• 中国出版政府奖提名奖

    中国百强科技报刊

    湖北出版政府奖

    中国高校百佳科技期刊

    中国最美期刊

    留言板

    尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

    姓名
    邮箱
    手机号码
    标题
    留言内容
    验证码

    利用GCMC分子模拟技术研究页岩气的吸附行为和机理

    卢双舫 沈博健 许晨曦 陈国辉 刘可禹 薛庆忠 方志雄 何希鹏

    卢双舫, 沈博健, 许晨曦, 陈国辉, 刘可禹, 薛庆忠, 方志雄, 何希鹏, 2018. 利用GCMC分子模拟技术研究页岩气的吸附行为和机理. 地球科学, 43(5): 1783-1791. doi: 10.3799/dqkx.2018.430
    引用本文: 卢双舫, 沈博健, 许晨曦, 陈国辉, 刘可禹, 薛庆忠, 方志雄, 何希鹏, 2018. 利用GCMC分子模拟技术研究页岩气的吸附行为和机理. 地球科学, 43(5): 1783-1791. doi: 10.3799/dqkx.2018.430
    Lu Shuangfang, Shen Bojian, Xu Chenxi, Chen Guohui, Liu Keyu, Xue Qingzhong, Fang Zhixiong, He Xipeng, 2018. Study on Adsorption Behavior and Mechanism of Shale Gas by Using GCMC Molecular Simulation. Earth Science, 43(5): 1783-1791. doi: 10.3799/dqkx.2018.430
    Citation: Lu Shuangfang, Shen Bojian, Xu Chenxi, Chen Guohui, Liu Keyu, Xue Qingzhong, Fang Zhixiong, He Xipeng, 2018. Study on Adsorption Behavior and Mechanism of Shale Gas by Using GCMC Molecular Simulation. Earth Science, 43(5): 1783-1791. doi: 10.3799/dqkx.2018.430

    利用GCMC分子模拟技术研究页岩气的吸附行为和机理

    doi: 10.3799/dqkx.2018.430
    基金项目: 

    自主创新科研计划项目 15CX07004A

    国家油气重大专项 2016ZX05061-012

    中国博士后科学基金面上项目 2017M620296

    国家自然科学基金项目 41330313

    博士后创新人才支持计划 BX201700289

    国家自然科学基金项目 41672130

    详细信息
      作者简介:

      卢双舫(1962-), 男, 教授、博士生导师, 主要从事油气地质学和地球化学的研究工作

      通讯作者:

      陈国辉

    • 中图分类号: P618

    Study on Adsorption Behavior and Mechanism of Shale Gas by Using GCMC Molecular Simulation

    • 摘要: 揭示页岩气的吸附机理是阐明页岩气的吸附规律及转化条件、建立具有普适意义的定量评价模型的基础.采用GCMC(Grand Canonical Monte Carlo)分子模拟方法,对不同温压条件下CH4和CO2在不同孔径的伊利石狭缝形孔隙中的吸附行为进行模拟,结果表明,分子模拟与实验所得的吸附量归一化到单位表面积才具有相同的内涵和比较的意义.在此基础上进行的对比表明,分子模拟与实验结果相近,奠定了由分子模拟考察页岩气吸附行为和机理的基础:气体吸附于矿物表面的内因(机理)是气-固分子之间的范德华力和库仑力,伊利石表面对CO2的吸附能力比其对CH4的吸附能力强是其结合能更高的反映;CH4和CO2在伊利石表面的吸附虽然并非严格的单分子层吸附,但以一个强吸附层为主;孔径减小到微孔后吸附相密度将发生叠加,形成微孔填充,也是其结合能叠加的结果.

