Experimental Studies on Crystal Growth of Anatase under Hydrothermal Conditions
-
摘要: 为了解金属离子生长成为热液矿石矿物的过程和机理,使用氟钛酸钾稀溶液在100 MPa和200~400℃条件下开展了一系列等温不等时和等时变温实验.结果显示该热液条件下形成了不同形貌的锐钛矿.随着反应时间和温度的增加,锐钛矿由几十纳米生长至十几微米;10 h以内的晶体生长速度远高于10 h以后,相对高温下的晶体生长速度则高于低温,表明锐钛矿的热液生长与温度、过饱和程度密切相关.综合来看,粒子成核生长、定向附着和奥氏熟化先后控制了热液锐钛矿的生长,而金属在流体中的过饱和程度和溶解-沉淀过程则决定了其生长速度.因而锐钛矿的形态特征可用于指示其形成的温度、世代关系甚至含氟流体的演化历史.Abstract: How metal mineral grows in hydrothermal fluids from a metal ion or metallic compound to the macrocrystals is one of the most fundamental problems in mineralogy and metallogeny. In this study, a series of non-isothermal and non-isochronic hydrolysis experiments of potassium titanium fluoride (K2TiF6) solution were investigated at temperatures from 200 to 400℃ and pressure of 100 MPa. The results show that anatases, with varied morphology, were synthetized in the hydrothermal conditions. With increasing reactive time and temperature, the anatase can grow up from dozens of nanometers to 10 micrometers or more. Remarkably, the anatases that were synthetized within 10 h or at higher temperatures exceeds those over 10 h or at lower temperatures in the rate of growth, which suggests the supersaturation level of Ti and temperature dependence on the crystal morphology, grain size and the rate of growth of the anatase. Generally speaking, classical nucleation and growth, oriented attachment, and Ostwald ripening are involved in the growth of the hydrothermal anatase, in which the supersaturation level of metal in hydrothermal fluids and dissolution-precipitation process are decisive to control the rate of anatase growth. Finally, we consider anatase as a typomorphic mineral that its morphology could be used to decipher the formation temperature, generation relationship of minerals, and even the evolution of F-bearing hydrothermal fluids.
-
Key words:
- hydrothermal /
- anatase /
- crystal growth /
- oriented attachment /
- Ostwald ripening /
- crystallography
-
表 1 锐钛矿晶体生长实验的条件和对应的产物特征
Table 1. Run conditions and product characteristics in the anatase growth experiments
序号 初始浓度(mol/L) 压力(MPa) 温度(℃) 运行时间(h) 尺寸(nm) 形貌描述 1 0.02 100 200 0.1 10~80 自形扁平十面体单晶纳米颗、他形-半自形纳米颗 2 0.02 100 200 0.1 15~80 自形扁平十面体单晶纳米颗、他形-半自形纳米颗 3 0.02 100 200 3 30~200 自形截头锥形十面体单晶纳米颗、他形-半自形纳米颗 4 0.02 100 200 3 20~180 自形截头锥形十面体单晶纳米颗、他形-半自形纳米颗 5 0.02 100 200 10 40~500 他形-半自形短柱状纳米晶、不定形纳米颗 6 0.02 100 200 52 60~600 他形-半自形短柱状纳米晶、不定形纳米颗 7 0.04 100 300 12 100~500 自形-半自形多面锥体单晶纳米颗、不定形纳米颗 8 0.04 100 300 24 135~650 自形-半自形多面锥体单晶纳米颗、不定形纳米颗 9 0.04 100 400 11 1 000~11 900 不完整的半自形截头锥形十面体、不定形晶体 10 0.04 100 400 24 2 000~12 100 不完整的半自形截头锥形十面体、不定形晶体 -
[1] Agangi, A., Kamenetsky, V.S., McPhie, J., 2010.The Role of Fluorine in the Concentration and Transport of Lithophile Trace Elements in Felsic Magma:Insights from the Gawler Range Volcanics, South Australia.Chemical Geology, 273(3-4):314-325. https://doi.org/10.1016/j.chemgeo.2010.03.008 [2] Baes, C.F., Mesmer, R.E., 1981.The Thermodynamics of Cation Hydrolysis.American Journal of Science, 281:935-962. doi: 10.2475/ajs.281.7.935 [3] Banerjee, A.N., 2011.The Design, Fabrication, and Photocatalytic Utility of Nanostructured Semiconductors:Focus on TiO2-Based Nanostructures.Nanotechnology, Science and Applications, 4:35-65. https://doi.org/10.2147/NSA.S9040 [4] Barnes, H.L., 2015.Hydrothermal