Nano/Micro-Scale Deformation of Clay Minerals in Seismogenic Fault Zone
-
摘要: 断层泥是发震断裂最显著的物质标志之一,它保留着许多断层活动的信息.在野外宏观调查和显微视域观察基础上,利用SEM技术,从纳微米尺度,研究发震断裂带内黏土矿物的组合形态和变形样式,并对一些问题进行深入分析和讨论.黏土矿物在断层粘滑滑移过程中,出现定向排列,在正交偏光显微镜下表现为平行排列的消光带.在SEM视域下,可以观察到片状黏土矿物的定向排列,同时可以清晰地识别多次断层粘滑滑移事件.在断层泥中发现的蠕变滑移现象,带有普遍性.在显微视域下,黏土矿物表现为波状消光带.在SEM视域下,可以观察到片状黏土矿物的褶皱变形、流动变形、绕砾滑动、撕裂变形等.鉴于在同一个视域内,可以同时观察到粘滑滑移标志和蠕变滑移标志,通过分析其先后关系,发现蠕变滑移发生于粘滑滑移之前,对应于断层的亚失稳阶段的运动.Abstract: Fault gouge is one of the most obvious material indicators in seismogenic fault zone, and it retains a wealth of information of fault activities. Based on field investigation and observation under microscope, nano/micro-scale deformation styles of clay minerals in seismogenic fault zone were analyzed in detail and discussed in this paper by use of SEM technology. The clay minerals are arranged in alignment during stick-slipping, and exhibit parallel extinction zones under orthogonal polarization microscope. In the view of SEM, the directional arrangement of flake clay minerals can be observed, and multiple stick-slipping events on the principle sliding zone can be clearly identified. Moreover, it is found that the creep-slipping phenomena in fault gouges are universal. In the microscopic view, clay minerals exhibit wavelike extinction zones. In the view of SEM, fold deformation, wavelike deformation, sliding around the gravels and entangling deformation of flake clay minerals can be observed. As stick-slipping and creep-slipping indications can be observed in the same view, and by analyzing their temporal relationship, it is found that the creep-slipping occurs before the stick-slipping and corresponds to the movement in the meta-instability stage of fault sliding.
-
Key words:
- nano/micro-scale deformation /
- clay mineral /
- seismogenic fault /
- stick-slipping /
- creep-slipping /
- earthquake /
- tectonics
-
图 1 发震断裂多期粘滑滑移的微观标志
a.实物样品照片,断层泥条带.①浅黄绿色断层泥;②浅灰绿色断层泥;③深灰绿色断层泥;④全新世松散沉积物.样品编号:XTL-F1.b.显微照片(单偏光, 30×),断层的多期活动.样品编号:XTL-F1.c.SEM照片,断层滑移面擦线.实线箭头和虚线箭头分别表示两组擦线.虚线箭头所示的擦线滑过实线箭头所示的擦线.样品编号:ZS-G3.d.SEM照片,断层滑移面擦线.实线箭头和虚线箭头分别表示两组擦线.实线箭头所示的擦线掩盖虚线箭头所示的擦线.样品编号:CY-4
Fig. 1. Micro-indications of multiple stick-slipping events of seismogenic fault
图 2 发震断裂滑动面黏土矿物定向排列
a.显微照片(正交偏光,20×),断层主滑移面和黏土矿物定向排列形成的消光条带(实线箭头).G代表断层泥,Q代表第四纪松散沉积物.样品编号:DSL-F10.b.显微照片(正交偏光,20×),第四纪松散沉积物中的断层滑动面及其附近黏土矿物定向排列形成的消光条带(实线箭头).样品编号:DSL-F1.c.SEM照片,黏土矿物的叠瓦状排列,见虚线箭头标识.实线箭头指示擦线.样品编号:ZS-G3.d.SEM照片,黏土矿物定向排列.单实线箭头指示断层剪切运动方向.样品编号:DSL-G-02
Fig. 2. Directional arrangement of flake clay minerals on the major sliding zone of seismogenic fault
图 6 发震断裂带内黏土矿物撕裂变形
a.SEM照片,黏土矿物撕裂现象.单实线箭头指示断层剪切运动方向.样品编号:CY-1.b.SEM照片,为图 6a中A区局部放大
Fig. 6. Entangling deformation of clay minerals in seismogenic fault zone
-
[1] Beeler, N.M., Tullis, T.E., Blanpied, M.L., et al., 1996.Frictional Behavior of Large Displacement Experimental Faults.Journal of Geophysical Research, 101(B4):8697-8715. doi: 10.1029/96JB00411 [2] Biegal, R.L., Sammis, C.G., 1989.The Frictional Properties of a Simulated Gouge Having a Fractal Partial Distribution.Journal of Structural Geology, 11(7):827-846. doi: 10.1016/0191-8141(89)90101-6 [3] Cashman, S.H., Baldwin, J.N., Cashman, K.V., et al., 2007.Microstructures Developed by Coseismic and Aseismic