90 15.82 311.84 53.44 1.22 5.48 35.19 1.51 23.84 50.95 54.37 2.92 2.17 25.75 JJKYG089-06 346.96 9.46 2.42 13.62 368.33 53.80 0.51 5.67 29.11 1.49 24.72 63.07 53.77 3.95 3.20 39.52 JJKYG157-02 561.63 30.29 14.71 33.43 504.42 38.20 1.74 3.95 29.43 1.70 60.69 156.37 44.49 2.78 1.65 24.87 JJKYG089-19 含Be细晶岩 369.26 299.14 57.38 204.06 329.03 14.82 0.27 0.17 8.25 1.64 36.77 127.28 0.91 0.64 1.94 1.03 JJKYG157-03 无矿伟晶岩 97.58 11.74 7.08 23.11 266.29 14.69 0.92 1.37 13.34 1.16 24.39 28.61 8.61 0.60 1.17 3.95 JJKYG160-02 Be伟晶岩 101.08 191.83 94.28 84.35 411.05 3.16 0.62 0.06 56.14 9.22 92.63 52.85 3.15 1.40 4.12 0.29 JJKYG162-03 992.15 367.61 25.40 62.14 662.01 10.89 0.16 0.05 12.54 1.95 74.03 392.07 1.01 0.70 9.63 0.56 JJKYG089-18 Li伟晶岩 9 749.45 181.95 54.59 127.28 620.06 10.62 0.16 0.09 2.79 0.67 126.47 163.46 2.88 0.80 3.27 0.64 JJKYG089-16 1 3140.30 112.45 49.93 187.55 696.01 14.36 1.90 0.20 4.33 0.63 94.60 195.04 6.04 0.78 3.07 3.25 样品号 岩石类型 La Ce Pr Nd Sm Eu Gd Tb Dy Ho Er Tm Yb Lu Eu Ce JD304-b1 马颈子二云母花岗岩 6.45 10.7 1.53 7.96 1.7 0.32 1.82 0.31 1.48 0.2 0.44 0.05 0.27 0.04 0.56 0.84 JD337-b1 5.67 9.62 1.31 6.71 1.38 0.26 1.49 0.25 1.24 0.18 0.37 0.04 0.24 0.03 0.55 0.87 PD23-b1 5.45 9.31 1.28 6.72 1.45 0.25 1.61 0.26 1.21 0.16 0.32 0.03 0.19 0.03 0.50 0.86 PD23-b3 6.55 11.3 1.57 8.12 1.75 0.33 1.86 0.31 1.49 0.2 0.43 0.05 0.28 0.03 0.56 0.86 JD572-H1 7.92 14.5 1.63 6.07 1.48 0.27 1.43 0.25 1.3 0.19 0.44 0.05 0.32 0.03 0.57 0.99 JJKYG162-02 5.235 8.310 1.332 5.226 1.375 0.305 1.496 0.272 1.299 0.176 0.383 0.044 0.257 0.038 0.65 0.75 JJKYG089-06 无矿细晶岩 8.350 14.619 1.958 7.841 1.882 0.316 1.905 0.320 1.441 0.187 0.384 0.042 0.245 0.032 0.50 0.86 JJKYG157-02 5.361 8.761 1.263 4.884 1.229 0.248 1.255 0.217 1.019 0.127 0.272 0.030 0.173 0.027 0.60 0.80 JJKYG089-19 含Be细晶岩 0.159 0.716 0.018 0.050 0.017 0.002 0.017 0.006 0.028 0.004 0.009 0.001 0.005 0.000 0.33 2.71 JJKYG157-03 无矿伟晶岩 0.903 1.363 0.179 0.488 0.164 0.077 0.196 0.041 0.244 0.038 0.113 0.016 0.115 0.015 1.31 0.78 JJKYG160-02 Be伟晶岩 0.070 0.102 0.014 0.045 0.014 0.006 0.015 0.002 0.007 0.002 0.003 0.001 0.010 0.000 1.31 0.75 JJKYG162-03 0.100 0.325 0.019 0.080 0.017 0.000 0.009 0.002 0.005 0.002 0.002 0.001 0.002 0.000 0.07 1.70 JJKYG089-18 Li伟晶岩 0.199 0.288 0.017 0.075 0.014 0.004 0.014 0.003 0.015 0.001 0.005 0.001 0.004 0.001 0.97 0.92 JJKYG089-16 0.818 1.497 0.155 0.502 0.081 0.016 0.085 0.012 0.042 0.006 0.020 0.003 0.015 0.001 0.57 0.96 注:*数据唐国凡和吴盛先(1984);“/”表示数值为空. -
