Fission Track Thermochronological Evidence for Cenozoic Uplift of Northern Central Myanmar Basin
-
摘要: 缅甸中央盆地北部新生代隆升作用的研究,不仅对全面认识西缅地块的演化具有重要的意义,而且对该地区的油气勘探也具有重要的指导意义.对采自研究区的2个碎屑岩样、1个钻井基底样品进行了磷灰石裂变径迹测年及热历史模拟分析.在弧前钦敦坳陷西缘冲断带、东缘冲起带和西缅岛弧带获得了逐渐变年轻的裂变径迹年龄(分别是70.6±9.3 Ma、53.4±7.5 Ma和22.7±3.0 Ma),表明缅甸中央盆地北部在空间上存在自西向东的递进变形过程.磷灰石的热历史模拟分析显示,缅甸中央盆地北部自晚白垩世(80±1 Ma)开始,经历了隆升→快速隆升→平稳→缓慢隆升4个阶段.缅甸中央盆地29~20 Ma的快速隆升冷却事件是缅甸北部区域性隆升剥露作用的体现;4 Ma以来缅甸中央盆地缓慢隆升,这一构造事件是印度板块向东挤压碰撞作用的响应.研究表明缅甸中央沉积盆地的空间发育演化与递进式构造变形(隆升)是新特提斯洋/印度洋岩石圈在新生代期间向西缅地块下的多期次俯冲的直接响应.Abstract: Study of the Cenozoic uplift of the northern Central Myanmar basin is crucial to better understand both the evolution of the West Burma block and the petroleum exploration in this area. Apatite fission track dating and thermal history modeling were carried out on two detrital samples and one core bedrock sample in this study. Our results show decreasing apatite fission track (AFT) ages in western thrust belt and eastern margin of the Chindwin subbasin to the magmatic arc belt of Myanmar (i.e., 70.6±9.3 Ma, 53.4±7.5 Ma and 22.7±3.0 Ma), indicating a progressive deformation of the northern Central Myanmar basin from west to east. Furthermore, the thermal modeling results indicate that in the Late Cretaceous (80±1 Ma) uplift process of the northern Central Myanmar basin can be divided into four stages:uplifting, rapid uplifting, steady uplifting, and slow uplifting. The rapid uplift and cooling event at the 29-20 Ma represents the regional uplift and exhumation in the northern Central Myanmar basin, followed by the slow uplift of the basin since 4 Ma, which is interpreted as the result of eastward movement and intense collision of the Indian plate with respect to the Asian plate. Our study suggests that the Cenozoic development and progressive deformation of the northern Central Myanmar basin was the direct result of multi-phase subduction of the Neo-Tethyan/Indian lithosphere to the West Burma block.
-
Key words:
- Central Myanmar basin /
- Neo-Tethys /
- Cenozoic /
- apatite fission track /
- uplift /
- petroleum geology
-
0. 引言
缅甸位于喜马拉雅造山带和巽他沟弧体系之间的转换带内,自西向东可以分为3个南北向的地质单元:西缅地块、掸邦斜坡和掸-泰高原(Searle et al., 2007; Mitchell et al., 2012).一般认为西缅地块起源于南方冈瓦纳大陆的裂解,并在三叠纪期间沿着大型转换剪切带拼贴于东南亚的中缅马苏地块的西缘(Barber et al., 2005; Barber and Crow, 2009; Metcalfe, 2011, 2013).现今的西缅地块与东部的掸邦斜坡之间以Sagaing走滑断裂为界,包括缅甸中央盆地和印缅造山带两个次级构造单元,两者以西倾的Kabaw逆冲推覆断裂为界(Bender,1983;Bertrand and Rangin, 2003)(图 1).缅甸中央盆地内发育了上白垩统-新生界完整的沉积序列,最大沉积厚度超过18 km;盆地由西缅岛弧带分为弧前坳陷和弧后坳陷两个沉降带,它们均蕴藏有丰富的油气资源(Pivnik et al., 1998;Bertrand and Rangin, 2003).印缅造山带是由沉积在海沟俯冲带内的缅甸陆缘岛弧碎屑(Allen et al., 2008; Naing et al., 2013)受俯冲带挤压抬升形成的增生楔构造,其隆升时间可能从白垩纪一直持续到上新世(Mitchell,1993; Maurin and Rangin, 2009; Licht et al., 2013).印缅造山带内部由一系列东倾、逆冲断裂分割的蛇绿岩、浊积岩和少量变质岩组成,其中浊积岩系有规律地自东向西逐渐变年轻.
