Paleo-Fluid Migration and Conservation Conditions of Shale Gas in Jiaoshiba-Wulong Area
-
摘要: 焦石坝-武隆地区差异构造带发育,古流体活动复杂,对页岩气保存条件影响较为关键.以两类典型背斜(高陡背斜和箱状背斜)的裂缝脉为研究对象,基于裂缝分形理论和碳、氧、锶同位素地球化学理论,揭示出不同构造的古流体活动差异与页岩气保存条件优劣的耦合性.研究认为:(1)构造变形与古流体活动性存在耦合性.构造应力集中部位(如箱状背斜枢纽、隐伏断层)较构造其他部位具更强的流体活动性.(2)古流体示踪差异与页岩气保存条件存在耦合性.同位素地球化学揭示出二叠系-下三叠统以内源流体活动为主,封闭能力较好,盆内高陡背斜带和盆外残余向斜五峰-龙马溪组页岩气具备一定勘探前景;中寒武统-下奥陶统存在跨层流体活动的痕迹,封闭能力变差,盆外箱状背斜下寒武统筇竹寺组页岩气勘探风险加大.Abstract: The development of the differential tectonic zones in the Jiaoshiba-Wulong area with complex paleo-fluid activities is crucial to the preservation of shale gas. The fracture veins of two typical anticlines (steep anticlines and box anticlines) are studied. Based on the theory of fractal fracture and carbon, oxygen and strontium isotope geochemistry, it reveals the differences of paleo-fluid activities in different structure and coupling of shale gas preservation conditions. The study suggests fellows:(1) There is coupling between tectonic deformation and paleo-fluid activity. The fluid is more active in the tectonic stress concentration areas (such as box anticlinal hinge, hidden faults) than other parts of the structure. (2) There is coupling between paleo-fluid tracer differences and shale gas preservation conditions. Isotope geochemistry reveals that the internal fluid flow dominates in the Permian-Lower Triassic formation, and the sealing ability is good. The Wufeng-Longmaxi shale gas of the high-steep anticline in the basin and the residual syncline outside the basin has certain exploration prospects. There exists the trace of cross-layer fluid activities in the Middle Cambrian-Lower Ordovician formation, and the sealing ability deteriorates. The risks of shale gas exploration in the Lower Cambrian Qiongzhusi Formation of the box anticline outside the basin increased.
-
Key words:
- Sichuan basin /
- fracture fractal /
- carbon, oxygen and strontium isotope /
- paleo-fluid /
- shale gas
-
表 1 焦石坝-武隆地区裂缝特征统计
Table 1. tatistical data of fracture features in the Jiaoshiba-Wulong area
构造名称 采样点 层位 地层产状(°) 均脉宽(mm) 脉密度(条/m) 脉宽密度(mm/m) 变差系数Cv 分维数D 拟合度R2 焦石坝
背斜东部10* 嘉陵江组T1j 78∠8 2.39 18 44 1.000 1.64 0.96 25* 嘉陵江组T1j 90∠6 1.98 13 25 1.340 1.75 0.94 大耳山
高陡
背斜18* 嘉陵江组T1j 125∠76 1.72 39 68 1.160 1.71 0.98 15 上二叠统P2 104∠70 1.65 34 56 0.780 2.53 0.90 14 上二叠统P2 103∠68 1.57 39 62 0.995 2.11 0.97 9 下二叠统P1 93∠40 1.35 61 84 0.620 2.49 0.98 7※ 上二叠统P2 95∠53 1.46 38 57 1.060 2.16 0.99 5※ 飞仙关组T1f 115∠58 2.63 21 56 0.810 1.53 0.97 2 嘉陵江组T1j 36∠28 2.05 23 48 0.910 2.10 0.85 38 嘉陵江组T1j 116∠23 1.20 32 38 0.700 2.38 0.93 接龙场
箱状
背斜590 飞仙关组T1f 315∠24 1.38 15 22 1.319 2.08 0.99 592 上二叠统P2 292∠54 4.33 25 111 0.625 1.08 0.96 593 下二叠统P1 240∠73 5.55 18 184 1.257 0.80 0.98 599 大湾组O1d 333∠19 2.55 12 30 1.066 1.28 0.99 600 后坝组 C3h38∠11 1.98 11 22 1.154 1.82 0.94 602 平井组 C2p38∠11 1.79 33 61 1.120 1.64 0.98 607 桐梓组O1t 291∠24 1.85 45 84 1.000 1.49 0.97 611 平井组 C2p73∠12 1.84 19 36 0.582 1.13 0.89 612 平井组 C2p97∠13 2.16 16 36 1.326 1.88 0.96 616 平井组 C2p285∠76 2.02 34 71 0.647 1.61 0.98 627 上二叠统P2 110∠25 1.87 25 47 1.127 1.44 0.93 注:采样点中带*标注(如10*)位于大耳山西隐伏断层附近;带※标注(如7※)位于大耳山东侧隐伏断层附近. 表 2 焦石坝-武隆地区裂缝脉及围岩的碳氧锶同位素
