• 中国出版政府奖提名奖

    中国百强科技报刊

    湖北出版政府奖

    中国高校百佳科技期刊

    中国最美期刊

    留言板

    尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

    姓名
    邮箱
    手机号码
    标题
    留言内容
    验证码

    复杂储层多尺度数字岩石评价

    朱如凯 金旭 王晓琦 刘晓丹 李建明 孙亮 吴松涛 苏玲 焦航 崔景伟

    朱如凯, 金旭, 王晓琦, 刘晓丹, 李建明, 孙亮, 吴松涛, 苏玲, 焦航, 崔景伟, 2018. 复杂储层多尺度数字岩石评价. 地球科学, 43(5): 1773-1782. doi: 10.3799/dqkx.2018.429
    引用本文: 朱如凯, 金旭, 王晓琦, 刘晓丹, 李建明, 孙亮, 吴松涛, 苏玲, 焦航, 崔景伟, 2018. 复杂储层多尺度数字岩石评价. 地球科学, 43(5): 1773-1782. doi: 10.3799/dqkx.2018.429
    Zhu Rukai, Jin Xu, Wang Xiaoqi, Liu Xiaodan, Li Jianming, Sun Liang, Wu Songtao, Su Ling, Jiao Hang, Cui Jingwei, 2018. Multi-Scale Digital Rock Evaluation on Complex Reservoir. Earth Science, 43(5): 1773-1782. doi: 10.3799/dqkx.2018.429
    Citation: Zhu Rukai, Jin Xu, Wang Xiaoqi, Liu Xiaodan, Li Jianming, Sun Liang, Wu Songtao, Su Ling, Jiao Hang, Cui Jingwei, 2018. Multi-Scale Digital Rock Evaluation on Complex Reservoir. Earth Science, 43(5): 1773-1782. doi: 10.3799/dqkx.2018.429

    复杂储层多尺度数字岩石评价

    doi: 10.3799/dqkx.2018.429
    基金项目: 

    国家油气重大专项 2016ZX05001

    国家重点基础研究发展计划(973计划)项目 2014CB239000

    详细信息
      作者简介:

      朱如凯(1968-), 男, 博士, 教授级高级工程师, 博士研究生导师, 研究方向为沉积储层与非常规油气

    • 中图分类号: P618

    Multi-Scale Digital Rock Evaluation on Complex Reservoir

    • 摘要: 复杂储层岩石矿物组成非均质性强,孔喉结构细小.储集空间有效性评价、岩石结构精细评价及流体赋存状态与运移规律评价是决定复杂储层油气勘探成效的关键.针对复杂储层的储集空间(孔喉、裂缝)、岩石结构(矿物、有机质)、流体特征3方面,建立了复杂储层多尺度数字岩石评价技术及工作流程.储集空间表征方面:二维大面积分析技术可建立跨越6~7个数量级的多尺度选取及非均质性评价;多尺度CT及FIB-SEM联用可精确刻画孔喉和裂缝的三维空间分布;电化学和显影剂技术可以有效地帮助分析微观孔隙连通性.固体组分分析方面:XRF及Qemscan联用可定量评价矿物组成与分布;三维FIB-SEM技术可以实现有机质形态和分布的定量分析.流体特性方面:荷电效应可用于微量残留有机流体的识别与表征;通过合成孔径、润湿性、表面微结构均可调控的纳米材料,开展地层条件下页岩油赋存及流动物理模拟研究,确定了单一因素对页岩油赋存及可动孔径下限的影响;利用分子模拟研究油气在无机、有机质纳米孔隙中的聚集机理与扩散潜力.复杂储层多尺度数字岩石评价技术体系和一系列具体应用可以有效地填补常规储层分析手段的不足,为页岩油气、致密砂岩油气储层以及深部油气储层等复杂储层有效性评价和含油气性定量评价提供技术支撑.

