Metamorphic P-T Paths of Blueschist and Lawsonite-Bearing Phengite Schist in Lanling Area, Central Qiangtang
-
摘要: 羌塘中部蓝岭地区的蓝片岩呈透镜状包裹于多硅白云母片岩中.首次在多硅白云母片岩中发现的硬柱石被包裹于石榴石边部的石英颗粒中,正确厘定蓝片岩和含硬柱石多硅白云母片岩的变质P-T轨迹对进一步探讨龙木错-双湖低温高压变质带的形成与演化具有重要意义.详细的岩相学和相平衡模拟显示,蓝片岩经历了较为明显的热驰豫过程(压力峰期条件为490 ℃/2.4 GPa、温度峰期条件为540 ℃/2.1 GPa),而含硬柱石多硅白云母片岩却经历了相对较弱的热驰豫过程(峰期温压条件为530 ℃/2.2 GPa).另外,蓝片岩和含硬柱石多硅白云母片岩经历了相似的近等温降压的退变质轨迹,这可能暗示着密度较大的基性蓝片岩在折返过程中是借助于大面积、低密度的含硬柱石多硅白云母片岩的浮力才得以折返至地壳层次.Abstract: The blueschist is lenticularly wrapped in the lawsonite-bearing phengite schist in Lanling area, central Qiangtang. The lawsonite included in quartz, which, on its part, is enclosed in porphyroblastic garnet in the phengite schist, is discovered for the first time. Studying on the metamorphic P-T paths of the blueschist and lawsonite-bearing phengite schist is important for the further research of the formation and evolution of the Longmu Co-Shuanghu low-temperature and high-pressure metamorphic belts. The detailed petrography and phase equilibria modeling reveal that the blueschist experienced a more obvious thermal relaxation process (the peak pressure conditions are 490℃ and 2.4 GPa, and the peak temperature conditions are 540℃, 2.1 GPa) while the lawsonite-bearing phengite schist has barely experienced a thermal relaxation process (the peak temperature and pressure conditions are 530℃ and 2.2 GPa). The similarity of the retrograde P-T paths of the blueschist and lawsonite-bearing phengite schist reveals that the exhumation of the blueschist from Lanling area, central Qiangtang, may have resulted from the exhumation of the low-density lawsonite-bearing phengite schist, which carried the denser blueschist to the earth's crust levels.
-
Key words:
- Tibetan plateau /
- central Qiangtang /
- Lanling /
- blueschist /
- lawsonite-bearing phengite schist /
- metamorphic P-T path /
- petrology
-
图 1 羌塘中部龙木错-双湖缝合带地质简图
a.青藏高原大地构造单位划分(修改自赵少卿等,2015;孟元库等,2016);b.羌塘中部龙木错-双湖缝合带地质简图(修改自Liang et al., 2017)
Fig. 1. Simplified geological map of the Longmu Co-Shuanghu suture, central Qiangtang
图 4 羌塘中部蓝岭地区蓝片岩和含硬柱石多硅白云母片岩中石榴石成分图解
a.蓝片岩的alm+spss-gr-py图解;b.含硬柱石多硅白云母片岩的alm+spss-gr-py图解;c.蓝片岩中石榴石成分环带图解(对应于图 3a中石榴石的A→B成分剖面);d.含硬柱石多硅白云母片岩中石榴石成分环带图解(对应于图 7a中石榴石的A→B成分剖面)
Fig. 4. Mineral chemistry diagrams showing variation of garnet in the blueschist and the lawsonite-bearing phengite schist from Lanling, central Qiangtang
图 5 羌塘中部蓝岭地区蓝片岩中蓝闪石成分图解
a.蓝闪石Mg/(Mg+Fe2+)-Si分类图解(Leake et al., 1997);b.蓝闪石Mg/(Fe2++Mg)环带图解(对应于图 3a中蓝闪石的C→D成分剖面)
Fig. 5. Mineral chemistry diagrams showing variation of glaucophane in the blueschist from Lanling, central Qiangtang
图 7 羌塘中部蓝岭地区含硬柱石多硅白云母片岩岩相学特征
