• 中国出版政府奖提名奖

    中国百强科技报刊

    湖北出版政府奖

    中国高校百佳科技期刊

    中国最美期刊

    留言板

    尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

    姓名
    邮箱
    手机号码
    标题
    留言内容
    验证码

    煤储层纳米孔隙结构及其瓦斯扩散特征

    聂百胜 伦嘉云 王科迪 申杰升 琚宜文 张军 陆卫东

    聂百胜, 伦嘉云, 王科迪, 申杰升, 琚宜文, 张军, 陆卫东, 2018. 煤储层纳米孔隙结构及其瓦斯扩散特征. 地球科学, 43(5): 1755-1762. doi: 10.3799/dqkx.2018.427
    引用本文: 聂百胜, 伦嘉云, 王科迪, 申杰升, 琚宜文, 张军, 陆卫东, 2018. 煤储层纳米孔隙结构及其瓦斯扩散特征. 地球科学, 43(5): 1755-1762. doi: 10.3799/dqkx.2018.427
    Nie Baisheng, Lun Jiayun, Wang Kedi, Shen Jiesheng, Ju Yiwen, Zhang Jun, Lu Weidong, 2018. Characteristics of Nanometer Pore Structure in Coal Reservoir. Earth Science, 43(5): 1755-1762. doi: 10.3799/dqkx.2018.427
    Citation: Nie Baisheng, Lun Jiayun, Wang Kedi, Shen Jiesheng, Ju Yiwen, Zhang Jun, Lu Weidong, 2018. Characteristics of Nanometer Pore Structure in Coal Reservoir. Earth Science, 43(5): 1755-1762. doi: 10.3799/dqkx.2018.427

    煤储层纳米孔隙结构及其瓦斯扩散特征

    doi: 10.3799/dqkx.2018.427
    基金项目: 

    中央高校基本科研业务费资助项目 2009KZ03

    国家自然科学基金项目 51374216

    中国科学院战略性先导科技专项 XDA05030100

    国家科技重大专项 2011ZX05066-003

    "十三五"国家重点研发专项 2016YFC0600708

    详细信息
      作者简介:

      聂百胜(1973-), 男, 教授, 博士生导师, 主要从事煤矿安全方面的研究工作

    • 中图分类号: P618

    Characteristics of Nanometer Pore Structure in Coal Reservoir

    • 摘要: 研究煤复杂发育的孔隙结构对揭示煤层气体赋存机理及扩散运移规律有重要意义.为了研究煤的纳米孔隙结构,利用SEM、液氮吸附、小角X射线研究了不同煤阶煤的纳米孔隙在形式和分布上的非均匀性.实验煤样煤基质中的孔呈多峰分布,且孔径范围主要集中在2~10 nm.煤样低温液氮吸附实验测得煤样的吸附量为3.676 cm3/g,煤样的比表面积为1.416 m2/g.以最可几孔径作为研究对象,在实验压力范围内,吸附压力越大,最可几孔径变大的越多;瓦斯气体在纳米级孔隙结构中的扩散模式以过渡型扩散为主,微孔更发达的煤样中,扩散更接近Knudsen型扩散,中孔更发达的煤样中,扩散更接近Fick型扩散;Knudsen数与温度呈负相关关系,温度高于250 K后,Knudsen数趋于稳定,与压强呈正相关关系,压强越大,扩散越容易.

       

    • 图  1  不同尺度孔隙的测试手段

      Fig.  1.  Researching methods for different size pores

      图  2  不同煤样的低温液氮等温吸附解吸曲线

      Fig.  2.  Adsorption/desorption isotherms of different coal samples

      图  3  煤样电镜扫描图像

      a.1#煤样;b.2#煤样;c.3#煤样;d.4#煤样;e.5#煤样

      Fig.  3.  SEM images of different coal samples

      图  4  小角X射线散射试验站简图

      Fig.  4.  The system diagram of test station

      图  5  吸附设备实物图

      Fig.  5.  The design of adsorption equipment

      图  6  大淑村煤样孔径分布

      Fig.  6.  Pore size distribution of Dashucun coal sample

      图  7  孔隙气体的扩散模式

      Fig.  7.  Diffusion model of porous gas

      图  8  不同压力、温度条件下Knudsen数随孔径变化

      Fig.  8.  The change of Knudsen number with pore diameter in different pressures and temperatures