       

    • 图  1  孔喉结构三维分析表征

      a.三维图像获取与图像处理过程;b.经图像处理后获得的三维孔隙结构

      Fig.  1.  Three-dimensional analysis and characterization of pore throat structure

      图  2  致密砂岩裂缝三维空间展布表征结果

      Fig.  2.  Characterization results of three-dimensional distribution of tight sandstone fractures

      图  3  页岩有机质孔三维重构图

      红色为有机质;蓝色为孔隙.a.FIB-SEM三维切片成像示意图;b.三维体渲染图像;c.按灰度进行物质相划分;d.有机质与孔隙空间分布

      Fig.  3.  Three-dimensional reconstruction diagram of shale organic pore

      图  4  鄂尔多斯盆地环317井延长组含油页岩残留油分布图像

      a.残留油二维大面积分布识别(1.524 mm×1.016 mm);b.选区内残留油高分辨三维分布;c.残留油在有机质网络中的空间分布

      Fig.  4.  Residual oil distribution image of shale in Yanchang Formation in Huan 317 well in Ordos basin

    • [1] Fang, S.X., Hou, F.H., 1998.Reservoir Geology of Oil and Gas Reservoir.University of Petroleum Press, Dongying, 115-262 (in Chinese). https://www.osti.gov/biblio/5378246
      [2] Hou, J., Li, Z.Q., Zhang, S.K., et al., 2008.Experimental and Simulation Study on the Construction of Rock Three-Dimensional Network Model.Science in China (Series G), 38(11):1563-1575 (in Chinese). doi: 10.1061/%28ASCE%29HY.1943-7900.0001238
      [3] Huang, C.Q., Zhang, J.G., Ma, R., 2013.Analysis on Pore Structure Characteristics and Connectivity of Mud Rocks.Ground Water, 35(6):223-225 (in Chinese). http://minersoc.org/pages/Archive-CM/Volume_29/29-4-451.pdf
      [4] Jin, X., Meng, D., Liu, X., et al., 2016a.Understanding the Interfacial Wettability of Reservoir Rock at Nanoscale.Journal of Nanoscience and Nanotechnology, 16(9):9779-9783. https://doi.org/10.1166/jnn.2016.13118
      [5] Jin, X., Wang, X.Q., Sun, L., et al., 2016b.Study of Petrophysical Properties Using Nano-Scale Resolution Electron Microscopy and 3D to 2D Upscaling.Journal of Nanoscience and Nanotechnology, 16(9):9690-9698. https://doi.org/10.1166/jnn.2016.13116
      [6] Liu, J.J., Dai, L.Q., Li, S.T., 2005.Numerical Simulation of Microcosmic Flow in Porous Media.Journal of Liaoning Technical University, 24(5):680-682 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTotal-YTLX200905055.htm
      [7] Liu, X.F., Zhang, W.W., Sun, J.M., 2013.Methods of Constructing 3-D Digital Cores:A Review.Progress in Geophysics, 28(6):3066-3072 (in Chinese with English abstract). doi: 10.1177/1534484313497947?journalCode=hrda
      [8] Pan, B., Wang, B., 2017.Research Progress in Digital Volume Correlation Method.Chinese Science Bulletin, 62(16):1671-1681 (in Chinese with English abstract). doi: 10.1360/N972016-00606
      [9] Peng, R.D., Yang, Y.C., Ju, Y., et al., 2011.Computation of Fractal Dimension of Rock Pores Based on Gray CT Images.Chinese Science Bulletin, 56(26):2256-2266 (in Chinese). https://www.researchgate.net/profile/Yang_Ju/publication/225891335_Computation_of_fractal_dimension_of_rock_pores_based_on_gray_CT_images/links/02e7e52dcdbc1147fe000000.pdf?disableCoverPage=true