Faulting in Near-Surface Sediments, San Andreas Fault, California.Geology, 35:611-614. doi: 10.1130/G23545A.1 [4] Chao, H.T., 1998.Microstructural Indicators of Active Faults and Their Applications to Determine the Non-Visible Faults in Unconsolidated Quaternary Sediments (Dissertation).Institute of Geology, China Earthquake Administration, Beijing, 1-141 (in Chinese with English abstract). http://www.sciencedirect.com/science/article/pii/B9780444538024000889 [5] Chao, H.T., Cui, Z.W., Li, J.L., 1992.The N-W Trending Faults in Middle Part of Shandong Province and Their Activities in the Late Quaternary.Journal of Seismology, (2):1-9 (in Chinese with English abstract). https://www.deepdyve.com/lp/elsevier/late-mesozoic-early-cenozoic-deformation-history-of-the-yuanma-basin-HHtrsa2C31 [6] Chao, H.T., Deng, Q.D., Li, J.L., et al., 2001a.Types of Gouge Deformation in the Tanlu Fault Zone and the Adjacent Active Fault Zones.Seismological Press, Beijing, 82-91 (in Chinese with English abstract). http://cat.inist.fr/?aModele=afficheN&cpsidt=1346733 [7] Chao, H.T., Diao, S.Z., Wang, Z.C., 2012.Textual Research of the Qi-Chu Earthquake of 179 BC and Discussion on Its Seismogenic Structure.Seismology and Geology, 34(2):211-227 (in Chinese with English abstract). https://www.researchgate.net/publication/286746868_Textual_research_of_the_Qi-Chu_earthquake_of_179_BC_and_discussion_on_its_seismogenic_structure [8] Chao, H.T., Li, J.L., Cui, Z.W., et al., 1994.Geometric Structure and Segmentation of the Holocene Fault in the Central Section of the Tanlu Fault Zone.Seismological Press, Beijing, 180-190 (in Chinese with English abstract). http://cat.inist.fr/?aModele=afficheN&cpsidt=3043954 [9] Chao, H.T., Li, J.L., Cui, Z.W., et al., 1997.Discussion on Several Problems Related to the Seismic Fault of the 1668 Tancheng Earthquake (M=8(1)/2).North China Earthquake Sciences, 15(4):18-25 (in Chinese with English abstract). [10] Chao, H.T., Sun, Y., Wang, Z.C., et al., 2009.One Case of Nano-Scale Kinematic Observation from Seismogenic Fault.Progress in Natural Science, 19(10):1076-1081 (in Chinese). doi: 10.1029/2009GC002543 [11] Chao, H.T., Sun, Y., Wang, Z.C., et al., 2016.Observations and Analyses of Nano/Micro-Structures of Coseismic Stick Slipping and Aseismic Creep Slipping Faults.Bulletin of Mineralogy, Petrology and Geochemistry, 35(1):37-42 (in Chinese with English abstract). https://www.researchgate.net/publication/318271616_Implication_of_Creep_Slipping_Before_Main_Shock_for_Earthquake_Prediction_Evidence_from_NanoMicro-Scale_Structure_of_Gouges [12] Chao, H.T., Wang, Z.C., Wang, L., et al., 2017.Implication of Creep Slipping before Main Shock for Earthquake Prediction:Evidence from Nano/Micro-Scale Structure of Gouges.Journal of Nanoscience and Nanotechnology, 17(9):6852-6858. doi: 10.1166/jnn.2017.14404 [13] Chao, H.T., Yu, S.E., Li, J.L., et al., 2001b.Research on Active Faults in the Shandong Peninsula.Seismological Research of Northeast China, 17(4):1-8 (in Chinese with English abstract). [14] Cui, D.S., Xiang, W., Chen, Q., et al., 2016.Experiment of Energy Dissipation and Energy Release during Stick-Slip within Glass Beads.Earth Science, 41(9):1603-1610 (in Chinese with English