       

    • 图  1  Ⅰ型(a)和Ⅱ型(b)模拟单元剖面

      孔隙空间被气体分子和K+充填.其中,气体和钾离子为球状模型,钾伊利石骨架为球棍模型.色标:氧,红色;氢,白色;硅,黄色;铝,粉色;钾,紫色;碳,灰色

      Fig.  1.  A snapshot of type Ⅰ (a) and type Ⅱ (b) simulation cells

      图  2  363 K(90 ℃)时CH4和CO2气体分子在3 nm孔径的钾伊利石不同类型模拟单元中加载量对比

      过剩吸附量以单位质量吸附剂的吸附能力表示

      Fig.  2.  Comparison of the total loading number of CH4 and CO2 in both type Ⅰ and Ⅱ simulation cells with the pore size of 3 nm at the temperature of 363 K (90 ℃)

      图  3  模拟与实测所得CH4(a)和CO2(b)过剩吸附量对比

      Fig.  3.  The comparison of excess adsorption amount of CH4 (a) and CO2 (b) in illite by both molecular simulation and experiment

      图  4  模拟与实测所得CH4(a)和CO2(b)过剩吸附量对比

      过剩吸附量用单位吸附剂比表面积的吸附能力表达

      Fig.  4.  The comparison of excess adsorption amount of CH4 (a) and CO2 (b) in illite by both molecular simulation and experiment

      图  5  温度为90 ℃和压力为30 MPa条件下,CH4和CO2在孔径为3 nm的钾伊利石孔隙中的密度分布曲线

      Fig.  5.  The gas distribution of CH4 (a) and CO2 (b) in K-illite pore with the size of 3 nm at 90 ℃ and 30 MPa

      图  6  CH4和CO2分别于钾伊利石表面之间平均结合能对比图

      Fig.  6.  The interaction energy between K-illite surface and gas molecules

      图  7  温度为90 ℃和压力为30 MPa条件下,CH4(a)和CO2(b)气体在不同孔径的钾伊利石孔隙中的密度分布曲线

      Fig.  7.  The gas distribution of CH4 (a) and CO2 (b) in K-illite pore with various sizes at 90 ℃ and 30 MPa

      图  8  不同孔径的伊利石孔隙表面与CH4(a)和CO2(b)分子之间的结合能

      Fig.  8.  The interaction energy between the surface of illite pores with various sizes and gas molecules, including both CH4 (a) and CO2 (b)

      表  1  Ⅰ型、Ⅱ型钾伊利石模拟单元比表面积以及CH4和CO2气体分子动力学直径统计

      Table  1.   Kinetic diameters of both CH4 and CO2 molecules and specific surface areas of types Ⅰ and Ⅱ K-illite simulation cells