      [10] Qiu, Y.N., Xue, S.H., 1994.Evaluation Technology of Oil and Gas Reservoir.Petroleum Industry Press, Beijing, 71-153 (in Chinese). https://www.onepetro.org/conference-paper/SPWLA-2016-NN
      [11] Song, W.H., Yao, J., Christoph, A., et al., 2017.Pore Scale Rock Typing and Upscaling.Chinese Science Bulletin, 62(16):1774-1787 (in Chinese with English abstract). doi: 10.1360/N972016-00458
      [12] Sun, J.M, ,Jiang, L.M., Liu, X.F., et al., 2012.Log Application and Prospect of Digital Core Technology.Well Logging Technology, 36(1):1-7 (in Chinese with English abstract). http://ro.uow.edu.au/cgi/viewcontent.cgi?article=1413&context=asdpapers
      [13] Sun, L., Wang, X.Q., Jin, X., et al., 2016.Three Dimensional Characterization and Quantitative Connectivity Analysis of Micro/Nano Pore Space.Petroleum Exploration and Development, 43(3):490-498 (in Chinese with English abstract). doi: 10.1016/S1876-3804(16)30057-X
      [14] Sun, L., Zou, C.N., Liu, X.L., et al., 2014.A Static Resistance Model and the Discontinuous Pattern of Hydrocarbon Accumulation in Tight Oil Reservoirs.Petroleum Science, 11(4):469-480. https://doi.org/10.1007/s12182-014-0363-0
      [15] Tao, J., Yao, J., Zhao, X.C., 2006.Data Visualization of Digital Core at Pore Level by Using IRIS Explorer.Journal of Oil and Gas Technology, 28(5):51-53 (in Chinese with English abstract).
      [16] Vogel, H., 1997.Morphological Determination of Pore Connectivity as a Function of Pore Size Using Serial Sections.European Journal of Soil Science, 48(3):365-377. doi: 10.1046/j.1365-2389.1997.00096.x
      [17] Wang, X.Q., Sun, L., Zhu, R.K., et al., 2015a.Application of Charging Effects in Evaluating Storage Space of Tight Reservoirs:A Case Study from Permian Lucaogou Formation in Jimusar Sag, Junggar Basin, NW China.Petroleum Exploration and Development, 42(4):472-480 (in Chinese with English abstract). https://www.sciencedirect.com/science/article/pii/S1876380415300446
      [18] Wang, X.Q., Zhai, Z.Q., Jin, X., et al., 2015b.Progress in Adsorption and Diffusion of Shale Gas.CIESC Journal, 66(8):2838-2845 (in Chinese with English abstract). http://cat.inist.fr/?aModele=afficheN&cpsidt=14088811
      [19] Wang, X.Q., Zhai, Z.Q., Jin, X., et al., 2016.Molecular Simulation of CO2/CH4 Competitive Adsorption in Organic Matter Pores in Shale under Geological Conditions.Petroleum Exploration and Development, 43(5):772-779 (in Chinese with English abstract). http://www.ncbi.nlm.nih.gov/pubmed/22747244
      [20] Wu, S.H., Xiong, Q.H., 1998.Hydrocarbon Reservoir Geology.Petroleum Industry Press, Beijing, 113-122 (in Chinese). https://www.deepdyve.com/lp/elsevier/correlation-between-hydrocarbon-reservoir-properties-and-induced-qVmG4Wee7S