目前,关于缅甸中央盆地新生代以来的构造演化特征研究,前人多将它同东南亚其他地块放在一个较大的尺度范围内进行模型重建与对比(Curray et al., 1979; Pal et al., 2003; Nielsen et al., 2004; Curray,2005; Acharyya,2007;张朋等,2014;Zhang et al., 2017b),但是缺乏一些定量的研究证据.Pivnik et al.(1998)最早利用地震资料讨论了缅甸中央沉积盆地中部沙林坳陷新近纪以来的构造变形和反转构造,但是缺少对古近纪期间盆地演化历史的讨论.由于资料限制和研究程度的相对薄弱,缅甸中央沉积盆地的发育演化一直是困扰地质学家更深层次认识缅甸及周缘青藏高原地质历史的难题.应用磷灰石裂变径迹测年的方法对缅甸中央盆地新生代隆升过程进行精细地定量研究,必将对全面认识缅甸中央盆地(西缅地块)的演化提供重要的参考价值,具有深刻的科学意义.同时,缅甸作为亚太油气勘探的热点地区,是我国重要的油气资源战略合作伙伴,研究缅甸中央盆地新生代构造抬升的演化过程,对正确认识该地区的构造变形特征与印缅造山带的耦合关系,并指导未来的油气勘探也将具有重要的现实意义.
1. 背景与样品采集
缅甸中央沉积盆地内发育的白垩世-新生代沉积岩是揭示缅甸西部大陆边缘演化历史的有利载体.盆地内沉积岩序列主要发育在海陆过渡环境,包括浅海相、浅海三角洲相和滨海相等;上新世期间,缅甸中央盆地整体转变为河流沉积环境,以Irrawaddy群粗粒砂岩夹砾石层为标志(Bender,1983;Wandrey,2006;Jaeger et al., 2011).已有的研究表明在晚始新世-早渐新世期间,缅甸西部大陆边缘可能存在短暂的海退过程,上始新统Pondaung组、Yaw组和下渐新统Shwezetaw组表现出明显的混合沉积环境特征——海相化石和陆相的植物化石同时出现(Bender,1983).上白垩统-始新统主要来自邻近西缅岛弧带,渐新统-上新统主要来自抹谷变质带并可能有印缅造山带再循环碎屑的加入(Licht et al., 2013, 2015; Wang et al., 2014; Oo et al., 2015; Zhang et al., 2017a).横亘于盆地内部的西缅岛弧带,由少量出露于地表的白垩纪、始新世、中新世和第四纪火成岩组成,反映了白垩纪以来新特提斯洋/印度洋壳的多期俯冲过程(Mitchell et al., 2012;Zhang et al., 2017a)(图 2).
目前尚未有国内外其他学者利用磷灰石裂变径迹的测年方法在缅甸地区开展过构造演化史的研究工作.本文在研究区内共选取3枚样品用于分析,分别为弧前钦敦坳陷西缘冲断带地表出露的白垩统灰色块状砂岩样品MM3-9(94°07′25″E,23°13′33″N),采样位置地表高程为133 m;弧前钦敦坳陷东缘冲起带出露的始新统灰色中厚层块状粗砂岩样品MM3-4(94°36′11″E,22°31′15″N),采样位置地表高程为672 m;西缅岛弧带钻井(Y1井)基底花岗岩样品Y1-84,岩体的岩石类型为花岗闪长岩,暗灰色,粒状结构,块状构造(Li et al., 2013),取样深度为2 396 m(图 3,表 1).
2. 分析方法及测试结果
磷灰石裂变径迹测试在美国Apatite to Zircon,Inc.完成.用LA-ICP-MS方法对样品进行分析处理,其过程概括如下:(1)将抛光后的磷灰石矿物颗粒在恒温21 ℃的条件下使用HNO3(5.5%)蚀刻20 s;(2)蚀刻后的颗粒在真空条件下,以50 μCi 252Cf为辐照源,密度为107 tracks/cm2的裂变碎片进行辐照;(3)测量238U/43Ca比值,获取磷灰石颗粒的铀含量,计算并获得单颗粒磷灰石的径迹年龄.详细的分析测试方法、实验条件和参数设置参考Donelick et al.(2005).