      图  9  温度、压强对Knudsen数的影响

      Fig.  9.  Effect of temperature and pressure on Knudsen number

      表  1  实验煤样煤质分析结果

      Table  1.   Coal quality analysis data of experimental coal samples

      煤样编号 采样地点 水分含量(%) 干基挥发分(%) 干基灰分(%) 固定碳(%)
      1# 润宏3# 2.015 12.510 16.965 73.615
      2# 常村3# 0.730 14.670 6.180 78.580
      3# 东曲9# 0.460 16.450 7.900 75.310
      4# 官地3# 0.820 13.310 11.050 75.480
      5# 凤凰山9# 0.915 14.550 7.265 77.600
      下载: 导出CSV

      表  2  煤样比表面积和孔容及其比例、吸附能

      Table  2.   Specific surface area & pore volume, size distribution and adsorption energy of coal samples

      煤样
      编号
      孔容
      (mL·g-1)
      比表面积
      (m2·g-1)
      N2吸附量
      (mL·g-1)
      各孔径段孔容比(%) 各孔径段比表面积比(%) 微孔平均
      孔径(nm)
      吸附能
      (kJ/mol)
      < 10 nm 10~30 nm >30 nm < 10 nm 10~30 nm >30 nm
      1# 0.002 1.810 1.335 3.830 35.970 60.200 91.940 7.100 0.960 2.389 10.883
      2# 0.002 0.580 1.083 3.520 20.930 75.500 89.640 7.390 2.970 2.759 9.425
      3# 0.006 2.260 3.962 8.700 23.000 68.300 85.320 10.940 3.740 3.134 8.296
      4# 0.002 0.790 1.145 3.620 18.180 78.200 86.660 9.270 4.070 2.677 9.713
      5# 0.002 0.620 1.580 1.540 20.190 78.270 79.890 14.230 5.880 2.209 11.770
      下载: 导出CSV
    • [1] Alexeev, A.D., Vasilenko, T.A., Ulyanova, E.V., 1999.Closed Porosity in Possil Coals.Fuel, 78(6):635-638. doi: 10.1016/S0016-2361(98)00198-7
      [2] Chen, P., Tang, X.Y., 2001.The Research on the Adsorption of Nitrogen in Low Temperature and Micro-Pore Properties in Coal.Journal of China Coal Society, 26(5):552-556 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-MTXB200602006.htm
      [3] He, X.Q., Nie, B.S., 2001.Diffusion Mechanism of Porous Gases in Coal Seams.Journal of China University of Mining & Technology, 30(1):1-4 (in Chinese with English abstract). http://cat.inist.fr/?aModele=afficheN&cpsidt=6980085
      [4] Kang, Y.L., Huang, F.S., You, L.J., et al., 2016.Impact of Fracturing Fluid on Multiscale Mass Transport in Coalbed Methane Reservoirs.International Journal of Coal Geology, 154-155:123-135. https://www.sciencedirect.com/science/article/pii/S0166516216300015#!
      [5] Lastoskie, C., Gubbins, K.E., Quirke, N., 1993.Pore Size Heterogeneity and the Carbon Slit Pore:A Density Functional Theory Model.Langmuir, 9(10):2693-2702. doi: 10.1021/la00034a032
      [6] Li, H.Y., Ogawa, Y., Shimada, S., 2003.Mechanism of Methane Flow through Sheared Coals and Its Role on Methane Recovery.Fuel, 82(10):1271-1279. doi: 10.1016/S0016-2361(03)00020-6
      [7] Li, Z., 2013.A Program for SAXS Data Processing and Analysis.Chinese Physics C, 37(10):112-117. https://arxiv.org/pdf/1307.0358
      [8] Li, Z., Wu, Z., Mo, G., et al., 2014.Small Angle X-Ray Scattering Station at Beijing Synchrotron Radiation Facility.Instrumentation Science and Technology, 42(2):128-141. doi: 10.1080/10739149.2013.845845
      [9] Liu, Y., Wilcox, J., 2012.Molecular Simulation of CO2 Adsorption in Micro-and Mesoporous Carbons with Surface Heterogeneity.International Journal of Coal Geology, 104:83-95. doi: 10.1016/j.coal.2012.04.007