Processes.Geochemical Perspectives, 4(1):1-93. https://doi.org/10.7185/geochempersp.4.1 [5] Byrappa, K., 2010. Hydrothermal Growth of Polyscale Crystals. In: Dhanaraj, G., Byrappa, K., Prasad, V., et al., eds., Springer Handbook of Crystal Growth, Berlin, 599-653. [6] Collins, W.J., Beams, S.D., White, A.J.R., et al., 1982.Nature and Origin of A-Type Granites with Particular Reference to South-Eastern Australia.Contributions to Mineralogy and Petrology, 80(2):189-200. doi: 10.1007/BF00374895 [7] Ding, X., Hu, Y.H., Zhang, H., et al., 2013.Major Nb/Ta Fractionation Recorded in Garnet Amphibolite Facies Metagabbro.Journal of Geology, 121(3):255-274. https://doi.org/10.1086/669978 [8] Ding, X., Lundstrom, C., Huang, F., et al., 2009.Nature and Experimental Constraints on Formation of the Continental Crust Based on Niobium-Tantalum Fractionation.International Geology Review, 51(6):473-501. https://doi.org/10.1080/00206810902759749 [9] Giere, R., 1990.Hydrothermal Mobility of Ti, Zr and REE:Examples from the Bergell and Adamello Contact Aureoles (Italy).Terra Nova, 2:60-67. doi: 10.1111/ter.1990.2.issue-1 [10] Grzybkowski, W., 2006.Nature and Properties of Metal Cations in Aqueous Solutions.Polish Journal of Environmental Studies, 15(4):655-663. http://www.sonicator.com/literature/manuals/nano/S4000_S3000/Stability%20of%20metal%20oxide%20nano%20in%20aqueous%20solutions.pdf [11] Hanson, S.L., Simmons, W.B., Falster, A.U., 1998.Nb-Ta-Ti Oxides in Granitic Pegmatites from the Topsham Pegmatite District, Southern Maine.The Canadian Mineralogist, 36(2):601-608. http://cat.inist.fr/?aModele=afficheN&cpsidt=10553339 [12] He, J.J., Ding, X., Wang, Y.R., et al., 2015a.The Effect of Temperature and Concentration on Hydrolysis of Fluorine-Rich Titanium Complexes in Hydrothermal Fluids:Constraints on Titanium Mobility in Deep Geological Processes.Acta Petrologica Sinica, 31(3):802-810 (in Chinese with English abstract). https://www.researchgate.net/publication/281728679_The_effect_of_temperature_and_concentration_on_hydrolysis_of_fluorine-rich_titanium_complexes_in_hydrothermal_fluids_Constraints_on_titanium_mobility_in_deep_geological_processes [13] He, J.J., Ding, X., Wang, Y.R., et al., 2015b.The Effects of Precipitation-Aging-Re-Dissolutin and Pressure on Hydrolysis of Fluorine-Rich Titanium Complexes in Hydrothermal Fluids and Its Geological Implications.Acta Petrologica Sinica, 31(7):1870-1878 (in Chinese with English abstract). https://www.researchgate.net/publication/305535899_The_effects_of_precipitation-aging-re-dissolution_and_pressure_on_hydrolysis_of_fluorine-rich_titanium_complexes_in_hydrothermal_fluids_and_its_geological_implications [14] Helgeson, H.C., 1992.Effects of Complex Formation in Flowing Fluids on the Hydrothermal Solubilities of Minerals as a Function of Fluid Pressure and Temperature in the Critical and Supercritical Regions of the System H2O.Geochimica et Cosmochimica Acta, 56(8):3191-3207. https://doi.org/10.1016/0016-7037(92)90297-V [15] Huang, F., Zhang, H.Z., Banfield, J.F., 2003.Two-Stage Crystal-Growth Kinetics Observed during Hydrothermal Coarsening of Nanocrystalline ZnS.Nano Letters, 3(3):373-378. https://doi.org/10.1021/nl025836 [16] Huang, W., Tao, C.H., Li, J., et al., 2016.Osmium Isotopic Compositions and Osmium Distribution