a.变斑晶石榴石核部包裹硬绿泥石、钠云母、石英等包体(正交光),红色带箭头实线A→B代表图 4b、4d中石榴石成分剖面所在的位置;b.石榴石核部包裹的硬绿泥石的边部退变质成钠云母,红色带箭头实线C→D代表图 6b中硬绿泥石包体成分剖面所在的位置;c.菱状“绿泥石+钠长石+石英+不透明矿物”集合体,正交光;d.石榴石边部包体石英中包裹的硬柱石(对应于图 9b中硬柱石的实测拉曼光谱图)
Fig. 7. Microphotographs of the lawsonite-bearing phengite schist from Lanling, central Qiangtang
图 8 羌塘中部蓝岭地区含硬柱石多硅白云母片岩中多硅白云母成分投图
a.多硅白云母Al-Si图解;b.多硅白云母w(FeO)-w(Al2O3)变质相带图解,底图据Miyashiro(1973)
Fig. 8. Mineral chemistry diagrams showing variation of phengite in the lawsonite-bearing phengite schist from Lanling, central Qiangtang
图 9 羌塘中部蓝岭地区含硬柱石多硅白云母片岩中硬柱石拉曼光谱
a.硬柱石标准拉曼光谱(数据来源于: http://rruff.info/lawsonite/display=default/R050042);b.羌塘中部蓝岭地区含硬柱石多硅白云母片岩中包裹于石英中的硬柱石(而石英又被石榴石包裹,图 7d)拉曼光谱.硬柱石和石英的特征谱峰分别用law和q标注,而没有标注的谱峰是薄片上树胶的谱峰.拉曼光谱测试在北京大学地球与空间科学学院进行,操作条件依据Zhang et al.(2005)
Fig. 9. Raman spectra of lawsonite in the lawsonite-bearing phengite schist from Lanling, central Qiangtang
图 10 羌塘中部蓝岭地区蓝片岩在MnNCFMASHO体系下的P-T视剖面图
a.MnNCFMASHO(+g+gl+q/coe+hem+H2O)体系下的P-T视剖面图底图.该视剖面图是基于表 3中的有效全岩成分所计算的.深灰色区域代表三矿物五变域,其余灰度区域递减,依次代表六变域、七变域和八变域;b.MnNCFMASHO(+g+gl+q/coe+hem+H2O)体系下的P-T轨迹.该图中添加了锰铝榴石等值线(绿色粗虚线spss10-spss50)、钙铝榴石等值线(红色虚线gr10~gr30)、蓝闪石中的Mg#等值线(紫色实线gl0.50~gl0.77)以及饱和水含量等值线(蓝色实线h1~h5).红色实心圆圈、绿色实心圆圈和蓝色实心圆圈依次代表石榴石环带中的核部、幔部和边部成分.洋红色实线箭头和虚线箭头代表蓝片岩的变质P-T轨迹
Fig. 10. P-T pseudosections in the system MnNCFMASHO for the blueschist from Lanling, central Qiangtang
图 11 羌塘中部蓝岭地区含硬柱石多硅白云母片岩在MnNCKFMASHO体系下的P-T视剖面图
a.MnNCKFMASHO(+g+ph+H2O+q/qoe)体系下的P-T视剖面图底图.该视剖面图是基于表 4中的有效全岩成分所计算的.深灰色区域代表五矿物四变域,其余灰度区域递减,依次代表五变域、六变域和七变域;b.MnNCFMASHO(+g+ph+H2O+q/qoe)体系下的P-T轨迹.该图中添加了镁铝榴石等值线(绿色粗虚线py2-py8)、钙铝榴石等值线(红色虚线gr5~gr41)以及饱和水含量等值线(蓝色虚线h0.5~h5).红色实心圆圈、绿色实心圆圈和蓝色实心圆圈依次代表石榴石环带中的核部、幔部和边部成分.洋红色实线箭头和虚线箭头代表该含硬柱石多硅白云母片岩的变质P-T轨迹
Fig. 11. P-T pseudosections in the system MnNCKFMASHO for the lawsonite-bearing phengite schist from Lanling, central Qiangtang
表 1 羌塘中部蓝岭地区蓝片岩典型矿物成分(%)
Table 1. Compositions of representative minerals in the blueschist from Lanling, central Qiangtang (%)
矿物 g-c g-m g-r ctd-c ctd-r ep-c ep-r chl ph pa gl-c gl-r SiO2 37.05 37.69 38.20 26.54 25.40 38.16 37.97 26.99 47.02 48.00 55.22 56.94 TiO2 0.21 0.18 0.07 0.03 0.01 0.12 0.10 0.01 0.32 0.04 0.45 0.04 Al2O3 20.10 21.14 21.86 39.18 39.88 24.91 25.47 20.38 26.89 39.80 7.10 10.11 Cr2O3 0.01 0.06 0.03 0.05 0.08 0.14 0.04 0.21 0.02 0.04 0.87 0.04 Fe2O3 1.50 0.00 0.00 0.00 0.80 11.47 10.83 0.00 2.23 0.00 3.65 2.14 FeO 15.76 26.92 27.71 22.27 21.11 0.10 0.10 22.91 1.81 0.91 12.18 8.98 MnO 19.81 5.98 3.15 0.78 0.65 0.31 0.21 0.54 0.04 0.01 0.07 0.03 MgO 0.63 1.99 3.02 4.36 4.73 0.16 0.10 17.20 2.72 0.32 9.28 11.01 CaO 5.00 6.70 7.13 0.03 0.06 22.12 22.31 0.04 0.05 0.48 0.28 1.01 Na2O 0.25 0.02 0.01 0.00 0.01 0.07 0.14 0.07 0.51 7.23 6.82 6.82 K2O 0.00 0.00 0.00 0.00 0.02 0.01 0.02 0.05 9.51 0.37 0.04 0.09 Si 3.00 3.00 2.99 1.07 1.03 3.02 3.01 2.79 