[1] Batchelor, R.A., Bowden, P., 1985.Petrogenetic Interpretation of Granitoid Rock Series Using Multicationic Parameters.Chemical Geology, 48(1-4):43-55.https://doi.org/10.1016/0009-2541(85)90034-8" target="_blank"> https://doi.org/10.1016/0009-2541(85)90034-8 [2] Bau, M., 1996.Controls on the Fractionation of Isovalent Trace Elements in Magmatic and Aqueous System:Evidence from Y/Ho, Zr/Hf, and Lanthanide Tetrad Effect.Contributions to Mineralogy and Petrology, 123:323-333. doi: 10.1007/s004100050159 [3] Blevin, P.L., 2004.Redox and Compositional Parameters for Interpreting the Granitoid Metallogeny of Eastern Australia:Implications for Gold-Rich Ore Systems.Resource Geology, 54(3):241-252.https://doi.org/10.1111/j.1751-3928.2004.tb00205.x doi: 10.1111/rge.2004.54.issue-3 [4] Bouseily, A.M.E., Sokkary, A.A.E., 1975.The Relation between Rb, Ba and Sr in Granitic Rocks.Chemical Geology, 16(3):207-219.https://doi.org/10.1016/0009-2541(75)90029-7" target="_blank"> https://doi.org/10.1016/0009-2541(75)90029-7 [5] Černý, P., 1991.Fertile Granites of Precambrian Rare-Element Pegmatite Fields:Is Geochemistry Controlled by Tectonic Setting or Source Lithologies?Precambrian Research, 51(1-4):429-468.https://doi.org/10.1016/0301-9268(91)90111-m doi: 10.1016/0301-9268(91)90111-M [6] Chappell, B.W., 1999.Aluminium Saturation in I- And S-Type Granites and the Characterization of Fractionated Haplogranites.Lithos, 46(3):535-551.https://doi.org/10.1016/s0024-4937(98)00086-3 doi: 10.1016/S0024-4937(98)00086-3 [7] Cui, Y.R., Tu, J.R., Chen, F., et al., 2017.The Research Advances in LA-(MC)-ICP-MS U-Pb Dating of Cassiterite.Acta Geologica Sinica, 91(6):1386-1399 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-DZXE201706017.htm [8] Ding, H.H., Hu, H., Zhang, A.C., et al., 2010.Study on Metamict Zircon from the Koktokay No.3 Granitic Pegmatite Vein.Acta Mineralogica Sinica, 30(2):160-167 (in Chinese with English abstract). http://d.old.wanfangdata.com.cn/Periodical/kwxb201002002 [9] Eby, G.N., Woolley, A.R., Din, V., et al., 1998.Geochemistry and Petrogenesis of Nepheline Syenites:Kasungu-Chipala, Ilomba, and Ulindi Nepheline Syenite Intrusions, North Nyasa Alkaline Province, Malawi.Journal of Petrology, 39(8):1405-1424.https://doi.org/10.1093/petroj/39.8.1405" target="_blank"> https://doi.org/10.1093/petroj/39.8.1405 [10] Fu, X.F., Yuan, L.P., Wang, D.H., et al., 2015.Mineralization Characteristics and Prospecting Model of Newly Discovered X03 Rare Metal Vein in Jiajika Orefield, Sichuan.Mineral Deposits, 34(6):1172-1186 (in Chinese with English abstract). http://www.en.cnki.com.cn/Article_en/CJFDTOTAL-KCDZ201506007.htm [11] Gao, Z.M., Pan, J.M., 1981.The Factors of Zircon Metamictization in Granites.Acta Mineralogica Sinica, 1(2):90-96 (in Chinese with English abstract). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=QK000001982443 [12] Hao, X.F., Fu, X.F., Liang, B., et al., 2015.Formation Ages of Granite and X03 Pegmatite Vein in Jiajika, Western Sichuan, and Their Geological Significance.Mineral Deposits, 34(6):1199-1208 (in Chinese with English abstract). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=kcdz201506009 [13] Hulsbosch, N., Hertogen, J., Dewaele, S., et al., 2014.Alkali Metal and Rare Earth Element Evolution of Rock-Forming Minerals from the Gatumba Area Pegmatites (Rwanda):Quantitative Assessment of Crystal-Melt Fractionation in the Regional Zonation of Pegmatite Groups.Geochimica et Cosmochimica Acta, 132:349-374.https://doi.org/10.1016/j.gca.2014.02.006" target="_blank"> https://doi.org/10.1016/j.gca.2014.02.006 [14] Irber, W., 1999.The Lanthanide Tetrad Effect and Its Correlation with K/Rb, Eu/Eu*, Sr/Eu, Y/Ho, and Zr/Hf of Evolving Peraluminous Granite Suites.Geochimica et Cosmochimica Acta, 63(3-4):489-508.https://doi.org/10.1016/s0016-7037(99)00027-7 doi: 10.1016/S0016-7037(99)00027-7 [15] Jahn, B.M., Capdevila, R., Liu, D.Y., et al., 2004.Sources of Phanerozoic Granitoids in the Transect Bayanhongor-Ulaan Baatar, Mongolia:Geochemical and Nd Isotopic Evidence, and Implications for Phanerozoic Crustal Growth.Journal of Asian Earth Sciences, 23(5):629-653.https://doi.org/10.1016/s1367-9120(03)00125-1 doi: 10.1016/S1367-9120(03)00125-1 [16] Kovalenko, V.I., Yarmolyuk, V.V., 1995.Endogenous Rare Metal Ore Formations and Rare Metal Metallogeny of Mongolia.Economic Geology, 90(3):520-529.https://doi.org/10.2113/gsecongeo.90.3.520" target="_blank"> https://doi.org/10.2113/gsecongeo.90.3.520 [17] Lehmann, B., 1990.Metallogeny of Tin.Springer-Verlag, Berlin. [18] Li, H.L., Bi, X.W., Hu, R.Z., et al., 2007.Mineral Chemistry of Biotite in the Qitianling Granite Associated with the Furong Tin Deposit:Tracing Tin Mineralization Signatures.Acta Petrologica Sinica, 23(10):2605-2614 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-YSXB200710027.htm [19] Li, J.K., Wang, D.H., Chen, Y.C., 2013.The Ore-Forming Mechanism of the Jiajika Pegmatite-Type Rare Metal Deposit in Western Sichuan Province:Evidence from Isotope Dating.Acta Geologica Sinica(English Edition), 87(1):91-101.https://doi.org/10.1111/1755-6724.12033 doi: 10.1111/acgs.2013.87.issue-1 [20] Li, J.K., Zou, T.R., Liu, X.F., et al., 2015.The Metallogenetic Regularities of Lithium Deposits in China.Acta Geologica Sinica(English Edition), 89(2):652-670.https://doi.org/10.1111/1755-6724.12453" target="_blank"> https://doi.org/10.1111/1755-6724.12453 [21] Li, J.K.2006.Mineralizing Mechanism and Continental Geodynamics of Typical Pegmatite Deposits in Western Sichuan, China(Dissertation).China University of Geosciences, Beijing (in Chinese with English abstract). [22] Li, J.K., Liu, X.F., Wang, D.H., et al., 2014.The Metallogenetic Regularity of Lithium Deposit in China.Acta Geologica Sinica, 88(12):2269-2283 (in Chinese with English abstract). http://kns.cnki.net/KCMS/detail/detail.aspx?filename=DZXW201502025&dbname=CJFD&dbcode=CJFQ [23] Li, K.W., Zhang, Q., Wang, D.P., et al., 2013.LA-MC-ICP-MS U-Pb Geochronology of Cassiterite from the Bainiuchang Polymetallic Deposit, Yunnan Province, China.Acta Mineralogica Sinica, 33(2):203-209 (in Chinese with English abstract). http://d.old.wanfangdata.com.cn/Periodical/kwxb201302014 [24] Liu, L.J., Fu, X.F., Wang, D.H., et al., 2015.Geological Characteristics and Metallogeny of Jiajika-Style Rare Metal Deposits.Mineral Deposits, 34(6):1187-1198 (in Chinese with English abstract). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=kcdz201506008 [25] Liu, L.J., Wang, D.H., Dai, H.Z., et al., 2017.Geochemical Characteristics of REE and Its Implications to X03 Super-Large Lithium Pegmatite Vein, Jiajika, Sichuan.Earth Science, 42(10):1673-1683 (in Chinese with English abstract).https://doi.org/10.3799/dqkx.2017.011 http://en.cnki.com.cn/Article_en/CJFDTOTAL-DQKX201710003.htm [26] Liu, Y.S., Gao, S.N., Hu, Z.C., et al., 2010.Continental and Oceanic Crust Recycling-Induced Melt-Peridotite Interactions in the Trans-North China Orogen:U-Pb Dating, Hf Isotopes and Trace Elements in Zircons from Mantle Xenoliths.Journal of Petrology, 51(1-2):537-571.https://doi.org/10.1093/petrology/egp082" target="_blank"> https://doi.org/10.1093/petrology/egp082 [27] Ludwig, K.R., 2003.Isoplot/Ex Version 3.00: A Geochronological Toolkit for Microsoft Excel.Berkeley Geochronology Center, Berkeley, 1-70. https://www.researchgate.net/publication/313569312_Isoplot_300_A_Geochronological_Toolkit_for_Microsoft_Excel_Berkeley [28] Ma, N., Deng, J., Wang, Q.F., et al., 2013.Gechronology of the Dasongpo Tin Deposit, Yunnan Province:Evidence from Zircon LA-ICP-MS U-Pb Ages and Cassiterite LA-MC-ICP-MS U-Pb Age.Acta Petrologica Sinica, 29(4):1223-1235 (in Chinese with English abstract). https://www.researchgate.net/publication/285523920_Geochronology_of_the_Dasongpo_tin_deposit_Yunnan_Province_evidence_from_zircon_LA-ICP-MS_U-Pb_ages_and_cassiterite_LA-MC-ICP-MS_U-Pb_age [29] Maniar, P.D., Piccoli, P.M., 1989.Tectonic Discrimination of Granitoids.Geological Society of America Bulletin, 101(5):635-643.https://doi.org/10.1130/0016-7606(1989)101<0635:tdog>2.3.co;2 doi: 10.1130/0016-7606(1989)101<0635:TDOG>2.3.CO;2 [30] McDonough, W.F., Sun, S.S., 1995.The Composition of the Earth.Chemical Geology, 120(3-4):223-253.https://doi.org/10.1016/0009-2541(94)00140-4" target="_blank"> https://doi.org/10.1016/0009-2541(94)00140-4 [31] Middlemost, E.A.K., 1994.Naming Materials in the Magma/Igneous Rock System.Earth-Science Reviews, 37(3-4):215-224.https://doi.org/10.1016/0012-8252(94)90029-9" target="_blank"> https://doi.org/10.1016/0012-8252(94)90029-9 [32] Pearce, J.A., Harris, N.B.W., Tindle, A.G., 1984.Trace Element Discrimination Diagrams for the Tectonic Interpretation of Granitic Rocks.Journal of Petrology, 25(4):956-983.https://doi.org/10.1093/petrology/25.4.956" target="_blank"> https://doi.org/10.1093/petrology/25.4.956 [33] Petford, N., Atherton, M., 1996.Na-Rich Partial Melts from Newly Underplated Basaltic Crust:The Cordillera Blanca Batholith, Peru.Journal of Petrology, 37(6):1491-1521.https://doi.org/10.1093/petrology/37.6.1491" target="_blank"> https://doi.org/10.1093/petrology/37.6.1491 [34] Sarbajna, C., Sinha, R.P., Krishnamurthy, P., et al., 1999.Mineralogy and Geochemistry of Alkali Beryl from the Rare Metal Bearing Pegmatites of Marlagalla-Allapatna, Mandya District, Karnataka.Journal of the Geological Society of India, 54(6):599-608. http://www.sciencedirect.com/science/article/pii/S0899536299000330 [35] Sun, S.S., McDonough, W.F., 1989.Chemical and Isotopic Systematics of Oceanic Basalts:Implications for Mantle Composition and Processes.Geological Society, London, Special Publications, 42(1):313-345.https://doi.org/10.1144/gsl.sp.1989.042.01.19 doi: 10.1144/GSL.SP.1989.042.01.19 [36] Takagi, T., Tsukimura, K., 1997.Genesis of Oxidized- and Reduced-Type Granites.Economic Geology, 92(1):81-86.https://doi.org/10.2113/gsecongeo.92.1.81" target="_blank"> https://doi.org/10.2113/gsecongeo.92.1.81 [37] Tang, G.F., Wu, S.X., 1984.Geological Study Report of Jiajika Granite-Pegmatite Type Lithium Deposit in Kangding, Sichuan, Sichuan Geological and Mineral Bureau(Panxi Geological Brigade), Xichang (in Chinese). [38] Wang, D.H., Chen, Y.C., Xu, Z.G., et al., 2002.Minerogenetic Series and Regularities of Mineralization in the Altay Metallogenetic Province, China.Atomic Energy Press, Beijing (in Chinese). http://en.cnki.com.cn/Article_en/CJFDTOTAL-DZZK201302011.htm [39] Wang, D.H., Fu, X.F., 2013.The Breakthrough of Lithium Ore Prospecting in Jiajika, Sichuan.Rock and Mineral Analysis, 32(6):987 (in Chinese with English abstract). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=dqxb201605007 [40] Wang, D.H., Li, H.Y., Zou, T.R., 1998.The Type of Rare-Metal Deposit in Altay and Its Relation to Orogeny.Mineral Deposit, 17(suppl.):25-28 (in Chinese with English abstract). [41] Wang, D.H., Li, J.K., Fu, X.F., 2005.40Ar/39Ar Dating for the Jiajika Pegmatite-Type Rare Metal Deposit in Western Sichuan and Its Significance.Geochimica, 34(6):541-547 (in Chinese with English abstract). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=dqhx200506001 [42] Wang, D.H., Liu, L.J., Dai, H.Z., et al., 2017a.Discussion on Particularity and Prospecting Direction of Large and Super-Large Spodumene Deposits.Earth Science, 42(12):2243-2257 (in Chinese with English abstract).https://doi.org/10.3799/dqkx.2017.142 http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=dqkx201712009 [43] Wang, D.H., Liu, L.J., Hou, J.L., et al., 2017b.A preliminary Review of the Application of "Five Levels+Basement" Model for Jiajika-Style Rare Metal Deposits.Earth Science Frontiers, 24(5):1-7 (in Chinese with English