表 1 LA-ICP-MS法磷灰石裂变径迹测试分析结果Table Supplementary Table The apatite fission track analysis results with the LA-ICP-MS method样号 位置 高程/井深(m) 层位 Ngr Ns ρs(105 cm-2) U含量(10-6) 裂变径迹年龄(Ma) 最小值 平均值 最大值 最小值 平均值 最大值 最小值 合并年龄 最大值 MM3-9 94°07′25″ E,23°13′33″N 133 白垩统 21 239 0.32 3.3 10.3 1 10 26 21.6 70.6±9.3 117.0 MM3-4 94°36′11″E,22°31′15″N 672 始新统 40 209 0.21 1.57 15.8 1 7 76 17.7 53.4±7.5 181.7 Y1-84 / 2 396(井深) 基底 40 133 0.32 1.51 12.0 2 14 122 3.0 22.7±3.0 134.6 注:Ngr代表磷灰石颗粒数量;Ns代表自发裂变径迹总数;ρs代表自发裂变径迹密度. 研究应用Donelick et al.(1999)和Ketcham et al.(1999)的多元动力学退火模型、蒙特卡罗(MonteCarlo)逼近法以及HeFTy 1.7.4模拟软件(Ketcham,2005;Ketcham et al., 2009),基于裂变径迹长度数据和单颗粒年龄数据等参数对所有磷灰石样品进行了时间-温度热历史的反演模拟.在1~100 Ma的地质时段内,磷灰石的裂变径迹年龄和封闭径迹长度在60~110 ℃的温度范围内(偏差10 ℃)会出现减小(Laslett et al., 1987).这一温度范围通常也被称为磷灰石的部分退火带(partial annealing zone,PAZ)(Gallagher et al., 1998).将裂变径迹模拟的最大温度设定为140 ℃,模拟中所设置的第1个约束点为样品所能达到的现今温度,第2个约束点为所测试样品的磷灰石裂变径迹表观年龄,第3个约束点为封闭温度.
Ketcham(2005)将热史模拟结果一般分为3部分:可以接受的热史曲线范围、高质量的热史曲线范围和最佳热历史拟合曲线.年龄GOF表示模拟年龄值与测试年龄值的吻合程度,长度GOF表示模拟长度值与实测长度值之间的吻合程度.若年龄与长度GOF的值都>0.05,表明模拟结果是可以接受的,当它们的值>0.50时,表明模拟结果是高质量的.
弧前钦敦坳陷西缘冲断带白垩世砂岩样品MM3-9裂变径迹采用的Zeta常数为8.27,获得合并年龄为70.6±9.3 Ma,标准差为9.3 Ma,统计自发径迹数量N=239(表 1).平均封闭径迹长度为14.77 μm,标准误差0.99 μm.热历史模拟样品的年龄GOF=0.98,长度GOF=0.99,模拟拟合度高.
根据样品MM3-9热历史模拟结果(图 4中MM3-9样品)可知,弧前钦敦坳陷西缘冲断构造带晚白垩世样品自80 Ma以来一直处于稳定的抬升阶段.模拟的最佳热史路径表明抬升冷却过程经历了晚白垩世80±1 Ma~早中新世20±1 Ma的持续抬升,并于20 Ma剥露至地表.
弧前钦敦坳陷东缘冲起带始新统粗砂岩样品MM3-4裂变径迹采用的Zeta常数为8.27,获得合并年龄为53.4±7.5 Ma,标准差为7.5 Ma,统计自发径迹数量N=209(表 1).平均封闭径迹长度为14.67 μm,标准误差0.84 μm.热历史模拟样品的年龄GOF=0.97,长度GOF=1.00,说明模拟结果是高质量的.
根据样品MM3-4热历史模拟结果(图 4,MM3-4)可知,弧前钦敦坳陷东缘冲起带下始新统地层样品自60 Ma以来一直处于稳定的抬升阶段.模拟的最佳热史路径表明抬升冷却过程分为4个主要阶段:(1)中古新世60±1 Ma~晚渐新世26±1 Ma的持续抬升阶段;(2)晚渐新世26±1 Ma~早中新世20±1 Ma的快速隆升剥露阶段;(3)早中新世20±1 Ma~上新世4±1 Ma的构造稳定阶段;(4)上新世4±1 Ma~现今,缓慢隆升剥露阶段.