      [10] Lu, J., Shao, L.Y., Yang, M, F., et al., 2017.Depositional Model for Peat Swamp and Coal Facies Evolution Using Sedimentology, Coal Macerals, Geochemistry and Sequence Stratigraphy.Journal of Earth Science, 28(6):1163-1177. doi: 10.1007/s12583-016-0942-7
      [11] Nie, B.S., Duan, S.M., 1998.The Adsorption Essence of Gas on Coal Surface.Journal of Taiyuan University of Technology, 29(4):417-421 (in Chinese with English abstract). http://ro.uow.edu.au/cgi/viewcontent.cgi?article=2028&context=coal
      [12] Nie, B.S., Liu, X.F., Guo, J.H., et al., 2015.Effect of Moisture on Gas Desorption and Diffusion in Coal Mass.Journal of China University of Mining & Technology, 44(5):781-787 (in Chinese with English abstract). https://www.deepdyve.com/lp/elsevier/effects-of-matrix-moisture-on-gas-diffusion-and-flow-in-coal-CQjRh88kJa
      [13] Nie, B.S., Liu, X.F., Yuan, S.F., et al., 2016.Sorption Charateristics of Methane among Various Rank Coals:Impact of Moisture.Adsorption, 22(3):315-325. doi: 10.1007/s10450-016-9778-9
      [14] Wang, P.F., Jiang, Z.X., Li, Z., et al., 2017.Micro-Nano Pore Structure Characteristics in the Lower Cambrian Niutitang Shale, Northeast Chongqing.Earth Science, 42(7):1147-1156 (in Chinese with English abstract). https://doi.org/10.3799/dqkx.2017.093
      [15] Yang, Y.F., Wang, C.C., Yao, J., et al., 2016.A New Method for Microscopic Pore Structure Analysis in Shale Matrix.Earth Science, 41(6):1067-1073 (in Chinese with English abstract). https://doi.org/10.3799/dqkx.2016.088
      [16] Zhang, H., 2001.Genetical Type of Proes in Coal Reservoir and its Research Significance.Journal of China Coal Society, 26(1):40-44 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-MTXB200602006.htm
      [17] 陈萍, 唐修义, 2001.低温氮吸附法与煤中微孔隙特征的研究.煤炭学报, 26(5):552-556. http://industry.wanfangdata.com.cn/yj/Detail/Periodical?id=Periodical_mtxb200105023
      [18] 何学秋, 聂百胜, 2001.孔隙气体在煤层中扩散的机理.中国矿业大学学报, 30(1):1-4. http://www.cnki.com.cn/Article/CJFDTOTAL-ZGKD200101000.htm
      [19] 聂百胜, 段三明, 1998.煤吸附瓦斯的本质.太原理工大学学报, 29(4):417-421. http://www.cnki.com.cn/Article/CJFDTOTAL-TYGY804.026.htm
      [20] 聂百胜, 柳先锋, 郭建华, 等, 2015.水分对煤体瓦斯解吸扩散的影响.中国矿业大学学报, 44(5):781-787. https://www.researchgate.net/profile/Baisheng_Nie/publication/283765087_Effect_of_moisture_on_gas_desorption_and_diffusion_in_coal_mass/links/565edcfd08aefe619b273ffb.pdf?origin=publication_detail
      [21] 王朋飞, 姜振学, 李卓, 等, 2017.渝东北下寒武统牛蹄塘组页岩微纳米孔隙结构特征.地球科学, 42(7):1147-1156. http://www.earth-science.net/WebPage/Article.aspx?id=3603
      [22] 杨永飞, 王晨晨, 姚军, 等, 2016.页岩基质微观孔隙结构分析新方法.地球科学, 41(6):1067-1073. doi: 10.11764/j.issn.1672-1926.2016.06.1067
      [23] 张慧, 2001.煤孔隙的成因类型及其研究.煤炭学报, 26(1):40-44. http://cdmd.cnki.com.cn/Article/CDMD-10290-1013030104.htm
    • 加载中
    图(9) / 表(2)
    计量
    • 文章访问数:  5323
    • HTML全文浏览量:  1788
    • PDF下载量:  25
    • 被引次数: 0
    出版历程
    • 收稿日期:  2017-10-27
    • 刊出日期:  2018-05-15

    目录

      /

      返回文章
      返回