Table 2. Carbon, oxygen and strontium isotope data of fracture vein and country rock in the Jiaoshiba-Wulong area
样品号 地层 围岩(c) 裂缝脉(v) 围岩-裂缝脉(c-v) 描述 (87Sr/86Sr)(c) δ13C(c)
(‰)δ18O(c)
(‰)描述 (87Sr/86Sr)(v) δ13C(v)
(‰)δ18O(v)
(‰)Δ(87Sr/86Sr)(c-v)
(10-4)Δδ13C(c-v)
(‰)Δδ18O(c-v)
(‰)10-1S T1j 生物屑灰岩 0.708 03 -1.9 23.8 张性方解石脉 0.707 85 -2.3 24.9 1.8 0.4 -1.1 10-2S T1j 生物屑灰岩 0.708 03 -1.9 23.8 破碎带内粗晶
方解石脉0.707 61 -2.1 23.9 4.2 0.2 -0.1 25S T1j 泥晶灰岩 0.708 12 -1.4 23.4 节理方解石脉 0.707 86 -2.4 24.1 2.6 1.0 -0.7 18S T1j 泥晶灰岩 0.708 04 1.0 22.6 节理方解石脉 0.707 99 -1.1 20.4 0.5 2.1 2.2 15S P2 瘤状灰岩 0.707 29 2.1 44.3 张性方解石脉 0.707 28 1.6 23.5 0.1 0.5 20.8 14S P2 泥晶灰岩 0.707 18 3.6 24.9 剪张性方解石脉 0.707 21 1.0 23.1 -0.3 2.6 1.8 9S P1 泥晶灰岩 0.707 55 4.3 22.8 剪张性方解石脉 0.707 32 3.5 21.5 2.3 0.8 1.3 7S P2 生物屑灰岩 0.707 26 4.8 24.7 节理方解石脉 0.707 44 2.7 21.9 -1.8 2.1 2.8 5S T1f 砂屑灰岩 0.707 92 -1.3 22.6 张性方解石脉 0.707 90 -1.8 15.4 0.2 0.5 7.2 2S T1j 泥晶灰岩 0.708 59 -0.5 24.9 节理方解石脉 0.708 21 -2.4 17.7 3.8 1.9 7.2 38S T1j 泥晶灰岩 0.708 06 3.2 25.7 方解石脉 0.708 05 -2.4 18.4 0.1 5.6 7.3 590S T1f 粒屑灰岩 0.707 45 2.5 22.9 张节理方解石脉 0.707 33 1.3 22.8 1.2 1.2 0.1 592S P2 泥晶灰岩 0.707 41 2.7 23.6 张性方解石脉 0.707 54 1.4 22.5 -1.3 1.3 1.1 593-1S P1 瘤状灰岩 0.707 23 4.1 22.6 剪张性方解石脉 0.707 73 2.2 21.6 -5.0 1.9 1.1 593-2S P1 瘤状灰岩 0.707 23 4.1 22.6 张性方解石脉 0.708 11 1.9 21.5 -8.8 2.2 1.1 593-3S P1 瘤状灰岩 0.707 23 4.1 22.6 方解石脉 0.707 73 2.9 21.5 -5.0 1.2 1.1 597S S1ln 粉砂岩 0.730 76 \ \ 石英 0.717 46 \ \ 133.0 \ \ 599S O1d 生物屑灰岩 0.715 25 -0.5 19.5 剪张性方解石脉 0.723 34 -1.9 18.6 -80.9 1.4 0.9 600S C3h砂屑白云岩 0.711 09 2.0 22.5 张性方解石脉 0.709 66 -2.0 13.0 14.3 4.0 9.5 602S C2p泥质白云岩 0.710 17 0.1 22.7 顺层方解石脉 0.709 16 -1.2 20.2 10.1 1.3 2.5 607S O1t 泥晶灰岩 0.709 17 -2.5 21.7 张性方解石脉 0.709 59 -3.3 19.0 -4.2 0.8 2.7 611-1S C2p泥晶灰岩 0.709 17 -2.5 21.7 晶洞方解石脉 0.710 18 -7.8 19.0 -10.1 5.3 2.7 611-2S C2p颗粒灰岩 0.709 62 -1.3 22.3 节理方解石脉 0.710 38 -1.0 21.5 -7.6 -0.3 0.8 612S C2p砂屑白云岩 0.708 36 -1.1 22.1 剪张性方解石脉 0.709 59 -3.1 19.1 -12.3 2.0 3.0 616S C2p泥晶白云岩 0.709 71 -0.8 23.5 张性方解石脉 0.709 28 -1.1 20.3 4.3 0.3 3.2 627S P2 生物灰岩 0.707 09 4.2 24.5 张性方解石脉 0.707 05 1.7 25.1 0.4 2.5 -0.6 630S T1j 泥晶白云岩 0.709 52 -0.7 23.1 张性方解石脉 0.707 58 -1.0 19.2 19.4 0.3 3.9 注:(1)δ13C采用PDB标准, δ18O采用SMOW标准; (2)地质历史时期正常海水87Sr/86Sr值范围, T1:0.707 4~0.708 5;P2:0.706 7~0.707 6; P1:0.707 3~0.708 3;S1:0.707 8~0.708 7;O2-3:0.707 9~0.708 8;O1:0.708 8~0.709 3; C2-3:0.708 1~0.709 3;(3)15S的δ18O(c)异常高,不做讨论. -
[1] André-Mayer, A.S., Sausse, J., 2007.Thickness and Spatial Distribution of Veins in a Porphyry Copper Deposit, Rosia Poieni, Romania.Journal of Structural Geology, 29(10):1695-1708. https://doi.org/ 10.1016/j.jsg.2007.06.010 [2] Banner, J.L., 2004.Radiogenic Isotopes:Systematics and Applications to Earth Surface Processes and Chemical Stratigraphy.Earth-Science Reviews, 65(3-4):141-194. https://doi.org/ 10.1016/s0012-8252(03)00086-2 [3] Castorinal, F., Censi, P., Comin-Chiaramonti, P., et al., 1997.Carbonatites from Eastern Paraguay and Genetic Relationships with Potassic Magmatism:C, O, Sr and Nd Isotopes.Mineralogy