      [21] Wu, S.T., Zou, C.N., Zhu, R.K., et al., 2015.Reservoir Quality Characterization of Upper Triassic Chang 7 Shale in Ordos Basin.Earth Science, 40(11):1810-1823 (in Chinese with English abstract). https://www.onepetro.org/download/conference-paper/SPE-177012-MS?id=conference-paper%2FSPE-177012-MS
      [22] Xi, K.L., Cao, Y.C., Zhu, R.K., et al., 2015.Rock Types and Characteristics of Tight Oil Reservoir in Permian Lucaogou Formation, Jimsar Sag.Acta Petrolei Sinica, 36(12):1495-1507 (in Chinese with English abstract). http://www.iosrjournals.org/iosr-jagg/papers/vol4-issue3/Version-2/B0403021114.pdf
      [23] Xie, R.H., Xiao, L.Z., Wang, Z.D., et al., 2008.Factors Influencing Porosity of Nuclear Magnetic Resonance Logging in Complex Fluid Reservoirs.Science China Earth Sciences, 38(Suppl.):191-196 (in Chinese). http://en.cnki.com.cn/Article_en/CJFDTOTAL-GXDX201203025.htm
      [24] Xiong, S.C., Chu, S.S., Pi, S.H., et al., 2017.Micro Pore Characteristics and Recoverability of Tight Oil Reservoirs.Earth Science, 42(8):1379-1385 (in Chinese with English abstract).
      [25] Xu, P., Li, C.H., Liu, H.C., et al., 2017.Fractal Features of the Effective Gas Transport Coefficient for Multiscale Porous Media.Earth Science, 42(8):1373-1378 (in Chinese with English abstract).
      [26] Yang, B.H., Wu, A.X., Liu, J.Z., 2013.Analysis of Pore Connectivity of Granular Ore Media after Heap Leaching Based on Digital Image Processing.Mining and Metallurgical Engineering, 33(1):18-21 (in Chinese with English abstract). https://www.researchgate.net/publication/304822241_Analysis_of_pore_connectivity_of_granular_ore_media_after_heap_leaching_based_on_digital_image_processing
      [27] Yang, Y.F., Wang, C.C., Yao, J., et al., 2016.A New Method for Microscopic Pore Structure Analysis in Shale Matrix.Earth Science, 41(6):1067-1073 (in Chinese with English abstract). http://repository.icse.utah.edu/dspace/bitstream/123456789/10968/1/Wcipt6_lin_etal-2.pdf
      [28] Yang, Z.M., Zhang, Y.P., Li, H.B., et al., 2017.Application Basis of Nuclear Magnetic Resonance Technology in the Unconventional Reservoirs.Earth Science, 42(8):1333-1339 (in Chinese with English abstract). http://petrowiki.org/NMR_applications
      [29] Yao, J., Zhao, X.C., 2010.Digital Core and Pore Seepage Simulation Theory.Petroleum Industry Press, Beijing, 1-80 (in Chinese). https://core.ac.uk/download/pdf/81278101.pdf
      [30] Zhai, Z., Wang, X., Jin, X., et al., 2014.Adsorption and Diffusion of Shale Gas Reservoirs in Modeled Clay Minerals at Different Geological Depths.Energy & Fuels, 28(12):7467-7473. https://doi.org/10.1021/ef5023434
      [31] Zhu, R.K., Bai, B., Cui, J.W., et al., 2013.Research Advances of Microstructure in Unconventional Tight Oil and Gas Reservoirs.Journal of Palaeogeography, 15(5):615-623 (in Chinese with English abstract). doi: 10.1002/2014EF000265