abstract). https://doi.org/10.3799/dqkx.2016.519 [15] Deng, Q.D., Wen, X.Z., 2008.A Review on the Research of Active Tectonics-History, Progress and Suggestion.Seismology and Geology, 30(1):1-30 (in Chinese with English abstract). http://cat.inist.fr/?aModele=afficheN&cpsidt=11543393 [16] Ding, G.Y., Tian, Q.J., Kong, F.C., et al., 1993.Sections of Active Faults-Principle, Method and Application.Seismological Press, Beijing, 1-143 (in Chinese). https://pubs.geoscienceworld.org/gsa/geosphere/article/4/1/170-182/132317 [17] Fang, Z.J., Ding, M.L., Xiang, H.F., et al., 1986.Basic Characteristics of the Tanlu Fault Zone.Chinese Science Bulletin, 31(1):52-55 (in Chinese). https://linkinghub.elsevier.com/retrieve/pii/S0024493710000617 [18] Gao, W.M., Zheng, L.S., Li, J.L., et al., 1988.Seismogenic Structure of the 1668 Tancheng Ms 8.5 Earthquake.Earthquake Research in China, 4(3):9-15 (in Chinese). [19] Geological Mapping Group of the Tanlu Active Fault Zone, 2013.Geological Map Introductions of the Tanlu Active Fault Zone (1:50 000).Seismological Press, Beijing, 1-26 (in Chinese). doi: 10.1007%2Fs11589-006-0650-y.pdf [20] Haines, S.H., Kaproth, B., Marone, C., et al., 2013.Shear Zones in Clay-Rich Fault Gouge:A Laboratory Study of Fabric Development and Evolution.Journal of Structural Geology, 51:206-225. doi: 10.1016/j.jsg.2013.01.002 [21] He, Y.N., Lin, C.Y., Shi, L.B., 1988.Basis of Structural Petrology.Geological Publishing House, Beijing, 1-169 (in Chinese). http://www.d.umn.edu/~jgoodge/geol2312-1/Ch 01.pdf [22] He, Y.N., Shi, L.B., 1983.Application of Deformation Micro-Structure Analysis in Seismic Geology Research.Translation Album on Seismology and Geology, 5(5):7-14 (in Chinese). http://file.scirp.org/pdf/NS_2013070911134228.pdf [23] Huang, W.S., 1988.Characteristics of the Geotectonic Activity along the Yishu Fault Based on Its Geological Geomorphic Indicators.Earthquake Research in China, 4(3):143-150 (in Chinese). doi: 10.1007%2Fs11430-013-4725-z [24] Institute of Geology, State Seismological Bureau, 1987.The Tanlu Fault Zone.Seismological Press, Beijing, 1-254 (in Chinese). doi: 10.1007%2Fs11589-006-0506-5 [25] Kanamori, H., Heaton, T.H., 2000.Microscope Physics of Earthquakes.American Geophysical Monograph, 120:147-163. https://www.sciencedaily.com/releases/2011/11/111130141849.htm [26] Kanaori, Y., Miyakoshi, K., Kakuta, T., et al., 1980.Dating Fault Activity by Surface Textures of Quartz Grains from Fault Gouges.Engineering Geology, 16(3/4):243-262. https://www.sciencedirect.com/science/article/pii/0013795280900186#! [27] Li, J. L., 1989. The Tanlu Fault. In: IGCP 206th China Working Group, ed., China Active Fault Atlas. Seismological Press, Beijing, 1-22 (in Chinese). [28] Li, J.L., Chao, H.T., Cui, Z.W., et al., 1991.Research on the Active Fault of Tancheng-Xinyi Segment in the Tanlu Fault Zone.Seismological Press, Beijing, 164-173 (in Chinese with English abstract). https://www.deepdyve.com/lp/elsevier/neogene-volcanism-and-holocene-earthquakes-in-the-tanlu-fault-zone-iR9XZ4iLDE [29] Lin, C.Y., Shi, L.B., Liu, X.S., et al., 1995.Significance of Fault Gouge in the Study of Recent Activity of Fault in Bedrock Area.Earthquake Research in China, 11(1):26-32 (in Chinese with