and Petrology, 61(1-4):237-260. https://doi.org/ 10.1007/bf01172487 [4] Chen, H.S., 1994.Isotope Geochemistry Research.Zhejiang University Press, Hangzhou (in Chinese). [5] Chen, J.S., 1983.An Introduction to Carbon Isotope Geology.Geological Publishing House, Beijing (in Chinese). [6] Chen, Z.Q., Yang, H.F., Wang, J.B., et al., 2016.Application of 3D High-Precision Seismic Technology to Shale Gas Exploration:A Case Study of the Large Jiaoshiba Shale Gas Field in the Sichuan Basin.Natural Gas Industry, 36(2):9-20(in Chinese with English abstract). http://www.sciencedirect.com/science/article/pii/S2352854016300249 [7] Clark, M.B., Brantley, S.L., Fisher, D.M., 1995.Power-Law Vein-Thickness Distributions and Positive Feedback in Vein Growth.Geology, 23(11):975.https://doi.org/ 10.1130/0091-7613(1995)023<0975:plvtda>2.3.co;2 doi: 10.1130/0091-7613(1995)023<0975:plvtda>2.3.co;2 [8] Cox, D.R., Lewis, P.A.W., 1966.Theoretical Statistics.(Book Reviews:The Statistical Analysis of Series of Events).Science, 154(3750):757. http://d.old.wanfangdata.com.cn/Periodical/dlxtzdh201207008 [9] Curtis, J.B., 2002.Fractured Shale-Gas Systems.AAPG Bulletin, 86(11):1921-1938. https://doi.org/ 10.1306/61eeddbe-173e-11d7-8645000102c1865d [10] Deng, B., Liu, S.G., Liu, S., et al., 2009.Restoration of Exhumation Thickness and Its Significance in Sichuan Basin, China.Journal of Chengdu University of Technology(Science & Technology Edition), 36(6):675-686(in Chinese with English abstract). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=cdlgxyxb200906013 [11] Deng, B., Liu, S.G., Wang, G.Z., et al., 2013.Cenozoic Uplift and Exhumation in Southern Sichuan Basin-Evidence from Low-Temperature Thermochronology.Chinese Journal of Geophysics, 56(6):1958-1973(in Chinese with English abstract). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=dqwlxb201306018 [12] Deng, B., Liu, S.G., Yang, S., et al., 2010.Fractal Features and Its' Implication of Cambrian Veins in Sangmuchang Anticline, Southeast Sichuan Basin.Geological Science and Technology Information, 29(2):107-117(in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTotal-DZKQ201002021.htm [13] Derry, L.A., Kaufman, A.J., Jacobsen, S.B., 1992.Sedimentary Cycling and Environmental Change in the Late Proterozoic:Evidence from Stable and Radiogenic Isotopes.Geochimica et Cosmochimica Acta, 56(3):1317-1329. https://doi.org/ 10.1016/0016-7037(92)90064-p [14] Fu, X.F., Su, Y.P., Lü, Y.F., et al., 2007.Fractal Characteristic and Geological Meaning of Fault and Fracture.Earth Science, 32(2):227-234(in Chinese with English abstract). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=dqkx200702011 [15] Gale, J.F.W., Laubach, S.E., Olson, J.E., et al., 2014.Natural Fractures in Shale:A Review and New Observations.AAPG Bulletin, 98(11):2165-2216. https://doi.org/ 10.1306/08121413151 [16] Gillespie, P.A., Johnston, J.D., Loriga, M.A., et al., 1999.Influence of Layering on Vein Systematics in Line Samples.Geological Society, London, Special Publications, 155(1):35-56. https://doi.org/ 10.1144/gsl.sp.1999.155.01.05 [17] Guo, T.L., 2016.Key Geological Issues and Main Controls on Accumulation and Enrichment of Chinese Shale Gas.Petroleum Exploration and Development, 43(3):317-326(in Chinese with English abstract). http://d.wanfangdata.com.cn/Periodical/syktykf201603001 [18] Guo, T.L., Liu, R.B., 2013.Implications from Marine Shale Gas Exploration Breakthrough in Complicated Structural Area at High Thermal Stage:Taking Longmaxi Formation in Well JY1 as an Example.Natural Gas Geoscience, 24(4):643-651(in Chinese with English abstract). http://d.old.wanfangdata.com.cn/Periodical/trqdqkx201304001 [19] Guo, T.L., Zhang H.R., 2014.Formation and Enrichment Mode of Jiaoshiba Shale Gas Field, Sichuan Basin.Petroleum Exploration and Development, 41(1):28-36(in Chinese with English abstract). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=syktykf201401003 [20] Guo, X.S., 2014.Enrichment Mechanism and Exploration Technology for the Block of the Coke Shale Dam in Fuling Shale Gas Field.Science Press, Beijing(in Chinese). [21] Hoefs, J., Sywall, M., 1997.Lithium Isotope Composition of Quaternary and Tertiary Biogene Carbonates and a Global Lithium Isotope Balance.Geochimica et Cosmochimica Acta, 61(13):2679-2690. https://doi.org/ 10.1016/s0016-7037(97)00101-4 [22] Hu, D.F., Zhang, H.R., Ni, K., et al., 2014.Main Controlling Factors for Gas Preservation Conditions of Marine Shales in Southeastern Margins of the Sichuan Basin.Natural Gas Industry, 34(6):17-23(in Chinese with English abstract). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=trqgy201406003 [23] Huang, S.J., Liu, S.G., Li, G.R., et al., 2004.Strontium Isotope Composition of Marine Carbonate and the Influence of Diagenetic Fluid on It in Ordovician.Journal of Chengdu University of Technology(Science & Technology Edition), 31(1):1-7(in Chinese with English abstract). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=cdlgxyxb200401001 [24] Huang, S.J., Shi, H., Zhang, M., et al., 2002.Application of Strontium Isotope Stratigraphy to Diagenesis Research.Acta Sedimentologica Sinica, 20(3):359-366(in Chinese with English abstract). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=cjxb200203001 [25] Le, G.Y., 1996.Structural Composite Principle.University of Electronic Science and Technology of China Press, Chengdu(in Chinese). [26] Li, S.J., Li, J.M., Zhou, Y., et al., 2011.Fission Track Evidence for Mesozoic-Cenozoic Uplifting in the Southeastern Margin of Sichuan Basin.Acta Petrologica et Mineralogica, 30(2):225-233(in Chinese with English abstract). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=yskwxzz201102007 [27] Liu, H.L., Wang, H.Y., 2012.Adsorptivity and Influential Factors of Marine Shales in South China.Natural Gas Industry, 32(9):5-9, 125-126(in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-TRQG201209001.htm [28] Liu, S.G., Deng, B., Zhong, Y., et al., 2016.Unique Geological Features of Burial and Superimposition of the Lower Paleozoic Shale Gas across the Sichuan Basin and Its Periphery.Earth Science Frontiers, 23(1):11-28(in Chinese with English abstract). http://d.old.wanfangdata.com.cn/Periodical/dxqy201601002 [29] Liu, S.G., Li, Z.W., Sun, W., et al., 2011.Basic Geological Features of Superimposed Basin and Hydrocarbon Accumulation in Sichuan Basin, China.Chinese Journal of Geology(Scientia Geologica Sinica), 46(1):233-257(in Chinese with English abstract). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=dzkx201101019 [30] Liu, S.G., Sun, W., Wang, G.Z., et al., 2013.Analysis of Causes of Oil and Gas Accumulation in Superimposed Sichuan Basin of China.Journal of Chengdu University of Technology(Science & Technology Edition), 40(5):481-497(in Chinese with English abstract). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=cdlgxyxb201305001 [31] Liu, S.G., Zeng, X.L., Huang, W.M., et al., 2009.Basic Characteristics of Shale and Continuous-Discontinuous Transition Gas Reservoirs in Sichuan Basin, China.Journal of Chengdu University of Technology(Science & Technology Edition), 36(6):578-592(in Chinese with English abstract). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=cdlgxyxb200906002 [32] Mandelbrot, B., 1983.The Fractal Geometry of Nature:Updated and Augmented.W.H.Freeman and Company, New York. [33] McCaffrey, K.J.W., Johnston, J.D., 1996.Fractal Analysis of a Mineralised Vein Deposit:Curraghinalt Gold Deposit, County Tyrone.Mineralium Deposita, 31(1-2):52-58. https://doi.org/ 10.1007/bf00225395 [34] Mei, L.F., Liu, Z.Q., Tang, J.G., et al., 2010.Mesozoic Intra-Continental Progressive Deformation in Western Hunan-Hubei-Eastern Sichuan Provinces of China:Evidence from Apatite Fission Track and Balanced Cross-Section.Earth Science, 35(2):161-174(in Chinese with English abstract). http://d.old.wanfangdata.com.cn/Periodical/dqkx201002001 [35] Nie, H.K., Bao, S.J., Gao, B., et al., 2012.A Study of Shale Gas Preservation Conditions for the Lower Paleozoic in Sichuan Basin and Its Periphery.Earth Science Frontiers, 19(3):280-294(in Chinese with English abstract). http://d.old.wanfangdata.com.cn/Periodical/dxqy201203030 [36] Nie, H.K., Tang, X., Bian, R.K., 2009.Controlling Factors for Shale Gas Accumulation and Prediction of Potential Development Area in Shale Gas Reservoir of South China.Acta Petrolei Sinica, 30(4):484-491(in Chinese with English abstract). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=syxb200904002 [37] Nie, H.K., Zhang, J.C., 2011.Types and Characteristics of Shale Gas Reservoir:A Case Study of Lower Paleozoic in and around Sichuan Basin.Petroleum Geology & Experiment, 33(3):219-225, 232(in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-SYSD201103003.htm [38] Palmer, M.R., Elderfield, H., 1985.Sr Isotope Composition of Sea Water over the Past 75 Myr.Nature, 314(6011):526-528. https://doi.org/ 10.1038/314526a0 [39] Ramsay, J.G., Huber, M.I., 1988.The Techniques of Modern Structural Geology.Volume 2, Folds and Fractures.Earth-Science Reviews, 23(3):242-243. doi: 10.1080/11035898609453752 [40] Sanderson, D.J., Roberts, S., Gumiel, P., 1994.A Fractal Relationship between Vein Thickness and Gold Grade in Drill Core from La Codosera, Spain.Economic