in the Mid-Ocean Ridge Hydrothermal System.Earth Science, 41(3):441-451 (in Chinese with English abstract). https://www.deepdyve.com/lp/elsevier/osmium-isotope-distribution-within-the-palaeozoic-alexandrinka-fsBulQwwSS [17] Jiang, N., Sun, S.H., Chu, X.L., et al., 2003.Mobilization and Enrichment of High-Field Strength Elements during Late-and Post-Magmatic Processes in the Shuiquangou Syenitic Complex, Northern China.Chemical Geology, 200(1-2):117-128. https://doi.org/10.1016/S0009-2541(03)00162-1 [18] Kinsinger, N.M., Wong, A., Li, D.S., et al., 2010.Nucleation and Crystal Growth of Nanocrystalline Anatase and Rutile Phase TiO2 from a Water-Soluble Precursor.Crystal Growth Design, 10(12):5254-5261. https://doi.org/10.1021/cg101105t [19] Kostov, I., 1973.Zircon Morphology as a Crystallogenetic Indicator.Crystal Research & Technology, 8(1-3):11-19. https://doi.org/10.1002/crat.19730080103 [20] Lee, B.G., Choi, J.W., Lee, S.E., et al., 2009.Formation Behavior of Anodic TiO2 Nanotubes in Fluoride Containing Electrolytes.Transactions of Nonferrous Metals Society of China, 19(4):842-845. https://doi.org/10.1016/S1003-6326(08)60361-1 [21] Liu, G., Yu, J.C., Lu, G.Q., et al., 2011.Crystal Facet Engineering of Semiconductor Photocatalysts:Motivations, Advances and Unique Properties.Chemical Communications, 47:6763-6783. https://doi.org/10.1039/c1cc10665a [22] Matthews, A., 1976.The Crystallization of Anatase and Rutile from Amorphous Titanium Dioxide under Hydrothermal Conditions.American Mineralogist, 61:419-424. http://www.minsocam.org/ammin/AM61/AM61_419.pdf [23] Miao, Y.G., Gao, J.C., 2014.Synthesis of {010}-Faceted Anatase TiO2 Nanocuboids via Hydrothermal Route and Its Photocatalytic Activity.Materials Review, 28(24):9-23(in Chinese with English abstract). [24] Murowchik, J.B., Barnes, H.L., 1987.Effects of Temperature and Degree of Supersaturation on Pyrite Morphology.American Mineralogist, 72:1241-1250. https://www.researchgate.net/profile/James_Murowchick/publication/254257993_Effects_of_temperature_and_supersaturation_on_pyrite_morphology/links/5410ada60cf2f2b29a4113c1.pdf?origin=publication_list [25] Penn, R.L., Banfield, J.F., 1998.Imperfect Oriented Attachment:Dislocation Generation in Defect-Free Nanocrystals.Science, 281:969-971. doi: 10.1126/science.281.5379.969 [26] Penn, R.L., Banfield, J.F., 1999.Morphology Development and Crystal Growth in Nanocrystalline Aggregates under Hydrothermal Conditions:Insights from Titania.Geochimica et Cosmochimica Acta, 63(10):1549-1557. https://doi.org/10.1016/S0016-7037(99)00037-X [27] Rapp, J.F., Klemme, S., Butler, I.B., et al., 2010.Extremely High Solubility of Rutile in Chloride and Fluoride-Bearing Metamorphic Fluids:An Experimental Investigation.Geology, 38(4):323-326. https://doi.org/10.1130/G30753.1 [28] van Baalen, M.R., 1993.Titanium Mobility in Metamorphic Systems:A Review.Chemical Geology, 110(1-3):233-249. https://doi.org/10.1016/0009-2541(93)90256-I [29] Wang, F.D., Richards, V.N., Shields, S.P., et al., 2014.Kinetics and Mechanisms of Aggregative Nanocrystal Growth.Chemistry of Materials, 26(1):5-21. https://doi.org/10.1021/cm402139r [30] Wang, J., Sun, F.Y., Yu, L., et al., 2017.Fluid Inclusions and H-O-S-Pb Isotope Systematics of the Galonggema Cu Deposit in Yushu, Qinghai Province, China.Earth