English abstract). doi: 10.1029/2005TC001916 [30] Ma, J., Guo, Y.S., 2014.Accelerated Synergism Prior to Fault Instability:Evidence from Laboratory Experiments and an Earthquake Case.Seismology and Geology, 36(3):547-561 (in Chinese with English abstract). https://www.researchgate.net/publication/287241503_Accelerated_synergism_prior_to_fault_instability_Evidence_from_laboratory_experiments_and_an_earthquake_case [31] Ma, J., Sherman, S.I., Guo, Y.S., 2012.Identification of Meta-Instable Stress State Based on Experimental Study of Evolution of the Temperature Field during Stick-Slip Instability on a 5° Bending Fault.Science China Earth Sciences, 42(5):633-645 (in Chinese). doi: 10.1007/s11430-012-4423-2 [32] Mair, K., Abe, S., 2008.3D Numerical Simulations of Fault Gouge Evolution during Shear:Grain Size Reduction and Strain Localization.Earth and Planet Science Letter, 274:72-81. doi: 10.1016/j.epsl.2008.07.010 [33] Moore, D.E., Summers, R., Byerlee, J.D., 1989.Sliding Behavior and Deformation Textures of Heated Illite Gouge.Journal of Structural Geology, 11(3):329-342. doi: 10.1016/0191-8141(89)90072-2 [34] Passchier, C.W., Trouw, R.A.J., 1996.Microtectonics.Springer, Berlin, 57-96. https://www.springer.com/us/book/9783540640035 [35] Reches, Z., Lockner, D.A., 2010.Fault Weakening and Earthquake Instability by Power Lubrication.Nature, 497:452-455. http://cat.inist.fr/?aModele=afficheN&cpsidt=23234987 [36] Sibson, R.H., 1977.Fault Rocks and Fault Mechanisms.Journal of the Geology Society, 133:191-213. doi: 10.1144/gsjgs.133.3.0191 [37] Sibson, R.H., 2003.Thickness of the Seismic Zone.Bull.Seism.Soc.Am., 93:1169-1178. doi: 10.1785/0120020061 [38] Sun, Y., Shu, L.S., Liu, H., et al., 2008.Recent Progress in Studies on the Nano-Sized Particle Layer in Rock Shear Planes.Progress in Natural Science, 18:387-373. doi: 10.1016/j.pnsc.2007.10.011 [39] Wallace, R.E., 1970.Earthquake Recurrence Intervals on the San Andreas Fault.Geol.Soc.Am.Bull., 5:190-205. https://pubs.geoscienceworld.org/gsa/gsabulletin/article-abstract/81/10/2875/6661/earthquake-recurrence-intervals-on-the-san-andreas?redirectedFrom=fulltext [40] Wang, Z.C., Wang, D.L., Xu, H.T., et al., 2015.Geometric Features and Latest Activities of the North Segment of the Anqiu-Juxian Fault.Seismology and Geology, 37(1):176-191 (in Chinese with English abstract). https://www.researchgate.net/publication/286890544_Geometry_and_activity_of_the_Anqiu-Zhuli_segment_of_the_Anqiu-Juxian_Fault_in_the_Yishu_Fault_zone [41] Wilson, B., Dewer, T., Reches, Z., et al., 2005.Particle and Energetics of Gouge from Earthquake Rupture Zone.Nature, 434:748-752. https://www.researchgate.net/profile/Zeev_Reches/publication/7920248_Particle_size_and_energetics_of_gouge_from_earthquake_rupture_zones/links/54b510770cf2318f0f9717e2.pdf [42] Xia, C., Yao, X.X., 1988.A Study on Gouges of the Yishu Fault Zone.Earthquake Research in China, 4(3):151-157 (in Chinese). http://www.cqvip.com/QK/84216X/199701/4001082026.html [43] Yang, Z.E., Hu, B.R., Hong, H.J., 1984.Microscopic Features of Quartz Debris in Gouge of Active Fault and Their Significance.Chinese Science Bulletin, 29(8):484-486 (in Chinese). [44] Yao, D.Q., Tang, Y.B., 1992.An Initial Research on Microscopic