3.30 3.01 7.95 7.89 Ti 0.01 0.01 0.00 0.00 0.00 0.01 0.01 0.00 0.02 0.00 0.05 0.01 Al 1.92 1.98 2.02 1.87 1.91 2.32 2.38 2.48 2.22 2.94 1.21 1.65 Cr 0.00 0.00 0.00 0.00 0.00 0.01 0.00 0.02 0.00 0.00 0.10 0.00 Fe3+ 0.09 0.00 0.00 0.00 0.03 0.68 0.65 0.00 0.12 0.00 0.40 0.22 Fe2+ 1.07 1.79 1.82 0.75 0.72 0.01 0.01 1.98 0.11 0.05 1.47 1.04 Mn 1.36 0.40 0.21 0.03 0.02 0.02 0.01 0.05 0.00 0.00 0.01 0.00 Mg 0.08 0.24 0.35 0.26 0.29 0.02 0.01 2.65 0.28 0.03 1.99 2.27 Ca 0.43 0.57 0.60 0.00 0.00 1.88 1.89 0.00 0.00 0.03 0.04 0.15 Na 0.04 0.00 0.00 0.00 0.00 0.01 0.02 0.01 0.07 0.88 1.90 1.83 K 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.01 0.85 0.03 0.01 0.02 py 2.59 7.86 11.87 gr 14.75 19.03 20.10 Fe3+/(Fe3++Al-1) 0.34 0.32 Fe2+/(Fe2++Mg) 0.74 0.71 0.43 Mg# 0.58 0.69 注:-c,核部;-m,幔部;-r,边部;py=100×[Mg/(Mg+Ca+Mn+Fe2+)]g,gr=100×[Ca/(Mg+Ca+Mn+Fe2+)]g;Mg#=Mg/(Mg+Fe2+)gl;主量元素相对误差小于2%;矿物分子式采用Ax软件计算(Holland; http://www.esc.cam.ac.uk/research-groups/holland/ax). 表 2 羌塘中部蓝岭含硬柱石多硅白云母片岩典型矿物成分(%)
Table 2. Compositions of representative minerals in the lawsonite-bearing phengite schist from Lanling, central Qiangtang (%)
矿物 g-c g-r ctd-in-c ctd-in-r ph chl pa SiO2 37.00 37.06 25.57 24.85 51.29 25.40 46.56 TiO2 0.19 0.10 0.05 0.01 0.25 0.02 0.04 Al2O3 21.43 21.67 40.06 40.45 27.56 21.73 39.76 Cr2O3 0.04 0.01 0.06 0.06 0.11 0.12 0.03 Fe2O3 0.65 0.43 0.00 0.00 0.03 0.00 0.00 FeO 29.54 33.50 25.05 25.47 3.15 27.11 0.44 MnO 1.25 0.61 0.14 0.17 0.01 0.04 0.00 MgO 1.20 1.45 2.28 1.75 2.79 13.15 0.19 CaO 8.79 5.95 0.35 0.07 0.02 0.04 0.10 Na2O 0.03 0.01 0.01 0.00 0.41 0.09 7.16 K2O 0.01 0.00 0.02 0.01 9.64 0.06 0.58 Si 2.96 2.96 1.04 1.03 3.41 2.70 2.99 Ti 0.01 0.01 0.00 0.00 0.01 0.00 0.00 Al 2.02 2.04 1.93 1.97 2.16 2.72 3.01 Cr 0.00 0.00 0.00 0.00 0.01 0.01 0.00 Fe3+ 0.04 0.03 0.00 0.00 0.00 0.00 0.00 Fe2+ 1.98 2.24 0.86 0.88 0.18 2.41 0.02 Mn 0.09 0.04 0.01 0.01 0.00 0.00 0.00 Mg 0.14 0.17 0.14 0.11 0.28 2.08 0.02 Ca 0.75 0.51 0.02 0.00 0.00 0.01 0.01 Na 0.01 0.00 0.00 0.00 0.05 0.02 0.89 K 0.00 0.00 0.00 0.00 0.82 0.01 0.05 py 4.83 5.84 gr 25.48 17.21 Fe2+/(Fe2++Mg) 0.86 0.89 0.54 注:-in,石榴石中的包体,其余同表 1. 表 3 羌塘中部蓝岭蓝片岩和含硬柱石多硅白云母片岩的全岩成分
Table 3. Whole-rock compositions of the blueschist and the lawsonite-bearing phengite schist from Lanling, central Qiangtang
样品 SiO2 Al2O3 TiO2 Fe2O3 FeO CaO MgO K2O Na2O MnO P2O5 LOI Total 实测全岩成分(%) L1414-1 47.66 14.04 1.85 5.28 9.62 4.84 7.7 0.16 4.14 1.24 0.19 3.12 99.84 样品 Si Al FeT Ca Mg Mn Na O H O 相平衡模拟所用有效全岩成分(基于单位氧化物的摩尔百分数) L1414-1 47.03 15.93 11.59 4.92 11.47 1.05 8.02 152.97 100 50 注:FeT=Fe2++Fe3+. 表 4 羌塘中部蓝岭含硬柱石多硅白云母片岩的有效全岩成分
Table 4. Effective whole-rock compositions of the lawsonite-bearing phengite schist from Lanling, central Qiangtang