      吸附质 动力学直径(nm) 模拟单元类型 比表面积(m2/g)
      CH4 0.38 997.73
      529.60
      CO2 0.33 989.79
      536.22
      下载: 导出CSV
    • [1] Badics, B., Vetö, I., 2012.Source Rocks and Petroleum Systems in the Hungarian Part of the Pannonian Basin:The Potential for Shale Gas and Shale Oil Plays.Marine & Petroleum Geology, 31(1):53-69. https://doi.org/10.1016/j.marpetgeo.2011.08.015
      [2] Brunauer, S., Emmett, P.H., Teller, E., 1938.Adsorption of Gases in Multimolecular Layers.Journal of American Chemical Society, 60(2):309-319. https://doi.org/10.1021/ja01269a023
      [3] Chen, G., Lu, S., Zhang, J., et al., 2016a.Research of CO2 and N2 Adsorption Behavior in K-Illite Slit Pores by GCMC Method.Scientific Reports, 6:37579. https://doi.org/10.1038/srep37579
      [4] Chen, G., Zhang, J., Lu, S., et al., 2016b.Adsorption Behavior of Hydrocarbon on Illite.Energy & Fuels, 30(11):9114-9121. https://doi.org/10.1021/acs.energyfuels.6b01777
      [5] Connolly, M.L., 1983a.Analytical Molecular Surface Calculation.Journal of Applied Crystallography, 16(5):548-558. https://doi.org/10.1107/s0021889883010985
      [6] Connolly, M.L., 1983b.Solvent-Accessible Surfaces of Proteins and Nucleic Acids.Science, 221(4621):709-713. https://doi.org/10.1126/science.6879170
      [7] Curtis, J.B., 2002.Fractured Shale-Gas Systems.AAPG Bulletin, 86(11):1921-1938. https://doi.org/10.1306/61EEDDBE-173E-11D7-8645000102C1865D
      [8] Cygan, R.T., Liang, J.J., Kalinichev, A.G., 2004.Molecular Models of Hydroxide, Oxyhydroxide, and Clay Phases and the Development of a General Force Field.Journal of Physical Chemistry B, 108(4):1255-1266. https://doi.org/10.1021/jp0363287
      [9] Dubinin, M.M., 1960.The Potential Theory of Adsorption of Gases and Vapors for Adsorbents with Energetically Nonuniform Surfaces.Chemical Reviews, 60(2):235-241. https://doi.org/10.1021/cr60204a006
      [10] Dubinin, M.M., 1975.Physical Adsorption of Gases and Vapors in Micropores.Progress in Surface and Membrane Science, 9:1-70. https://doi.org/10.1016/B978-0-12-571809-7.50006-1
      [11] Fan, E., Tang, S.H., Zhang, C.L., et al., 2014.Methane Sorption Capacity of Organics and Clays in High-over Matured Shale-Gas Systems.Energy Exploration & Exploitation, 32(6):927-942. https://doi.org/10.1260/0144-5987.32.6.927
      [12] Gasparik, M., Rexer, T.F.T., Aplin, A.C., et al., 2014.First International Inter-Laboratory Comparison of High-Pressure CH4, CO2, and C2H6, Sorption Isotherms on Carbonaceous Shales.International Journal of Coal Geology, 132:131-146. https://doi.org/10.1016/j.coal.2014.07.010
      [13] Harries, J.E., 1970.The Quadrupole Moment of CO2, Measured from the Far Infrared Spectrum.Journal of Physics B:Atomic and Molecular Physics, 3(12):L150-L152. https://doi.org/10.1088/0022-3700/3/12/021
      [14] Heller, R., Zoback, M., 2014.Adsorption of Methane and Carbon Dioxide on Gas Shale and Pure Mineral Samples.Journal of Unconventional Oil & Gas Resources, 8:14-24. https://doi.org/10.1016/j.juogr.2014.06.001
      [15] Ji, L., Zhang, T., Milliken, K.L., et al., 2012.Experimental Investigation of Main Controls to Methane Adsorption in Clay-Rich Rocks.Applied Geochemistry, 27(12):2533-2545. https://doi.org/10.1016/j.apgeochem.2012.08.027
      [16] Jiang, S., Tang, X.L., Steve, O., et al., 2017.Enrichment Factors and Current Misunderstanding of Shale Oil and Gas:Case Study of Shales in U.S., Argentina and China.Earth Science, 42(7):1083-1091 (in Chinese with English abstract). https://doi.org/10.3799/dqkx.2017.087