西缅岛弧带钻井基底花岗岩样品Y1-84的裂变径迹采用的Zeta常数为8.329,获得合并年龄为22.7±3.0 Ma,标准差为3.0 Ma,统计自发径迹数量N=133(表 1).平均封闭径迹长度为13.56 μm,标准误差1.00 μm.根据缅甸石油天然气公司在此区域所获得的20 ℃/km的地温梯度,测算样品现今埋深的地温是48 ℃,将其设置为模拟温度的上限值.热历史模拟样品的年龄GOF=0.96,长度GOF=0.99,可以用来反映西缅岛弧带基底花岗岩体新生代隆升作用过程.
根据热历史模拟结果(图 4中Y1-84样品)可知,西缅岛弧带自29 Ma以来一直处于持续的抬升冷却过程.花岗岩体的模拟最佳热史路径表明抬升冷却过程经历了3个主要阶段:(1)晚渐新世29±1 Ma~早中新世20±1 Ma的快速隆升剥露作用阶段;(2)早中新世20±1 Ma~上新世4±1 Ma的构造稳定阶段;(3)上新世4±1 Ma~现今,缓慢隆升剥露阶段.
3. 讨论
热演化历史实际上是区域地质热演化的缩影,受控于区域构造活动(沈传波等,2009; 陈贺贺等, 2017).印度板块向西缅地块的俯冲碰撞作用大致始于中始新世,并在渐新世达到高峰(谢楠等,2010).测试样品的裂变径迹年龄依次为:70.6±9.3 Ma、53.4±7.5 Ma、22.72±3 Ma.随着缅甸中央盆地由西向东构造的扩展变形,隆升年龄表现出递进年轻的特点.配合热史模拟的结果表明:缅甸中央盆地自晚白垩世以来,持续稳定的抬升,在印度板块的俯冲作用影响下,经历了晚渐新世-早中新世(29±1~20±1 Ma)最强烈的一期构造运动.Bertrand et al.(2001)在掸邦斜坡Mandalay附近采集样品获得40Ar/39Ar年龄区间为26~21 Ma,并认为这是掸邦斜坡在晚渐新世期间的抬升冷却年龄,与西缅岛弧带在这一时期的强烈隆升(Li et al., 2013)过程相吻合.同时,印缅造山带在晚渐新世抬升,代表了该时期盆地由伸展体制向挤压体制转换的过渡(Pivnik et al., 1998;Licht et al., 2013).裂变径迹的模拟结果与前人认识相匹配,揭示缅甸北部地区在晚渐新世—早中新世的隆升是区域性的.
西缅岛弧带两侧的弧前钦敦坳陷和弧后睡宝坳陷,在渐新统地层沉积特征、层序单元组成方面均存在明显差异.受到印度板块俯冲碰撞作用的影响,弧前钦敦坳陷在渐新世期间快速抬升变形,因此未接受渐新统沉积碎屑;西缅岛弧带隆升成为重要的地质分界线,将缅甸中央盆地分割为弧前和弧后坳陷;岛弧带的分割作用可能阻挡了印度板块的俯冲动力,导致弧后睡宝坳陷处于相对缓慢的隆升状态并可接受少量渐新统沉积碎屑(图 5).笔者获取的磷灰石裂变径迹年龄和热史模拟结果与缅甸中央沉积盆地的地层记录相吻合,表明新特提斯洋/印度洋岩石圈的多期次俯冲可能是控制盆地沉积沉降与隆升变形的内在动力源(Zhang et al., 2017a).
通过西缅岛弧带地震剖面的解释,始新统与中新统(T6)地层之间存在区域性角度不整合界面,该界面具有明显的上超下削特征.这表明在始新世晚期-中新世早期存在着一次强烈的构造运动,致使西缅岛弧带一度持续隆升,遭到风化剥蚀.中新统与上新统(T3)之间的不整合接触界面也广泛地分布在研究区内,局部表现为削截角度不整合接触关系(图 6).这很好地验证了裂变径迹模拟揭示的西缅岛弧带晚渐新世至早上新世的隆升剥露事件.
由于印度板块的持续俯冲,Sagaing断裂带的右旋压扭走滑作用对缅甸中央盆地北部的改造在上新世达到了顶峰,造成该地区强烈抬升变形.同时,随着印缅造山带的持续隆起,弧前钦敦坳陷发生挤压收缩变形并在上新世形成复向斜构造,坳陷两侧形成顺层滑动的逆冲推覆.弧后睡宝坳陷发生挤压挠曲,坳陷两侧大幅抬升,并遭受强烈剥蚀,形成一系列花状构造及雁行排列的狭长背斜构造(图 5).利用裂变径迹热历史模拟获得的西缅地块北部火山岛弧带早上新世以来(4±1 Ma)的快速隆升过程与这一时期的构造动力学过程吻合,是这一期构造运动的响应.