Geology, 89(1):168-173. https://doi.org/ 10.2113/gsecongeo.89.1.168 [41] Scholz, C.H., Cowie, P.A., 1990.Determination of Total Strain from Faulting Using Slip Measurements.Nature, 346(6287):837-839. https://doi.org/ 10.1038/346837a0 [42] Shen, C.B., Mei, L.F., Xu, Z.P., et al., 2007.Architecture and Tectonic Evolution of Composite Basin-Mountain System in Sichuan Basin and Its Adjacent Areas.Geotectonica et Metallogenia, 31(3):288-299(in Chinese with English abstract). http://en.cnki.com.cn/article_en/cjfdtotal-dgyk200703005.htm [43] Veizer, J., Compston, W., 1976.87Sr/86Sr in Precambrian Carbonates as an Index of Crustal Evolution.Geochimica et Cosmochimica Acta, 40(8):905-914. https://doi.org/ 10.1016/0016-7037(76)90139-3 [44] Wang, G.Z., Liu, S.G., 2009.Paleo-Fluid Geochemical Evaluation of Hydrocarbon Preservation in Marine Carbonate Rock Areas:Taking Lower Association in Central Sichuan Basin as an Example.Journal of Chengdu University of Technology(Science & Technology Edition), 36(6):631-644(in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-CDLG200906009.htm [45] Wang, L.S., Zou, C.Y., Zheng, P., et al., 2009.Geochemical Evidence of Shale Gas Existed in the Lower Paleozoic Sichuan Basin.Natural Gas Industry, 29(5):59-62, 138(in Chinese with English abstract). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=trqgy200905011 [46] Wang, X.B., Luo, W., Zhang, G., et al., 2013.Electrical Resistivity Structure of Longmenshan Crust-Mantle under Sector Boundary.Chinese Journal of Geophysics, 56(8):2718-2727(in Chinese with English abstract). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=dqwlxb201308020 [47] Wang, Y.M., Huang, J.L., Wang, S.F., et al., 2016.Dissection of Two Calibrated Areas of the Silurian Longmaxi Formation, Changning and Jiaoshiba, Sichuan Basin.Natural Gas Geoscience, 27(3):423-432(in Chinese with English abstract). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=trqdqkx201603004 [48] Xie, H.P., 1997.Introduction to Fractal Rock Mechanics.Science Press, Beijing(in Chinese). [49] Xin, H.W., 1993.Fractal Theory and Its Application.University of Science and Technology of China, Hefei (in Chinese). [50] Yan, D.P., Jin, Z.L., Zhang, W.C., et al., 2008.Rock Mechanical Characteristics of the Multi-Layer Detachment Fault System and Their Controls on the Structural Deformation Style of the Sichuan-Chongqing-Hunan-Hubei Thin-Skinned Belt, South China.Geological Bulletin of China, 27(10):1687-1697(in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-ZQYD200810012.htm [51] Zhang, J.C., Jin, Z.J., Yuan, M.S., 2004.Reservoiring Mechanism of Shale Gas and Its Distribution.Natural Gas Industry, 24(7):15-18, 131-132(in Chinese with English abstract). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=trqgy200407005 [52] Zhang, J.C., Xu, B., Nie, H.K., et al., 2008.Exploration Potential of Shale Gas Resources in China.Natural Gas Industry, 28(6):136-140, 159-160(in Chinese with English abstract). http://d.old.wanfangdata.com.cn/Periodical/qdhydxxb-e201804008 [53] Zhang, X.L., 1985.Relationship between Carbon and Oxygen Stable Isotope in Carbonate Rocks and Paleosalinity and Paleotemperature of Seawater.Acta Sedimentologica Sinica, 3(4):20-33(in Chinese with English abstract). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=QK000000029780 [54] Zhou, W., Xu, H., Yu, Q., et al., 2016.Shale Gas-Bearing Property Differences and Their Genesis between Wufeng-Longmaxi Formation and Qiongzhusi Formation in Sichuan Basin and Surrounding Areas.Lithologic Reservoirs, 28(5):18-25(in Chinese with English abstract). [55] Zou, C.N., Dong, D.Z., Wang, Y.M., et al., 2015.Shale Gas in China:Characteristics, Challenges and Prospects(Ⅰ).Petroleum Exploration and Development, 42(6):689-701(in Chinese with English abstract). http://www.sciencedirect.com/science/article/pii/S1876380416300222 [56] Zou, C.N., Dong, D.Z., Wang, Y.M., et al., 2016.Shale Gas in China:Characteristics, Challenges and Prospects (Ⅱ).Petroleum Exploration and Development, 43(2):166-178(in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTotal-SKYK201602003.htm [57] Zou, C.N., Tao, S.Z., Yuan, X.J., et al., 2009.Global Importance of "Continuous" Petroleum Reservoirs:Accumulation, Distribution and Evaluation.Petroleum Exploration and Development, 36(6):669-682(in Chinese with English abstract). doi: 10.1016/S1876-3804(10)60001-8 [58] Zou, C.N., Zhu, R.K., Wu, S.T., et al., 2012.Types, Characteristics, Genesis and Prospects of Conventional and Unconventional Hydrocarbon Accumulations:Taking Tight Oil and Tight Gas in China as an Instance.Acta Petrolei Sinica, 33(2):173-187(in Chinese with English abstract). doi: 10.1038/aps.2011.203 [59] 陈好寿, 1994.同位素地球化学研究.杭州:浙江大学出版社. [60] 陈锦石, 1983.碳同位素地质学概论.北京:地质出版社. [61] 陈祖庆, 杨鸿飞, 王静波, 等, 2016.页岩气高精度三维地震勘探技术的应用与探讨——以四川盆地焦石坝大型页岩气田勘探实践为例.天然气工业, 36(2):9-20. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=trqgy201602002 [62] 邓宾, 刘树根, 刘顺, 等, 2009.四川盆地地表剥蚀量恢复及其意义.成都理工大学学报(自然科学版), 36(6):675-686. doi: 10.3969/j.issn.1671-9727.2009.06.013 [63] 邓宾, 刘树根, 王国芝, 等, 2013.四川盆地南部地区新生代隆升剥露研究——低温热年代学证据.地球物理学报, 56(6):1958-1973. http://www.cnki.com.cn/Article/CJFDTOTAL-DQWX201306019.htm [64] 邓宾, 刘树根, 杨锁, 等, 2010.川东南桑木场背斜寒武系脉体分形特征及其意义.地质科技情报, 29(2):107-117. http://d.old.wanfangdata.com.cn/Periodical/dzkjqb201002019 [65] 付晓飞, 苏玉平, 吕延防, 等, 2007.断裂和裂缝的分形特征.地球科学, 32(2):227-234. doi: 10.3321/j.issn:1000-2383.2007.02.011 [66] 郭彤楼, 2016.中国式页岩气关键地质问题与成藏富集主控因素.石油勘探与开发, 43(3):317-326. http://d.old.wanfangdata.com.cn/Periodical/syktykf201603001 [67] 郭彤楼, 刘若冰, 2013.复杂构造区高演化程度海相页岩气勘探突破的启示——以四川盆地东部盆缘JY1井为例.天然气地球科学, 24(4):643-651. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=trqdqkx201304001 [68] 郭彤楼, 张汉荣, 2014.四川盆地焦石坝页岩气田形成与富集高产模式.石油勘探与开发, 41(1):28-36. http://d.old.wanfangdata.com.cn/Periodical/syktykf201401003 [69] 郭旭升, 2014.涪陵页岩气田焦石坝区块富集机理与勘探技术.北京:科学出版社. [70] 胡东风, 张汉荣, 倪楷, 等, 2014.四川盆地东南缘海相页岩气保存条件及其主控因素.天然气工业, 34(6):17-23. doi: 10.3787/j.issn.1000-0976.2014.06.003 [71] 黄思静, 刘树根, 李国蓉, 等, 2004.奥陶系海相碳酸盐锶同位素组成及受成岩流体的影响.成都理工大学学报(自然科学版), 31(1):1-7. doi: 10.3969/j.issn.1671-9727.2004.01.001 [72] 黄思静, 石和, 张萌, 等, 2002.锶同位素地层学在碎屑岩成岩研究中的应用.