      [32] Zhu, R.K., Wu, S.T., Su, L., et al., 2016.Problems and Future Works of Porous Texture Characterization of Tight Reservoirs in China.Acta Petrolei Sinica, 37(11):1323-1336 (in Chinese with English abstract). https://www.deepdyve.com/lp/elsevier/the-characterization-and-quantitative-analysis-of-nanopores-in-nTq2O0R0fX
      [33] Zou, C.N., 2014.Unconventional Petroleum Geology.Geological Publishing House, Beijing, 5 (in Chinese). http://www.ga.gov.au/scientific-topics/energy/resources/petroleum-resources/unconventional-resources
      [34] Zou, C.N., Xu, J., Zhu, R.K., et al., 2015.Do Shale Pore Throats have a Threshold Diameter for Oil Storage? Scientific Reports, (5):13619. https://doi.org/10.1038/srep13619
      [35] Zou, C.N., Yang, Z., Tao, S.Z., et al., 2012a.Nano-Hydrocarbon and the Accumulation in Coexisting Source and Reservoir.Petroleum Exploration and Development, 39(1):13-26 (in Chinese with English abstract). https://www.sciencedirect.com/science/article/pii/S1876380412600111
      [36] Zou, C.N., Zhu, R.K., Wu, S.T., et al., 2012b.Types, Characteristics, Genesis and Prospects of Conventional and Unconventional Hydrocarbon Accumulations:Taking Tight Oil and Tight Gas in China as an Instance.Acta Petrolei Sinica, 33(2):173-187 (in Chinese with English abstract). doi: 10.1038/aps.2011.203
      [37] Zou, C.N., Zhu, R.K., Bai, B., et al., 2011.First Discovery of Nano-Pore Throat in Oil and Gas Reservoir in China and Its Scientific Value.Acta Petrologica Sinica, 27(6):1857-1864 (in Chinese with English abstract). https://www.researchgate.net/publication/282738284_First_discovery_of_nano-pore_throat_in_oil_and_gas_reservoir_in_China_and_its_scientific_value
      [38] 方少仙, 侯方浩, 1998.石油天然气储层地质学.东营:石油大学出版社, 115-262.
      [39] 侯健, 李振泉, 张顺康, 等, 2008.岩石三维网络模型构建的实验和模拟研究等.中国科学(G辑), 38(11):1563-1575. http://mall.cnki.net/magazine/Article/JGXK200811017.htm
      [40] 黄传卿, 张金功, 马睿, 2013.泥质岩孔隙结构特征与连通性分析.地下水, 35(6):223-225. http://www.cnki.com.cn/Article/CJFDTotal-HHGZ201510002.htm
      [41] 刘建军, 代立强, 李树铁, 2005.孔隙介质渗流微观数值模拟.辽宁工程技术大学学报, 24(5):680-682. http://cdmd.cnki.com.cn/Article/CDMD-10496-2009151063.htm
      [42] 刘学锋, 张伟伟, 孙建孟, 2013.三维数字岩心建模方法综述.地球物理学进展, 28(6):3066-3072. doi: 10.6038/pg20130630
      [43] 潘兵, 王博, 2017.数字体图像相关方法研究进展.科学通报, 62(16):1671-1681. http://www.cnki.com.cn/Article/CJFDTOTAL-SYLX201002001.htm
      [44] 彭瑞东, 杨彦从, 鞠杨, 等, 2011.基于灰度CT图像的岩石孔隙分形维数计算.科学通报, 56(26):2256-2266. http://www.oalib.com/paper/4274638
      [45] 裘亦楠, 薛叔浩, 1994.油气储层评价技术.北京:石油工业出版社, 71-153.
      [46] 宋文辉, 姚军, Christoph, A., 等, 2017.孔隙尺度下岩性分类及参数粗化.科学通报, 62(16):1774-1787. http://mall.cnki.net/magazine/Article/KTDQ201005012.htm