4. 结论
(1) 缅甸中央盆地北部自晚白垩世(80±1 Ma)以来处于持续隆升状态.在晚渐新世-早中新世(29±1~20±1 Ma)缅甸地区经历了最强烈的一期构造运动,该事件使弧前钦敦坳陷西缘冲断带于早中新世(20±1 Ma)抬升至地表.西缅岛弧带隆升成为主要的地质分界线,分割弧前、弧后坳陷,并为盆地充填提供充足的碎屑物质.
(2) 印度板块的挤压碰撞与Sagaing断裂的压扭走滑作用,造成缅甸中央盆地北部自上新世(4±1 Ma~现今)以来缓慢隆升定型,形成现今的构造地质格局.研究表明,缅甸中央盆地北部的构造演化史,无论是盆地的沉积充填和西缅岛弧带的隆升作用,还是印缅增生楔的生长与弧前弧后坳陷的持续变形,均受制于新生代时期新特提斯洋/印度洋岩石圈向西缅地块下的持续俯冲(Mitchell et al., 2012; Zhang et al., 2017a).
-
表 1 LA-ICP-MS法磷灰石裂变径迹测试分析结果
Table 1. The apatite fission track analysis results with the LA-ICP-MS method
样号 位置 高程/井深(m) 层位 Ngr Ns ρs(105 cm-2) U含量(10-6) 裂变径迹年龄(Ma) 最小值 平均值 最大值 最小值 平均值 最大值 最小值 合并年龄 最大值 MM3-9 94°07′25″ E,23°13′33″N 133 白垩统 21 239 0.32 3.3 10.3 1 10 26 21.6 70.6±9.3 117.0 MM3-4 94°36′11″E,22°31′15″N 672 始新统 40 209 0.21 1.57 15.8 1 7 76 17.7 53.4±7.5 181.7 Y1-84 / 2 396(井深) 基底 40 133 0.32 1.51 12.0 2 14 122 3.0 22.7±3.0 134.6 注:Ngr代表磷灰石颗粒数量;Ns代表自发裂变径迹总数;ρs代表自发裂变径迹密度. -
[1] Acharyya, S.K., 2007.Collisional Emplacement History of the Naga-Andaman Ophiolites and the Position of the Eastern Indian Suture.Journal of Asian Earth Science, 29(2-3):229-242. https://doi.org/10.1016/j.jseaes.2006.03.003 [2] Allen, R., Najman, Y., Carter, A., et al., 2008.Provenance of the Tertiary Sedimentary Rocks of the Indo-Burman Ranges, Burma (Myanmar):Burman Arc or Himalayan-Derived? Journal of the Geological Society, 165(6):1045-1057. https://doi.org/10.1144/0016-76492007-143 [3] Barber, A.J., Crow, M.J., 2009.Structure of Sumatra and Its Implications for the Tectonic Assembly of Southeast Asia and the Destruction of Paleotethys.Island Arc, 18(1):3-20.https://doi.org/10.1111/j.1440-1738.2008.00631.x doi: 10.1111/iar.2009.18.issue-1 [4] Barber, A.J., Crow, M.J., de Smet, M.E.M., 2005.Chapter 14:Tectonic Evolution.In:Barber, A.J., Crow, M.J., Milsom, J.S., eds., Sumatra:Geology, Resources and Tectonic Evolution.Geological Society, London, Memoir, 31:234-259.https://doi.org/10.1144/GSL.MEM.2005.031.01.14 http://cn.bing.com/academic/profile?id=b5b5053793b4bcdd522d65d0bc043e9e&encoded=0&v=paper_preview&mkt=zh-cn [5] Bender, F., 1983.Geology of Burma.Borntraeger, Berlin, 293. http://cn.bing.com/academic/profile?id=ac35aa06b347660fba15583952fb5a6e&encoded=0&v=paper_preview&mkt=zh-cn [6] Bertrand, G., Rangin, C., 2003.Tectonics of the Western Margin of the Shan Plateau (Central Myanmar):Implication for the India-Indochina Oblique Convergence since the Oligocene.Journal of Asian Earth Sciences, 21(10):1139-1157.https://doi.org/10.1016/s1367-9120(02)00183-9 doi: 10.1016/S1367-9120(02)00183-9 [7] Bertrand, G., Rangin, C., Maluski, H., et al., 2001.Diachronous Cooling along the Mogok Metamorphic Belt (Shan Scarp, Myanmar):The Trace of the Northward Migration of the Indian Syntaxis.Journal of Asian Earth Sciences, 19(5):649-659.https://doi.org/10.1016/s1367-9120(00)00061-4 doi: 10.1016/S1367-9120(00)00061-4 [8] Chen, H.H., Zhu, X.M., Huang, H.D., et al., 2017.Sediment Provenance of Shahejie Formation in Lixian Slope of Raoyang Depression Based on the Detrital Zircon Dating Analysis.Earth Science, 42(11):1955-1971(in Chinese