abstract). https://www.researchgate.net/publication/320137228_A_preliminary_review_of_the_application_of_Five_levelsBasement_model_for_Jiajika-style_rare_metal_deposits [44] Wang, D.H., Wang, R.J., Fu, X.F., et al., 2016.A Discussion on the Major Problems Related to Geological Investigation and Assessment for Energy Metal Resources Base:A Case Study of the Jiajika Large Lithium Mineral Resource Base.Acta Geoscientica Sinica, 37(4):471-480 (in Chinese with English abstract). [45] Wang, W.Y., Yang, Y.Q., Chen, C.H., et al., 1999.Study on the Nb and Ta-Minerals from the Granitic Pegmatitesin Nanping, Fujian Province.Geology of Fujian, 18(3):113-134 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-FJDZ199903000.htm [46] Wang, X.J., Liu, Y.P., Miao, Y.L., et al., 2014.In-Situ LA-MC-ICP-MS Cassiterite U-Pb Dating of Dulong Sn-Zn Polymetallic Deposit and Its Significance.Acta Petrologica Sinica, 30(3):867-876 (in Chinese with English abstract). http://d.old.wanfangdata.com.cn/Periodical/ysxb98201403024 [47] Wu, F.Y., Li, X.H., Yang, J.H., et al., 2007.Discussions on the Petrogeneisi of Granites.Acta Petrologica Sinica, 23(6):1217-1238 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-YSXB200706000.htm [48] Yang, X.M., 2007.Using the Rittmann Serial Index to Defi Ne the Alkalinity of Igneous Rocks.Neues Jahrbuch für Mineralogie-Abhandlungen, 184(1):95-103.https://doi.org/10.1127/0077-7757/2007/0082 http://www.ingentaconnect.com/content/schweiz/njma/2007/00000184/00000001/art00007 [49] Yuan, S.D., Peng, J.T., Hao, S., et al., 2011.In Situ LA-MC-ICP-MS and ID-TIMS U-Pb Geochronology of Cassiterite in the Giant Furong Tin Deposit, Hunan Province, South China:New Constraints on the Timing of Tin-Polymetallic Mineralization.Ore Geology Reviews, 43(1):235-242.https://doi.org/10.1016/j.oregeorev.2011.08.002" target="_blank"> https://doi.org/10.1016/j.oregeorev.2011.08.002 [50] Zhang, Y.X., Hu, Z.G., Luo, Y.N., et al., 1996.Discovery History of Mineral Deposits of China (Sichuan).Geological Publishing House, Beijing, 105-108 (in Chinese). [51] Zhu, D.C., Mo, X.X., Wang, L.Q., et al., 2009.Petrogenesis of Highly Fractionated I-Type Granites in the Zayu Area of Eastern Gangdese, Tibet:Constraints from Zircon U-Pb Geochronology, Geochemistry and Sr-Nd-Hf Isotopes.Science China:Earth Sciences, 52(9):1223-1239.https://doi.org/10.1007/s11430-009-0132-x" target="_blank"> https://doi.org/10.1007/s11430-009-0132-x [52] Zhu, L.J., Zhang, J., 1994.A Genetic Mineralogical Study of Cassiterites from tin Polymetallic Deposits in Northern Guangxi.Acta Mineralogica Sinica, 14(1):32-39 (in Chinese with English abstract). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=QK199400670483 [53] 崔玉荣, 涂家润, 陈枫, 等, 2017.LA-(MC)-ICP-MS锡石U-Pb定年研究进展.地质学报, 91(6):1386-1399. doi: 10.3969/j.issn.0001-5717.2017.06.016 [54] 丁海红, 胡欢, 张爱铖, 等, 2010.