样品 SiO2 Al2O3 TiO2 Fe2O3 FeO CaO MgO K2O Na2O MnO P2O5 LOI Total 实测全岩成分(%) L1414-7 73.54 13.56 0.66 0.79 3.32 0.49 1.27 1.95 1.89 0.04 0.08 2.31 99.89 矿物 vol% Si Ti Al Cr Fe3+ Fe2+ Mn Mg Ca Na K 有效全岩成分计算过程 g 18 3.03 0.01 2.01 0.00 0.00 2.10 0.00 0.13 0.68 0.01 0.00 pa 12 3.00 0.00 3.00 0.00 0.00 0.00 0.00 0.00 0.00 1.00 0.00 q 36 1.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 ph 24 3.36 0.02 2.23 0.00 0.00 0.18 0.00 0.26 0.00 0.07 0.84 样品 Si Al FeT Mn Mg Ca Na K O 相平衡模拟所用的有效全岩成分(基于单位氧化物的摩尔百分数) L1414-7 62.66 20.78 7.61 0.00 1.37 2.24 2.23 3.11 170.38 注:有效全岩成分计算过程中所涉及到的矿物化学式是利用Ax软件计算的(%);FeT =Fe2++Fe3+. -
[1] Baldwin, J.A., Powell, R., Brown, M., et al., 2005.Modelling of Mineral Equilibria in Ultrahigh-Temperature Metamorphic Rocks from the Anápolis-Itauçu Complex, Central Brazil.Journal of Metamorphic Geology, 23(7):511-531. https://doi.org/10.1111/j.1525-1314.2005.00591.x [2] de Capitani, C.D., Brown, T.H., 1987.The Computation of Chemical Equilibrium in Complex Systems Containing Non-Ideal Solutions.Geochimica et Cosmochimica Acta, 51(10):2639-2652. https://doi.org/10.1016/0016-7037(87)90145-1 [3] Che, X. C., 2013. Experimental Study of the Blueschists and Marble-Bearing High Pressure Metamorphic Belt of Rongma Area in the Central Qiangtang, Tibet (Dissertation). China University of Geoscience, Beijing (in Chinese with English abstract). [4] Coggon, R., Holland, T.J.B., 2002.Mixing Properties of Phengitic Micas and Revised Garnet-Phengite Thermobarometers.Journal of Metamorphic Geology, 20(7):683-696. https://doi.org/10.1046/j.1525-1314.2002.00395.x [5] Davis, P.B., Whitney, D.L., 2006.Petrogenesis of Lawsonite and Epidote Eclogite and Blueschist, Sivrihisar Massif, Turkey.Journal of Metamorphic Geology, 24:823-849. https://doi.org/10.1111/j.1525-1314.2006.00671.x [6] Diener, J.F.A., Powell, R., White, R.W., et al., 2007.A New Thermodynamic Model for Clino-and Orthoamphiboles in the System Na2O-CaO-FeO-MgO-Al2O3-SiO2-H2O-O.Journal of Metamorphic Geology, 25(6):631-656. https://doi.org/10.1111/j.1525-1314.2007.00720.x [7] Dong, Y.S., Li, C., Shi, J.R., et al., 2010.Forming Process of the High Pressure Metamorphic Belt in Central Qiangtang, Tibet.Acta Petrologica Sinica, 26(7):2099-2105 (in Chinese with English abstract). [8] Du, J.X., Zhang, L.F., Lü, Z., et al., 2011.Lawsonite-Bearing Chloritoid-Glaucophane Schist from SW Tianshan, China:Phase Equilibria and P-T Path.Journal of Asian Earth Sciences, 42(4):684-693. https://doi.org/10.1016/j.jseaes.2011.04.003 [9] Du, J.X., Zhang, L.F., Shen, X.J., et al., 2014.A New P-T-t Path of Eclogites from Chinese Southwestern Tianshan:Constraints from P-T Pseudosections and Sm-Nd Isochron Dating.Lithos, 200-201:258-272. https://doi.org/ 10.1016/j.lithos.2014.04.009 [10] Green, E., Holland, T., Powell, R., 2007.An Order-Disorder Model for Omphacitic Pyroxenes in the System Jadeite-Diopside-Hedenbergite-Acmite, with Applications to Eclogitic Rocks.American Mineralogist, 92(7):1181-1189. https://doi.org/https://doi.org/10.2138/am.2007.2401 [11] Guiraud, M., Powell, R., Rebay, G., 2001.H2O in Metamorphism and Unexpected Behaviour in the Preservation of Metamorphic Mineral Assemblages.Journal of Metamorphic Geology, 19(4):445-454. https://doi.org/10.1046/j.0263-4929.2001.00320.x [12] Holland, T., Baker, J., Powell, R., 1998.Mixing Properties and Activity-Composition Relationships of Chlorites in the System MgO-FeO-Al2O3-SiO2-H2O.European Journal of Mineralogy, 10(3):395-406. https://doi.org/10.1127/ejm/10/3/0395 [13] Holland, T., Powell, R., 2003.Activity-Composition Relations for Phases in Petrological Calculations:An Asymmetric Multicomponent Formulation.Contributions to Mineralogy and Petrology, 145(4):492-501. https://doi.org/10.1007/s00410-003-0464-z [14] Kapp, P., Yin, A., Manning, C.E., et al., 2003.Tectonic Evolution of the Early Mesozoic Blueschist-Bearing Qiangtang Metamorphic Belt, Central Tibet.Tectonics, 22(4):17-1-17-25. https://doi.org/10.1029/2002tc001383 [15] Leake, B.E., Woolley, A.R., Arps, C.E.S., et al., 1997.Nomenclature of Amphiboles Report of the Subcommittee on Amphiboles of the International Mineralogical Association Commission on New Minerals and Mineral Names.European Journal of Mineralogy, 9(3):623-651. https://doi.org/10.1127/ejm/9/3/0623 [16] Li, C., Cheng, L.R., Hu, K., et al., 1995.Ice-Sea Mix-Conglomerates and Their Genesis in the Southern Area of Qiangtang, Tibet.Journal of Changchun University of Earth Sciences, 25(4):368-374 (in Chinese with English abstract). [17] Liang, X., Wang, G.H., Yang, B., et al., 2017.Stepwise Exhumation of the Triassic Lanling High-Pressure Metamorphic Belt in Central Qiangtang, Tibet:Insights from a Coupled Study of Metamorphism, Deformation, and Geochronology.Tectonics, 36(4):652-670. https://doi.org/10.1002/2016tc004455 [18] Liu, J.L., Sun, F.Y., Wang, Y.D., et al., 2016.Tectonic Setting of Hadahushu Mafic Intrusion in Urad Zhongqi Area, Inner Mongolia:Implications for Early Subduction History of Paleo-Asian Ocean Plate.Earth Science, 41(12):2019-2030 (in Chinese with English abstract). https://doi.org/10.3799/dqkx.2016.141 [19] Liu, Y., Lü, Y.Z., 2011.Pseudosection Modelling of Garnet Blueschist from Rongma Area, Central Qiangtang, North Tibet:Implications to the Tectonic Evolution of Central Qiangtang.Earth Science Frontiers, 18(2):100-115 (in Chinese with English abstract). [20] Liu, Y., Santosh, M., Zhao, Z.B., et al., 2011.Evidence for Palaeo-Tethyan Oceanic