with English abstract).https://doi.org/10.3799/dqkx.2017.124 https://www.researchgate.net/profile/Xianghua_Yang3 [9] Curray, J.R., 2005.Tectonics History of the Andaman Sea Region.Journal of Asian Earth Sciences, 25(1):187-232. https://doi.org/10.1016/j.jseaes.2004.09.001 [10] Curray, J.R., Moore, D.G., Lawver, L.A., et al., 1979.Tectonics of the Andaman Sea and Burma.In:Watkins, J., Montadert, L., Dickinson, P., eds., Geological and Geophysical Investigation of Continental Slopes and Rises.American Association of Petroleum Geologists Memoir, 29:189-198. [11] Donelick, R.A., Ketcham, R.A., Carlson, W.D., 1999.Variability of Apatite Fission-Track Annealing Kinetics:Ⅱ.Crystallographic Orientation Effects.American Mineralogist, 84(9):1224-1234.https://doi.org/10.2138/am-1999-0902 http://cn.bing.com/academic/profile?id=f86a7183fbce9796f666272bf5c8b851&encoded=0&v=paper_preview&mkt=zh-cn [12] Donelick, R.A., O'Sullivan, P.B., Ketcham, R.A., et al., 2005.Apatite Fission-Track Analysis.Reviews in Mineralogy and Geochemistry, 58(1):49-94. https://doi.org/10.2138/rmg.2005.58.3 [13] Gallagher, K., Brown, R., Johnson, C., 1998.Fission Track Analysis and Its Applications to Geological Problems.Annual Reviews of Earth and Planetary Science, 26(1):519-572. https://doi.org/10.1146/annurev.earth.26.1.519 [14] Jaeger, J.J., Soe, A.N., Chavasseau, O., et al., 2011.First Hominoid from the Late Miocene of the Irrawaddy Formation (Myanmar).Plos One, 6(4):e17065. https://doi.org/10.1371/journal.pone.0017065 [15] Ketcham, R.A., 2005.Forward and Inverse Modeling of Low-Temperature Thermochronometry Data.Reviews in Mineralogy and Geochemistry, 58(1):275-314. https://doi.org/10.2138/rmg.2005.58.11 [16] Ketcham, R.A., Donelick, R.A., Balestrieri, M.L., et al., 2009.Reproducibility of Apatite Fission-Track Length Data and Thermal History Reconstruction.Earth and Planetary Science Letters, 284(3-4):504-515. https://doi.org/10.1016/j.epsl.2009.05.015 [17] Ketcham, R.A., Donelick, R.A., Carlson, W.D., 1999.Variability of Apatite Fission-Track Annealing Kinetics; Ⅲ, Extrapolation to Geological Time Scales.American Mineralogist, 84(9):1235-1255. https://doi.org/10.2138/am-1999-0903 [18] Laslett, G.M., Green, P.F., Duddy, I.R., et al., 1987.Thermal Annealing of Fission Tracks in Apatite 2.A Quantitative Analysis.Chemical Geology:Isotope Geoscience Section, 65(1):1-13. https://doi.org/10.1016/0168-9622(87)90057-1 [19] Li, R.Y., Mei, L.F., Zhu, G.H., et al., 2013.Late Mesozoic to Cenozoic Tectonic Events in Volcanic Arc, West Burma Block:Evidences from U-Pb Zircon Dating and Apatite Fission Track Data of Granitoids.Journal of Earth Science, 24(4):553-568. https://doi.org/10.1007/s12583-013-0349-7 [20] Licht, A., France-Lanord, C., Reisberg, L., et al., 2013.A Palaeo Tibet-Myanmar Connection? Reconstructing the Late Eocene Drainage System of Central Myanmar Using a Multi-Proxy Approach.Journal of the Geological Society, 170(6):929-939. https://doi.org/10.1144/jgs2012-126 [21] Licht, A., Reisberg, L., France-Lanord, C., et