沉积学报, 20(3):359-366. doi: 10.3969/j.issn.1000-0550.2002.03.001 [73] 乐光禹, 1996.构造复合联合原理.成都:成都科技大学出版社. [74] 李双建, 李建明, 周雁, 等, 2011.四川盆地东南缘中新生代构造隆升的裂变径迹证据.岩石矿物学杂志, 30(2):225-233. doi: 10.3969/j.issn.1000-6524.2011.02.007 [75] 刘洪林, 王红岩, 2012.中国南方海相页岩吸附特征及其影响因素.天然气工业, 32(9):5-9, 125-126. doi: 10.3787/j.issn.1000-0976.2012.09.002 [76] 刘树根, 邓宾, 钟勇, 等, 2016.四川盆地及周缘下古生界页岩气深埋藏-强改造独特地质作用.地学前缘, 23(1):11-28. http://d.old.wanfangdata.com.cn/Periodical/dxqy201601002 [77] 刘树根, 李智武, 孙玮, 等, 2011.四川含油气叠合盆地基本特征.地质科学, 46(1):233-257. doi: 10.3969/j.issn.0563-5020.2011.01.019 [78] 刘树根, 孙玮, 王国芝, 等, 2013.四川叠合盆地油气富集原因剖析.成都理工大学学报(自然科学版), 40(5):481-497. doi: 10.3969/j.issn.1671-9727.2013.05.01 [79] 刘树根, 曾祥亮, 黄文明, 等, 2009.四川盆地页岩气藏和连续型-非连续型气藏基本特征.成都理工大学学报(自然科学版), 36(6):578-592. doi: 10.3969/j.issn.1671-9727.2009.06.002 [80] 梅廉夫, 刘昭茜, 汤济广, 等, 2010.湘鄂西-川东中生代陆内递进扩展变形:来自裂变径迹和平衡剖面的证据.地球科学, 35(2):161-174. doi: 10.3969/j.issn.1672-6561.2010.02.008 [81] 聂海宽, 包书景, 高波, 等, 2012.四川盆地及其周缘下古生界页岩气保存条件研究.地学前缘, 19(3):280-294. http://d.old.wanfangdata.com.cn/Periodical/dxqy201203030 [82] 聂海宽, 唐玄, 边瑞康, 2009.页岩气成藏控制因素及中国南方页岩气发育有利区预测.石油学报, 30(4):484-491. doi: 10.3321/j.issn:0253-2697.2009.04.002 [83] 聂海宽, 张金川, 2011.页岩气储层类型和特征研究——以四川盆地及其周缘下古生界为例.石油实验地质, 33(3):219-225, 232. doi: 10.3969/j.issn.1001-6112.2011.03.001 [84] 沈传波, 梅廉夫, 徐振平, 等, 2007.四川盆地复合盆山体系的结构构造和演化.大地构造与成矿学, 31(3):288-299. doi: 10.3969/j.issn.1001-1552.2007.03.004 [85] 王国芝, 刘树根, 2009.海相碳酸盐岩区油气保存条件的古流体地球化学评价——以四川盆地中部下组合为例.成都理工大学学报(自然科学版), 36(6):631-644. doi: 10.3969/j.issn.1671-9727.2009.06.008 [86] 王兰生, 邹春艳, 郑平, 等, 2009.四川盆地下古生界存在页岩气的地球化学依据.天然气工业, 29(5):59-62, 138. doi: 10.3787/j.issn.1000-0976.2009.05.011 [87] 王绪本, 罗威, 张刚, 等, 2013.扇形边界条件下的龙门山壳幔电性结构特征.地球物理学报, 56(8):2718-2727. http://d.old.wanfangdata.com.cn/Periodical/dqwlxb201308020 [88] 王玉满, 黄金亮, 王淑芳, 等, 2016.四川盆地长宁、焦石坝志留系龙马溪组页岩气刻度区精细解剖.天然气地球科学, 27(3):423-432. http://d.old.wanfangdata.com.cn/Periodical/trqdqkx201603004 [89] 谢和平, 1997.分形-岩石力学导论.北京:科学出版社. [90] 辛厚文, 1993.分形理论及其应用.合肥:中国科学技术大学出版社. [91] 颜丹平, 金哲龙, 张维宸, 等, 2008.川渝湘鄂薄皮构造带多层拆离滑脱系的岩石力学性质及其对构造变形样式的控制.地质通报, 27(10):1687-1697. doi: 10.3969/j.issn.1671-2552.2008.10.011 [92] 张金川, 金之钧, 袁明生, 2004.页岩气成藏机理和分布.天然气工业, 24(7):15-18, 131-132. doi: 10.3321/j.issn:1000-0976.2004.07.005 [93] 张金川, 徐波, 聂海宽, 等, 2008.中国页岩气资源勘探潜力.天然气工业, 28(6):136-140, 159-160. doi: 10.3787/j.issn.1000-0976.2008.06.040 [94] 张秀莲, 1985.碳酸盐岩中氧、碳稳定同位素与古盐度、古水温的关系.沉积学报, 3(4):20-33. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=QK000000029780 [95] 周文, 徐浩, 余谦, 等, 2016.四川盆地及其周缘五峰组-龙马溪组与筇竹寺组页岩含气性差异及成因.岩性油气藏, 28(5):18-25. doi: 10.3969/j.issn.1673-8926.2016.05.002 [96] 邹才能, 董大忠, 王玉满, 等, 2015.中国页岩气特征、挑战及前景(一).石油勘探与开发, 42(6):689-701. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=syktykf201506001 [97] 邹才能, 董大忠, 王玉满, 等, 2016.中国页岩气特征、挑战及前景(二).石油勘探与开发, 43(2):166-178. http://d.old.wanfangdata.com.cn/Periodical/syktykf201602002 [98] 邹才能, 陶士振, 袁选俊, 等, 2009."连续型"油气藏及其在全球的重要性:成藏、分布与评价.石油勘探与开发, 36(6):669-682. doi: 10.3321/j.issn:1000-0747.2009.06.001 [99] 邹才能, 朱如凯, 吴松涛, 等, 2012.常规与非常规油气聚集类型、特征、机理及展望——以中国致密油和致密气为例.石油学报, 33(2):173-187. http://d.old.wanfangdata.com.cn/Conference/7931346