      [17] Jin, Z.H., Firoozabadi, A., 2013.Methane and Carbon Dioxide Adsorption in Clay-Like Slit Pores by Monte Carlo Simulations.Fluid Phase Equilibria, 360(1):456-465. https://doi.org/10.1016/j.fluid.2013.09.047
      [18] Jin, Z.H., Firoozabadi, A., 2014.Effect of Water on Methane and Carbon Dioxide Sorption in Clay Minerals by Monte Carlo Simulations.Fluid Phase Equilibria, 382:10-20. https://doi.org/10.1016/j.fluid.2014.07.035
      [19] Jorgensen, W.L., Madura, J.D., Swenson, C.J., 1984.Optimized Intermolecular Potential Functions for Liquid Hydrocarbons.J.Am.Chem.Soc.(United States), 106(22):6638-6646. https://doi.org/10.1021/ja00334a030
      [20] Krooss, B.M., Bergen, F.V., Gensterblum, Y., et al., 2002.High-Pressure Methane and Carbon Dioxide Adsorption on Dry and Moisture-Equilibrated Pennsylvanian Coals.International Journal of Coal Geology, 51(2):69-92. https://doi.org/10.1016/S0166-5162(02)00078-2
      [21] Lee, J.H., Guggenheim, S., 1981.Single-Crystal X-Ray Refinement of Pyrophyllite-1Tc.American Mineralogist, 66(3-4):350-357. https://pubs.geoscienceworld.org/msa/ammin/article/66/3-4/350/41261/single-crystal-x-ray-refinement-of-pyrophyllite
      [22] Liu, Y., Wilcox, J., 2012.Molecular Simulation of CO2 Adsorption in Micro-and Mesoporous Carbons with Surface Heterogeneity.International Journal of Coal Geology, 104(1):83-95. https://doi.org/10.1016/j.coal.2012.04.007
      [23] Liu, Y., Zhu, Y.M., Li, W., et al., 2016.Molecular Simulation of Methane Adsorption in Shale Based on Grand Canonical Monte Carlo Method and Pore Size Distribution.Journal of Natural Gas Science & Engineering, 30:119-126. https://doi.org/10.1016/j.jngse.2016.01.046
      [24] Macht, F., Eusterhues, K., Pronk, G.J., et al., 2011.Specific Surface Area of Clay Minerals:Comparison between Atomic Force Microscopy Measurements and Bulk-Gas (N2) and -Liquid (EGME) Adsorption Methods.Applied Clay Science, 53(1):20-26. https://doi.org/10.1016/j.clay.2011.04.006
      [25] Macht, F., Totsche, K.U., Eusterhues, K., et al., 2010.Topography and Surface Properties of Clay Minerals Analyzed by Atomic Force Microscopy.Proceedings of the 19th World Congress of Soil Science:Soil Solutions for a Changing World, Brisbane, 206-209. https://iuss.org/19th%20WCSS/Symposium/pdf/2384.pdf
      [26] Mosher, K., He, J., Liu, Y., et al., 2013.Molecular Simulation of Methane Adsorption in Micro-and Mesoporous Carbons with Applications to Coal and Gas Shale Systems.International Journal of Coal Geology, 109-110(2):36-44. https://doi.org/10.1016/j.coal.2013.01.001
      [27] Potoff, J.J., Siepmann, J.I., 2001.Vapor-Liquid Equilibria of Mixtures Containing Alkanes, Carbon Dioxide, and Nitrogen.Aiche Journal, 47(7):1676-1682. https://doi.org/10.1002/aic.690470719
      [28] Refson, K., Park, S.H., Sposito, G., 2003.Ab Initio Computational Crystallography of 2:1 Clay Minerals:1.Pyrophyllite-1Tc.The Journal of Physical Chemistry B, 107(48):13376-13383. https://doi.org/10.1021/jp0347670
      [29] Ross, D.J.K., Bustin, R.M., 2009.The Importance of Shale Composition and Pore Structure upon Gas Storage Potential of Shale Gas Reservoirs.Marine & Petroleum Geology, 26(6):916-927. https://doi.org/10.1016/j.marpetgeo.2008.06.004