al., 2015.Cenozoic Evolution of the Central Myanmar Drainage System:Insights from Sediment Provenance in the Minbu Sub-Basin.Basin Research, 28(2):237-251.https://doi.org/10.13039/501100003135 http://cn.bing.com/academic/profile?id=5cf107fc8ee90e469524e0345d415e6b&encoded=0&v=paper_preview&mkt=zh-cn [22] Maurin, T., Rangin, C., 2009.Structure and Kinematics of the Indo-Burmese Wedge:Recent and Fast Growth of the Outer Wedge.Tectonics, 28(2):TC2010.https://doi.org/10.1029/2008tc002276 http://cn.bing.com/academic/profile?id=ed6007479d01a5d876735a84d6fa86ed&encoded=0&v=paper_preview&mkt=zh-cn [23] Metcalfe, I., 2011.Tectonic Framework and Phanerozoic Evolution of Sundaland.Gondwana Research, 19(1):3-21. https://doi.org/10.1016/j.gr.2010.02.016 [24] Metcalfe, I., 2013.Gondwana Dispersion and Asian Accretion:Tectonic and Palaeogeographic Evolution of Eastern Tethys.Journal of Asian Earth Sciences, 66:1-33. https://doi.org/10.1016/j.jseaes.2012.12.020 [25] Mitchell, A., Chung, S.L., Oo, T., et al., 2012.Zircon U-Pb Ages in Myanmar:Magmatic-Metamorphic Events and the Closure of a Neo-Tethys Ocean? Journal of Asian Earth Sciences, 56:1-23. https://doi.org/10.1016/j.jseaes.2012.04.019 [26] Mitchell, A.H.G., 1993.Cretaceous-Cenozoic Tectonic Events in the Western Myanmar (Burma)-Assam Region.Journal of the Geological Society, 150(6):1089-1102. https://doi.org/10.1144/gsjgs.150.6.1089 [27] Naing, T.T., Bussien, D.A., Winkler, W.H., et al., 2013.Provenance Study on Eocene-Miocene Sandstones of the Rakhine Coastal Belt, Indo-Burman Ranges of Myanmar:Geodynamic Implications.Geological Society, London, Special Publications, 386(1):195-216.https://doi.org/10.1144/SP386.10 http://cn.bing.com/academic/profile?id=87cfb7fda17b0367710fc7403ef89f25&encoded=0&v=paper_preview&mkt=zh-cn [28] Nielsen, C., Chamot-Rooke, N., Rangin, C., 2004.From Partial to Full Strain Partitioning along the Indo-Burmese Hyper-Oblique Subduction.Marine Geology, 209(1-4):303-327. https://doi.org/10.1016/j.margeo.2004.05.001 [29] Oo, K.L., Zaw, K., Meffre, S., et al., 2015.Provenance of the Eocene Sandstones in the Southern Chindwin Basin, Myanmar:Implications for the Unroofing History of the Cretaceous-Eocene Magmatic Arc.Journal of Asian Earth Sciences, 107:172-194. https://doi.org/10.1016/j.jseaes.2015.04.029 [30] Pal, T., Chakraborty, P.P., Gupta, T.D., et al., 2003.Geodynamic Evolution of the Outer-Arc-Forearc Belt in the Andaman Islands, the Central Part of the Burma-Java Subduction Complex.Geological Magazine, 140(3):289-307. https://doi.org/10.1017/S0016756803007805 [31] Pivnik, D.A., Nahm, J., Tucker, S., et al., 1998.Polyphase Deformation in a Fore-Arc/Back-Arc Basin, Salin Subbasin, Myanmar (Burma).American Association of Petroleum Geologists Bulletin, 82:1837-1856.https://doi.org/10.1306/1d9bd15f-172d-11d7-8645000102c1865d http://cn.bing.com/academic/profile?id=cd628c8b935d129deacb3bd5f7016280&encoded=0&v=paper_preview&mkt=zh-cn [32] Searle, M.P., Noble, S.R., Cottle, J.M., et al., 2007.Tectonic Evolution