Subduction within Central Qiangtang, Northern Tibet.Lithos, 127(1-2):39-53. https://doi.org/10.1016/j.lithos.2011.07.023 [21] Lu, J.P., Zhang, N., Huang, W.H., et al., 2006.Characteristics and Significance of the Metamorphic Minerals Glaucophane-Lawsonite Assemblage in the Hongjishan Area, North-Central Qiangtang, Northern Tibet, China.Geological Bulletin of China, 25(1-2):70-75 (in Chinese with English abstract). [22] Mahar, E.M., Baker, J.M., Powell, R., et al., 1997.The Effect of Mn on Mineral Stability in Metapelites.Journal of Metamorphic Geology, 15(2):223-238. https://doi.org/10.1111/j.1525-1314.1997.00011.x [23] Meng, Y.K., Xu, Z.Q., Ma, S.W., et al., 2016.Deformational Characteristics and Geochronological Constraints of Quxu Ductile Shear Zone in Middle Gangdese Magmatic Belt, South Tibet.Earth Science, 41(7):1081-1098 (in Chinese with English abstract). https://doi.org/10.3799/dqkx.2016.090 [24] Miyashiro, A., 1973. Metamorphism and Metamorphic Belts. Springer, Dordrecht. https://doi.org/10.1007/978-94-011-6836-6 [25] Ou, X.G., Jin, Z.M., Xia, B., et al., 2006.Prediction of Thermal Conductivity of Underground Rocks from P-Wave Velocity of Ultrahigh-Pressure Metamorphic Rocks.Earth Science, 31(4):564-568 (in Chinese with English abstract). https://www.researchgate.net/publication/288632071_Prediction_of_thermal_conductivity_of_underground_rocks_from_P-wave_velocity_of_ultrahigh-pressure_metamorphic_rocks [26] Spear, F.S., Peacock, S.M., 1990.Petrologic Determination of Metamorphic Pressure-Temperature-Time Paths.Geological Survey & Reserch, 1-55. [27] Tsujimori, T., Sisson, V., Liou, J., et al., 2006.Very-Low-Temperature Record of the Subduction Process:A Review of Worldwide Lawsonite Eclogites.Lithos, 92(3-4):609-624. https://doi.org/10.1016/j.lithos.2006.03.054 [28] Wang, Q.J., Zhang, L.F., Song, S.G., 2007.p-T Condition and Phase Equilibrium of Lawsonite Blueschists in Northern Qilian Mountains and Its Petrologic Significance.Earth Science Frontiers, 14(1):157-171 (in Chinese with English abstract). https://www.sciencedirect.com/science/article/pii/S0264370715000654 [29] Wei, C., Wang, W., Clarke, G.L., et al., 2009.Metamorphism of High/Ultrahigh-Pressure Pelitic-Felsic Schist in the South Tianshan Orogen, NW China:Phase Equilibria and P-T Path.Journal of Petrology, 50(10):1973-1991. https://doi.org/10.1093/petrology/egp064 [30] Wei, C.J., Song, S.G., 2008.Chloritoid-Glaucophane Schist in the North Qilian Orogen, NW China:Phase Equilibria and P-T Path from Garnet Zonation.Journal of Metamorphic Geology, 26(3):301-316. https://doi.org/10.1111/j.1525-1314.2007.00753.x [31] White, R.W., Pomroy, N.E., Powell, R., 2005.An In Situ Metatexite-Diatexite Transition in Upper Amphibolite