      [30] Sun, R.Y., Zhang, Y.F., Fan, K.K., et al., 2015.Molecular Simulations of Adsorption Characteristics of Clay Minerals in Shale.CIESC Journal, 66(6):2118-2122 (in Chinese with English abstract). https://doi.org/10.11949/j.issn.0438-1157.20141766
      [31] Tan, J., Weniger, P., Krooss, B., et al., 2014.Shale Gas Potential of the Major Marine Shale Formations in the Upper Yangtze Platform, South China, Part Ⅱ:Methane Sorption Capacity.Fuel, 129(4):204-218. https://doi.org/10.1016/j.fuel.2014.03.064
      [32] Tian, H., Zhang, S.C., Liu, S.B., et al., 2016.The Dual Influence of Shale Composition and Pore Size on Adsorption Gas Storage Mechanism of Organic-Rich Shale.Natural Gas Geoscience, 27(3):494-502. https://doi.org/10.11764/j.issn.1672-1926.2016.03.0494
      [33] Wang, S., Javadpour, F., Feng, Q., 2016.Molecular Dynamics Simulations of Oil Transport through Inorganic Nanopores in Shale.Fuel, 171:74-86. https://doi.org/10.1016/j.fuel.2015.12.071
      [34] Xiang, J.H., Zeng, F.G., Liang, H.Z., et al., 2014.Molecular Simulation of the CH4/CO2/H2O Adsorption onto the Molecular Structure of Coal.Science China Earth Sciences, 44(7):1418-1428 (in Chinese). https://doi.org/10.1007/s11430-014-4849-9
      [35] Yang, N.N., Liu, S.Y., Yang, X.N., 2015.Molecular Simulation of Preferential Adsorption of CO2 over CH4 in Na-Montmorillonite Clay Material.Applied Surface Science, 356:1262-1271. https://doi.org/10.1016/j.apsusc.2015.08.101
      [36] Zhang, J.F., Clennell, M.B., Dewhurst, D.N., et al., 2014.Combined Monte Carlo and Molecular Dynamics Simulation of Methane Adsorption on Dry and Moist Coal.Fuel, 122(15):186-197. https://doi.org/10.1016/j.fuel.2014.01.006
      [37] Zhang, T.W., Ellis, G.S., Ruppel, S.C., et al., 2012.Effect of Organic-Matter Type and Thermal Maturity on Methane Adsorption in Shale-Gas Systems.Organic Geochemistry, 47(6):120-131. https://doi.org/10.1016/j.orggeochem.2012.03.012
      [38] Zhang, X.M., Shi, W.Z., Shu, Z.G., et al., 2017.Calculation Model of Shale Gas Content and Its Application in Fuling Area.Earth Science, 42(7):1157-1168 (in Chinese with English abstract). https://doi.org/10.3799/dqkx.2017.094
      [39] Zhang, X.M., Shi, W.Z., Xu, Q.H., et al., 2015.Reservoir Characteristics and Controlling Factors of Shale Gas in Jiaoshiba Area, Sichuan Basin.Acta Petrolei Sinica, 36(8):926-939, 953 (in Chinese with English abstract). https://doi.org/10.7623/syxb201508004
      [40] 蒋恕, 唐相路, Steve, O., 等, 2017.页岩油气富集的主控因素及误辩:以美国、阿根廷和中国典型页岩为例.地球科学, 42(7):1083-1091. http://www.earth-science.net/WebPage/Article.aspx?id=3609
      [41] 孙仁远, 张云飞, 范坤坤, 等, 2015.页岩中黏土矿物吸附特性分子模拟.化工学报, 66(6):2118-2122. http://www.cnki.com.cn/Article/CJFDTotal-HGSZ201506018.htm
      [42] 相建华, 曾凡桂, 梁虎珍, 等, 2014.CH4/CO2/H2O在煤分子结构中吸附的分子模拟.中国科学:地球科学, 44(7):1418-1428. http://xueshu.baidu.com/s?wd=paperuri%3A%2856e1bfe054180687e7094d8d527f71e6%29&filter=sc_long_sign&tn=SE_xueshusource_2kduw22v&sc_vurl=http%3A%2F%2Fkns.cnki.net%2FKCMS%2Fdetail%2Fdetail.aspx%3Ffilename%3Djdxk201407006%26dbname%3DCJFD%26dbcode%3DCJFQ&ie=utf-8&sc_us=10315646226932109291
      [43] 张晓明, 石万忠, 舒志国, 等, 2017.涪陵地区页岩含气量计算模型及应用.地球科学, 42(7):1157-1168. http://www.earth-science.net/WebPage/Article.aspx?id=3602
      [44] 张晓明, 石万忠, 徐清海, 等, 2015.四川盆地焦石坝地区页岩气储层特征及控制因素.石油学报, 36(8):926-939, 953. doi: 10.7623/syxb201508004
    • 加载中
    图(8) / 表(1)
    计量
    • 文章访问数:  5463
    • HTML全文浏览量:  2004
    • PDF下载量:  49
    • 被引次数: 0
    出版历程
    • 收稿日期:  2017-08-04
    • 刊出日期:  2018-05-15

    目录

      /

      返回文章
      返回