Science, 42(6):941-956 (in Chinese with English abstract). https://www.sciencedirect.com/science/article/pii/S0169136816303067 [31] Wang, X., Gao, J., He, S., et al., 2017.Fluid Inclusion and Geochemistry Studies of Calcite Veins in Shizhu Synclinorium, Central China:Record of Origin of Fluids and Diagenetic Conditions.Journal of Earth Science, 28(2):315-332. https://doi.org/10.1007/s12583-016-0921-7 [32] Wang, X., Wu, C.S., 1999.Quantitative Study on Zircon Morphology:Discussion on Petrogenesis of the Fuzhou Granitic Complex.Acta Petrologica Sinica, 15(2):247-254 (in Chinese with English abstract). https://www.researchgate.net/publication/279928705_Quantitative_study_on_zircon_morphology_Discussion_on_petrogenesis_of_the_Fuzhou_granitic_complex [33] Wang, Y., Zhang, H., Han, Y., et al., 2011.A Selective Etching Phenomenon on {010} Faceted Anatase Titanium Dioxide Single Crystal Surfaces by Hydrofluoric Acid.Chemical Communications, 47(10):2829-2831. https://doi.org/10.1039/C0CC04848H [34] Wu, Q.P., Li, D.Z., Hou, Y.D., et al., 2007.Study of Relationship between Surface Transient Photoconductivity and Liquid-Phase Photocatalytical Activity of Titanium Dioxide.Materials Chemistry and Physics, 102(1):53-59. https://doi.org/10.1016/j.matchemphys.2006.11.008 [35] Xian, H.Y., Zhu, J.X., Tang, H.M., et al., 2016.Aggregative Growth of Quasi-Octahedral Iron Pyrite Mesocrystals in Polyol Solution through Oriented Attachment.Cryst.Eng.Comm., 18:8823-8828. https://doi.org/10.1039/C6CE01692H [36] Yang, X.H., Yang, H.G., Li, C., 2011.Controllable Nanocarving of Anatase TiO2 Single Crystals with Reactive {001} Facets.Chemistry, 17(24):6615-6619. https://doi.org/10.1002/chem.201100134 [37] Zhao, Y.M., Li, D.X., Han, J.Y., et al., 2008.Mineralogical Characteristics of Anatase, Rutile and Ilmenite in Yangtizishan-Moshishan Titanium Ore Deposit, Inner Mongolia.Mineral Deposits, 27(4):466-473 (in Chinese with English abstract). https://www.deepdyve.com/lp/wiley/geology-and-geochemistry-of-the-yangtizishan-moshishan-metamorphosed-xw6vhkMuYZ [38] 何俊杰, 丁兴, 王玉荣, 等, 2015a.温度、浓度对流体中氟钛络合物水解的影响:对深部地质过程中钛元素活动的制约.岩石学报, 31(3):802-810. http://www.ysxb.ac.cn/ysxb/ch/reader/download_pdf.aspx?file_no=20150314&year_id=2015&quarter_id=3&falg=1 [39] 何俊杰, 丁兴, 王玉荣, 等, 2015b.沉淀-陈化-返溶作用和压力对热液中氟钛络合物高温水解的影响及地质意义.岩石学报, 31(7):1870-1878. https://www.researchgate.net/profile/Xing_Ding2/publication/282791783_The_effects_of_precipitation-aging-re-dissolution_and_pressure_on_hydrolysis_of_fluorine-rich_titanium_complexes_in_hydrothermal_fluids_and_its_geological_implications/links/5683348e08ae1e63f1f01d5b.pdf?origin=publication_list [40] 黄威, 陶春辉, 李军, 等, 2016.洋中脊热液系统中的锇及其同位素.地球科学, 41(3):441-451. http://www.earth-science.net/WebPage/Article.aspx?id=3262 [41] 苗义高, 高家诚, 2014.具有{010}晶面的锐钛矿TiO2纳米柱状晶的水热合成及光催化性能的研究.材料导报, 28(24):9-23. https://www.wenkuxiazai.com/doc/b9815c26453610661ed9f4a9-2.html [42] 王键, 孙丰月, 禹禄, 等, 2017.青海玉树尕龙格玛VMS型矿床流体包裹体及H-O-S-Pb同位素特征.地球科学, 42(6):941-956. http://www.earth-science.net/WebPage/Article.aspx?id=3589 [43] 汪相, 吴楚霜, 1999.锆石形态的定量研究:福州花岗质复式岩体的成岩机制.岩石学报, 15(2):247-254. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=ysxb98199902010 [44] 赵一鸣, 李大新, 韩景仪, 等, 2008.内蒙古羊蹄子山-磨石山钛矿床锐钛矿、金红石和钛铁矿的矿物学特征.矿床地质, 27(4):466-473. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=kcdz200804004