Facies Rocks from Broken Hill, Australia.Journal of Metamorphic Geology, 23(7):579-602. https://doi.org/10.1111/j.1525-1314.2005.00597.x [32] White, R.W., Powell, R., Holland, T., et al., 2000.The Effect of TiO2 and Fe2O3 on Metapelitic Assemblages at Greenschist and Amphibolite Facies Conditions:Mineral Equilibria Calculations in the System K2O-FeO-MgO-Al2O3-SiO2-H2O-TiO2-Fe2O3.Journal of Metamorphic Geology, 18(5):497-511.https://doi.org/11525-1314.20.1046/j.000.00269.x doi: 10.1046/j.1525-1314.2000.00269.x [33] White, R.W., Powell, R., Holland, T., 2007.Progress Relating to Calculation of Partial Melting Equilibria for Metapelites.Journal of Metamorphic Geology, 25(5):511-527. https://doi.org/ 10.1111/j.1525-1314.2007.00711.x [34] Wu, H.Q., Feng, Y.M., Huo, Y.G., et al., 1990.The Discovery of Ordovicican Lawsonite-Glaucophane Schist in the Middle Section of the Northern Qilian Mountains, Sunan County, Gansu Province, and Its Significance.Geological Review, 36(3):277-280 (in Chinese with English abstract). doi: 10.2747/0020-6814.45.9.841?scroll=top [35] Yang, B., 2015. Deformation and Metamorphism Characteristics of the Garnet-Bearing Phengite Schist in Lanling Area, North Tibet (Dissertation). China University of Geosciences, Beijing (in Chinese with English abstract). [36] Yang, J.S., Xu, Z.Q., Zhang, J.X., et al., 2009.Tectonic Setting of Main High-and Ultrahigh-Pressure Metamorphic Belts in China and Adjacent Region and Discussion on Their Subduction and Exhumation Mechanism.Acta Petrologica Sinica, 25(7):1529-1560 (in Chinese with English abstract). http://www.ysxb.ac.cn/ysxb/ch/reader/view_abstract.aspx?file_no=20090701&journal_id=ysxb [37] Zhai, Q.G., Jahn, B.M., Zhang, R.Y., et al., 2011.Triassic Subduction of the Paleo-Tethys in Northern Tibet, China:Evidence from the Geochemical and Isotopic Characteristics of Eclogites and Blueschists of the Qiangtang Block.Journal of Asian Earth Sciences, 42(6):1356-1370. https://doi.org/10.1016/j.jseaes.2011.07.023 [38] Zhai, Q.G., Li, C., Wang, J., et al., 2009.Petrology, Mineralogy and 40Ar-39Ar Chronology for Rongma Blueschist from Central Qiangtang, Northern Tibet.Acta Petrologica Sinica, 25(9):2281-2288 (in Chinese with English abstract). [39] Zhang, L.F., Du, J.X., Lü, Z., et al., 2013.A Huge Oceanic-Type UHP Metamorphic Belt in Southwestern Tianshan, China:Peak Metamorphic Age and P-T Path.Chinese Science Bulletin, 58(22):2107-2112 (in Chinese). https://www.sciencedirect.com/science/article/pii/S1367912014005689 [40] Zhang, L.F., Song, S.G., Liou, J.G., et al., 2005.Relict Coesite Exsolution in Omphacite from Western Tianshan Eclogites, China.American Mineralogist, 90(1):181-186. https://doi.org/10.2138/am.2005.1587 [41] Zhang, X.Z., Dong, Y.S., Li, C., 2014.A Record of Complex Histories from Oceanic Lithosphere Subduction to Continental Subduction and Collision:Constraints on Geochemistry of Eclogite and Blueschist in Central Qiangtang, Tibetan Plateau.Acta Petrologica Sinica, 30(10):2821-2834 (in Chinese with English abstract). [42] Zhao, S.Q., Fu, L.B., Wei, J.H., et al., 2015.Petrogenesis and Geodynamic Setting of Late Triassic Quartz Diorites in Zhiduo Area, Qinghai Province.Earth Science, 40(1):61-76 (in Chinese with English abstract). https://doi.org/10.3799/dqkx.2015.005 [43] Zheng, Y. L., 2012. The Exhumation Mechanism and Process of Blueschist in Lanling Area, Central Qiangtang Basin, Tibet (Dissertation). China University of Geosciences, Beijing (in Chinese with English abstract). [44] 车晓超, 2013. 西藏中羌塘荣玛地区蓝片岩-大理岩高压变质带实验研究(硕士学位论文). 北京: 中国地质大学. [45] 董永胜, 李才, 施建荣, 等, 2010.羌塘中部高压变质带的形成过程.岩石学报, 26(7): 2099-2105. http://d.wanfangdata.com.cn/Periodical_ysxb98201007011.aspx [46] 李才, 程立人, 胡克, 等, 1995.西藏羌塘南部地区的冰海杂砾岩及其成因.长春地质学院学报, 25(4): 368-374. http://www.cnki.com.cn/Article/CJFDTOTAL-CCDZ504.001.htm [47] 刘金龙, 孙丰月, 王英德, 等, 2016.内蒙古乌拉特中旗哈达呼舒基性岩体形成的构造背景与古亚洲洋的早期俯冲历史.地球科学, 41(12): 2019-2030. https://doi.org/10.3799/dqkx.2016.141 [48] 刘焰, 吕永增, 2011.西藏羌塘中部绒马地区石榴蓝闪片岩变质演化过程的视剖面模拟及其意义.地学前缘, 18(2): 100-115. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=dxqy201102009 [49] 陆济璞, 张能, 黄位鸿, 等, 2006.藏北羌塘中北部红脊山地区蓝闪石+硬柱石变质矿物组合的特征及其意义.地质通报, 25(1-2): 70-75. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=zgqydz200601012 [50] 孟元库, 许志琴, 马士委, 等, 2016.藏南冈底斯岩浆带中段曲水韧性剪切带的变形特征及其年代学约束.地球科学, 41(7): 1081-1098. https://doi.org/10.3799/dqkx.2016.090 [51] 欧新功, 金振民, 夏斌, 等, 2006.利用超高压变质岩的P波速度估算地下岩石的热导率.地球科学, 31(4): 564-568. http://www.earth-science.net/WebPage/Article.aspx?id=1603 [52] 王乾杰, 张立飞, 宋述光, 2007.北祁连山硬柱石蓝片岩P-T条件相平衡计算及其岩石学意义.地学前缘, 14(1): 157-171. [53] 吴汉泉, 冯益民, 霍有光, 等, 1990.北祁连山中段甘肃肃南奥陶系变质硬柱石蓝闪片岩的发现及其意义.地质论评, 36(3): 277-280. [54] 杨波, 2015. 羌塘蓝岭地区石榴石白云母片岩变质变形特征研究(硕士学位论文). 北京: 中国地质大学. [55] 杨经绥, 许志琴, 张建新, 等, 2009.中国主要高压-超高压变质带的大地构造背景及俯冲/折返机制的探讨.岩石学报, 25(7): 1529-1560. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=ysxb98200907001 [56] 翟庆国, 李才, 王军, 等, 2009.藏北羌塘中部绒玛地区蓝片岩岩石学、矿物学和40Ar-39Ar年代学.岩石学报, 25(9): 2281-2288. [57] 张立飞, 杜瑾雪, 吕增, 等, 2013.新疆西南天山超高压变质带的空间分布、峰期变质时代和P-T轨迹特征.科学通报, 58(22): 2107-2112. [58] 张修政, 董永胜, 李才, 等, 2014.从洋壳俯冲到陆壳俯冲和碰撞:来自羌塘中西部地区榴辉岩和蓝片岩地球化学的证据.岩石学报, 30(10): 2821-2834. http://www.ysxb.ac.cn/ysxb/ch/reader/create_pdf.aspx?file_no=20141003&year_id=2014&quarter_id=10&falg=1 [59] 赵少卿, 付乐兵, 魏俊浩, 等, 2015.青海治多地区晚三叠世石英闪长岩地球化学特征及成岩动力学背景.地球科学, 40(1): 61-76.https://doi.org/10.3799/dqkx.2015.005 http://www.earth-science.net/WebPage/Article.aspx?id=3025 [60] 郑艺龙, 2012. 藏北羌塘蓝岭地区蓝片岩折返机制与演化(硕士学位论文). 北京: 中国地质大学.