      [47] 孙建孟, 姜黎明, 刘学锋, 等, 2012.数字岩心技术测井应用与展望.测井技术, 36(1):1-7. http://mall.cnki.net/magazine/Article/CJJS201202010.htm
      [48] 孙亮, 王晓琦, 金旭, 等, 2016.微纳米孔隙空间三维表征与连通性定量分析.石油勘探与开发, 43(3):490-498. http://www.doc88.com/p-5817657714385.html
      [49] 陶军, 姚军, 赵秀才, 2006.利用IRIS Explorer数据可视化软件进行孔隙级数字岩心可视化研究.石油天然气学报, 28(5):51-53. http://mall.cnki.net/magazine/Article/JHSX200605014.htm
      [50] 王晓琦, 孙亮, 朱如凯, 等, 2015a.利用电子束荷电效应评价致密储集层储集空间——以准噶尔盆地吉木萨尔凹陷二叠系芦草沟组为例.石油勘探与开发, 42(4):472-480. http://mall.cnki.net/magazine/Article/SKYK201504009.htm
      [51] 王晓琦, 翟增强, 金旭, 等, 2015b.页岩气及其吸附与扩散的研究进展.化工学报, 66(8):2838-2845. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=hgxb201508012
      [52] 王晓琦, 翟增强, 金旭, 等, 2016.地层条件下页岩有机质孔隙内CO2与CH4竞争吸附的分子模拟.石油勘探与开发, 43(5):772-779. http://www.adearth.ac.cn/article/2014/1001-8166-29-4-0492.html
      [53] 吴胜和, 熊琦华, 1998.油气储层地质学.北京:石油工业出版社, 113-122.
      [54] 吴松涛, 邹才能, 朱如凯, 等, 2015.鄂尔多斯盆地上三叠统长7段泥页岩储集性能.地球科学, 40(11):1810-1823. http://www.earth-science.net/WebPage/Article.aspx?id=3188
      [55] 葸克来, 操应长, 朱如凯, 等, 2015.吉木萨尔凹陷二叠系芦草沟组致密油储层岩石类型及特征.石油学报, 36(12):1495-1507. doi: 10.7623/syxb201512004
      [56] 谢然红, 肖立志, 王忠东, 等, 2008.复杂流体储层核磁共振测井孔隙度影响因素.中国科学:地球科学, 38(增刊):191-196. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=hggl201516137
      [57] 熊生春, 储莎莎, 皮淑慧, 等, 2017.致密油藏储层微观孔隙特征与可动用性评价.地球科学, 42(8):1379-1385. http://www.earth-science.net/WebPage/Article.aspx?id=3619
      [58] 徐鹏, 李翠红, 柳海成, 等, 2017.多尺度多孔介质有效气体输运参数的分形特征.地球科学, 42(8):1373-1378. http://www.earth-science.net/WebPage/Article.aspx?id=3620
      [59] 杨保华, 吴爱祥, 刘金枝, 2013.基于数字图像处理的堆浸散体孔隙连通性分析.矿冶工程, 33(1):18-21. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=kygc201301005
      [60] 杨永飞, 王晨晨, 姚军, 等, 2016.页岩基质微观孔隙结构分析新方法.地球科学, 41(6):1067-1073. doi: 10.11764/j.issn.1672-1926.2016.06.1067
      [61] 杨正明, 张亚蒲, 李海波, 等, 2017.核磁共振技术在非常规油气藏的应用基础.地球科学, 42(8):1333-1339. http://www.earth-science.net/WebPage/Article.aspx?id=3626
      [62] 姚军, 赵秀才, 2010.数字岩心及孔隙级渗流模拟理论.北京:石油工业出版社, 1-80.
      [63] 朱如凯, 白斌, 崔景伟, 等, 2013.非常规油气致密储集层微观结构研究进展.古地理学报, 15(5):615-623. doi: 10.7605/gdlxb.2013.05.049
      [64] 朱如凯, 吴松涛, 苏玲, 等, 2016.中国致密储层孔隙结构表征需注意的问题及未来发展方向.石油学报, 37(11):1323-1336. doi: 10.7623/syxb201611001
      [65] 邹才能, 2014.非常规油气地质学.北京:地质出版社, 5.
      [66] 邹才能, 杨智, 陶士振, 等, 2012a.纳米油气与源储共生型油气聚集.石油勘探与开发, 39(1):13-26. http://www.cnki.com.cn/Article/CJFDTOTAL-SKYK201201003.htm
      [67] 邹才能, 朱如凯, 吴松涛, 等, 2012b.常规与非常规油气聚集类型、特征、机理及展望——以中国致密油和致密气为例.石油学报, 33(2):173-187. http://mall.cnki.net/magazine/Article/SYXB201202002.htm
      [68] 邹才能, 朱如凯, 白斌, 等, 2011.中国油气储层中纳米孔喉首次发现及其科学价值.岩石学报, 27(6):1857-1864. http://www.cnki.com.cn/Article/CJFDTOTAL-YSXB201106024.htm
    • 加载中
    图(4)
    计量
    • 文章访问数:  4253
    • HTML全文浏览量:  1749
    • PDF下载量:  41
    • 被引次数: 0
    出版历程
    • 收稿日期:  2017-07-18
    • 刊出日期:  2018-05-15

    目录

      /

      返回文章
      返回