of the Mogok Metamorphic Belt, Burma (Myanmar) Constrained by U-Th-Pb Dating of Metamorphic and Magmatic Rocks.Tectonics, 26(3):TC3014.https://doi.org/10.1029/2006tc002083 http://cn.bing.com/academic/profile?id=5fbd97160a31f246de44c139c6b5db61&encoded=0&v=paper_preview&mkt=zh-cn [33] Shen, C.B., Mei, L.F., Liu, Z.Q., et al., 2009.Apatite and Zircon Fission Track Data, Evidences for the Mesozoic-Cenozoic Uplift of Huangling Dome, Central China.Journal of Mineralogy and Petrology, 29(2):45-60(in Chinese with English abstract). http://cn.bing.com/academic/profile?id=535d388395a3516445faea119dd90262&encoded=0&v=paper_preview&mkt=zh-cn [34] Wandrey, C.J., 2006.Eocene to Miocene Composite Total Petroleum System, Irrawaddy-Andaman and North Burma Geologic Provinces, Myanmar, Chapter E.In:Wandrey, C.J., ed., Petroleum Systems and Related Geologic Studies in Region 8, South Asia.Geological Survey Bulletin, 2208:26. http://cn.bing.com/academic/profile?id=10d32191e81fb3a79a70728c6dec98a1&encoded=0&v=paper_preview&mkt=zh-cn [35] Wang, J.G., Wu, F.Y., Tan, X.C., et al., 2014.Magmatic Evolution of the Western Myanmar Arc Documented by U-Pb and Hf Isotopes in Detrital Zircon.Tectonophysics, 612-613:97-105.https://doi.org/10.1016/j.tecto.2013.11.03 doi: 10.1016/j.tecto.2013.11.039 [36] Xie, N., Jiang, Y., Zhu, G.H., et al., 2010.Evolution of the Sagaing Strike-Slip Fault and Its Control of Shuibo Basin Structural Evolution, Myanmar.Geoscience, 24(2):268-272(in Chinese with English abstract). [37] Zhang, P., Mei, L.F., Ma, Y.X., et al., 2014.Tectonic Features and Dynamic Evolution of Bay of Bengal Basin:New Insights into Satellite-Gravity and Seismic Data.Earth Science, 39(10):1307-1321(in Chinese with English abstract).https://doi.org/10.3799/dqkx.2014.123 doi: 10.1007/s00024-017-1661-4 [38] Zhang, P., Mei, L.F., Hu, X.L., et al., 2017a.Structures, Uplift, and Magmatism of the Western Myanmar Arc:Constraints to Mid-Cretaceous-Paleogene Tectonic Evolution of the Western Myanmar Continental Margin.Gondwana Research, 52:18-38. https://doi.org/10.1016/j.gr.2017.09.002 [39] Zhang, P., Mei, L.F., Xiong, P., et al., 2017b.Structural Features and Proto-Type Basin Reconstructions of the Bay of Bengal Basin:A Remnant Ocean Basin Model.Journal of Earth Science, 28(4):666-682. https://doi.org/10.1007/s12583-017-0750-8 [40] 陈贺贺, 朱筱敏, 黄捍东, 等, 2017.基于碎屑锆石定年的饶阳凹陷蠡县斜坡沙河街组物源分析.地球科学, 42(11):1955-1971.https://doi.org/10.3799/dqkx.2017.124 http://www.earth-science.net/WebPage/Article.aspx?id=3682 [41] 沈传波, 梅廉夫, 刘昭茜, 等, 2009.黄陵隆起中-新生代隆升作用的裂变径迹证据.矿物岩石, 29(2):45-60. http://www.cqvip.com/QK/94361X/200902/30748961.html [42] 谢楠, 姜烨, 朱光辉, 等, 2010.缅甸Sagaing走滑断裂及对睡宝盆地构造演化的控制和影响.现代地质, 24(2):268-272. http://www.cqvip.com/QK/96868X/201002/33779304.html [43] 张朋, 梅廉夫, 马一行, 等, 2014.孟加拉湾盆地构造特征与动力学演化:来自卫星重力与地震资料的新认识.地球科学, 39(10):1307-1321.https://doi.org/10.3799/dqkx.2014.123 http://www.earth-science.net/WebPage/Article.aspx?id=2959 期刊类型引用(1)
1. 郭守德,王强,林影,姜昌亮,王珀,蔡俊年. 中缅油气管道沿线地质灾害分析与防治. 油气储运. 2019(09): 1059-1064+1071 . 百度学术
其他类型引用(3)
-