可可托海3号伟晶岩脉中蜕晶质化锆石微区研究.矿物学报, 30(2):160-167. http://d.old.wanfangdata.com.cn/Periodical/kwxb201002002 [55] 付小方, 袁蔺平, 王登红, 等, 2015.四川甲基卡矿田新三号稀有金属矿脉的成矿特征与勘查模型.矿床地质, 34(6):1172-1186. http://d.old.wanfangdata.com.cn/Periodical/kcdz201506007 [56] 高振敏, 潘晶铭, 1981.花岗岩中锆石变生因素的研究.矿物学报, 1(2):90-96. doi: 10.3321/j.issn:1000-4734.1981.02.004 [57] 郝雪峰, 付小方, 梁斌, 等, 2015.川西甲基卡花岗岩和新三号矿脉的形成时代及意义.矿床地质, 34(6):1199-1208. http://d.old.wanfangdata.com.cn/Periodical/kcdz201506009 [58] 李鸿莉, 毕献武, 胡瑞忠, 等, 2007.芙蓉锡矿田骑田岭花岗岩黑云母矿物化学组成及其对锡成矿的指示意义.岩石学报, 23(10):2605-2614. doi: 10.3969/j.issn.1000-0569.2007.10.026 [59] 李建康, 2006.川西典型伟晶岩型矿床的形成机制及其大陆动力学背景(博士学位论文).北京: 中国地质大学. http://cdmd.cnki.com.cn/Article/CDMD-11415-2006065358.htm [60] 李建康, 刘喜方, 王登红, 2014.中国锂矿成矿规律概要.地质学报, 88(12):2269-2283. http://d.old.wanfangdata.com.cn/Periodical/dizhixb201412009 [61] 李开文, 张乾, 王大鹏, 等, 2013.云南蒙自白牛厂多金属矿床锡石原位LA-MC-ICP-MS U-Pb年代学.矿物学报, 33(2):203-209. http://d.old.wanfangdata.com.cn/Periodical/kwxb201302014 [62] 刘丽君, 付小方, 王登红, 等, 2015.甲基卡式稀有金属矿床的地质特征与成矿规律.矿床地质, 34(6):1187-1198. http://d.old.wanfangdata.com.cn/Periodical/kcdz201506008 [63] 刘丽君, 王登红, 代鸿章, 等, 2017.四川甲基卡新三号超大型锂矿脉稀土元素地球化学.地球科学, 42(10):1673-1683.https://doi.org/10.3799/dqkx.2017.011 http://earth-science.net/WebPage/Article.aspx?id=3669 [64] 马楠, 邓军, 王庆飞, 等, 2013.云南腾冲大松坡锡矿成矿年代学研究:锆石LA-ICP-MS U-Pb年龄和锡石LA-MC-ICP-MSU-Pb年龄证据.岩石学报, 29(4):1223-1235. http://d.old.wanfangdata.com.cn/Periodical/ysxb98201304010 [65] 唐国凡, 吴盛先, 1984.四川省康定县甲基卡花岗伟晶岩锂矿床地质研究报告.西昌: 四川省地质矿产局攀西地质大队. [66] 王登红, 陈毓川, 徐志刚, 等, 2002.阿尔泰成矿省的成矿系列及成矿规律.北京:原子能出版社. [67] 王登红, 付小方, 2013.四川甲基卡外围锂矿找矿取得突破.岩矿测试, 32(6):987. doi: 10.3969/j.issn.0254-5357.2013.06.023 [68] 王登红, 李红阳, 邹天人, 1998.阿尔泰稀有金属矿床的类型与造山过程.矿床地质, 17(增刊):25-28. http://d.old.wanfangdata.com.cn/Conference/316051 [69] 王登红, 李建康, 付小方.2005.四川甲基卡伟晶岩型稀有金属矿床的成矿时代及其意义.地球化学, 34(6):541-547. doi: 10.3321/j.issn:0379-1726.2005.06.001 [70] 王登红, 刘丽君, 代鸿章, 等, 2017a.试论国内外大型超大型锂辉石矿床的特殊性与找矿方向.地球科学, 42(12):2243-2257.https://doi.org/10.3799/dqkx.2017.142 http://earth-science.net/WebPage/Article.aspx?id=3702 [71] 王登红, 刘丽君, 侯江龙, 等, 2017b.初论甲基卡式稀有金属矿床"五层楼+地下室"勘查模型.地学前缘, 24(5):1-7. http://www.cnki.com.cn/Article/CJFDTOTAL-DXQY201705002.htm [72] 王登红, 王瑞江, 付小方, 等, 2016.对能源金属矿产资源基地调查评价基本问题的探讨.地球学报, 37(4):471-480. http://d.old.wanfangdata.com.cn/Periodical/dqxb201604012 [73] 王文瑛, 杨岳清, 陈成湖, 等, 1999.福建南平花岗伟晶岩中的铌钽矿物学研究.福建地质, 18(3):113-134. doi: 10.1016-j.jpba.2010.02.006/ [74] 王小娟, 刘玉平, 缪应理, 等, 2014.都龙锡锌多金属矿床LA-MC-ICPMS锡石U-Pb测年及其意义.岩石学报, 30(3):867-876. http://d.old.wanfangdata.com.cn/Periodical/ysxb98201403024 [75] 吴福元, 李献华, 杨进辉, 等, 2007.花岗岩成因研究的若干问题.岩石学报, 23(6):1217-1238. doi: 10.3969/j.issn.1000-0569.2007.06.001 [76] 张云湘, 胡正纲, 骆耀南, 等, 1996.中国矿床发现史:四川卷.北京:地质出版社, 105-108. [77] 朱立军, 张杰, 1994.桂北地区锡多金属矿床中锡石的成因矿物学研究.矿物学报, 14(1):32-39. doi: 10.3321/j.issn:1000-4734.1994.01.005