Method for Plastic Fault Dislocation Products.Journal of Seismological Research, 15(1):60-69 (in Chinese with English abstract). https://www.deepdyve.com/lp/elsevier/microscopic-textures-in-rocks-deformed-by-chemical-explosion-and-zAWd3mf933 [45] Yuan, R.M., Zhang, B.L., Xu, X.W., et al., 2015.Microstructural and Mineral Analysis on the Fault Gouge in the Coseismic Shear Zone of the 2008 Mw 7.9 Wenchuan Earthquake.International Journal of Earth Sciences, 104(5):1425-1437. doi: 10.1007/s00531-015-1160-8 [46] Zhang, B.L., Lin, C.Y., Fang, Z.J., et al., 1993.Features of Micro-Structure in Gouge of Active Fault and Their Significance.Chinese Science Bulletin, 38(14):1306-1308 (in Chinese). [47] Zhou, B.G., Ran, Y.K., Huan, W.L., et al., 2002.Late Pleistocene Surface Faulting and the Maximum Potential Earthquake on the Dongshilangou Segment of the Haiyang Fault, Shandong Province.Seismology and Geology, 24(2):159-166 (in Chinese with English abstract). https://www.researchgate.net/publication/296262333_Late_Pleistocene_surface_faulting_and_the_maximum_potential_earthquake_on_the_Dongshilangou_segment_of_the_Haiyang_fault_Shandong_Province [48] 晁洪太, 1998. 第四纪地层中活断层的显微构造标志、隐性活断层及其应用研究(博士学位论文). 北京: 中国地震局地质研究所, 1-141. [49] 晁洪太, 崔昭文, 李家灵, 1992.鲁中地区北西向断裂及其第四纪晚期的活动特征.地震学刊, (2):1-9. http://www.cnki.com.cn/Article/CJFDTOTAL-DZXK199202000.htm [50] 晁洪太, 邓起东, 李家灵, 等, 2001a.郯庐断裂带及其附近地区活动断裂带内断层泥的变形类型.活动断裂研究(8).北京:地震出版社, 82-91. [51] 晁洪太, 刁守中, 王志才, 2012.公元前179年"齐楚地震"考证与发震构造讨论.地震地质, 34(2):211-227. http://mall.cnki.net/magazine/Article/DZDZ201202003.htm [52] 晁洪太, 李家灵, 崔昭文, 等, 1994.郯庐断裂带中段全新世活断层的几何结构与分段.北京:地震出版社, 180-190. [53] 晁洪太, 李家灵, 崔昭文, 等, 1997.与1668年郯城8(1)/2级地震断层有关的几个问题讨论.华北地震科学, 15(4):18-25. http://www.cqvip.com/QK/96861X/199704/2865043.html [54] 晁洪太, 孙岩, 王志才, 等, 2009.发震断裂的纳米级运动学观测一例.自然科学进展, 19(10):1076-1081. doi: 10.3321/j.issn:1002-008X.2009.10.008 [55] 晁洪太, 孙岩, 王志才, 等, 2016.同震和无震剪切滑移作用的纳微米级构造观察与分析.矿物岩石地球化学通报, 35(1):37-42. http://www.cqvip.com/QK/84215X/201601/668146275.html [56] 晁洪太, 于慎谔, 李家灵, 等, 2001b.山东半岛地区活动断裂研究.东北地震研究, 17(4):1-8. http://www.cnki.com.cn/Article/CJFDTOTAL-ZZFY200701005.htm [57] 崔德山, 项伟, 陈琼, 等, 2016.细颗粒粘滑运动的能量耗散与释放试验.地球科学, 41(9):1603-1610. http://www.earth-science.net/WebPage/Article.aspx?id=3365 [58] 邓起东, 闻学泽, 2008.活动构造研究——历史、进展与建议.地震地质, 30(1):1-30. http://www.csi.ac.cn/manage/eqDown/25DZZJ/01_001A/AP019.pdf [59] 丁国瑜, 田勤俭, 孔凡臣, 等, 1993.活断层分段——原则、方法及应用.北京:地震出版社, 1-143. [60] 方仲景, 丁梦林, 向宏发, 等, 1986.郯庐断裂带的基本特征.科学通报, 31(1):52-55. http://www.cnki.com.cn/Article/CJFD1986-KXTB198601014.htm [61] 高维明, 郑朗荪, 李家灵, 等, 1988.1668年郯城8.5级地震的发震构造.中国地震, 4(3):9-15. http://www.cnki.com.cn/Article/CJFDTotal-ZBDZ199001016.htm [62] 郯庐活动断裂带地质填图组, 2013.郯庐活动断裂带地质图(1:50 000)说明书.北京:地震出版社, 1-26. [63] 何永年, 林传勇, 史兰斌, 1988.构造岩石学基础.北京:地质出版社, 1-169. [64] 何永年, 史兰斌, 1983.变形显微构造分析在地震地质研究中的应用.地震地质译丛, 5(5):7-14. http://mall.cnki.net/magazine/Article/DZKQ198804000.htm [65] 黄伟师, 1988.从地质地貌标志看沂沭断裂带的新构造运动特征.中国地震, 4(3):143-150. http://www.cnki.com.cn/Article/CJFDTOTAL-ZGZD198803025.htm [66] 国家地震局地质研究所, 1987.郯庐断裂带.北京:地震出版社, 1-254. [67] 李家灵, 1989. 郯庐活断层. 见: IGCP第206项中国工作组编. 中国活断层图集. 北京: 地震出版社, 1-22. [68] 李家灵, 晁洪太, 崔昭文, 等, 1991.郯庐断裂带郯城-新沂段活断层研究.北京:地震出版社, 164-173. [69] 林传勇, 史兰斌, 刘行松, 等, 1995.断层泥在基岩区断层新活动研究中的意义.中国地震, 11(1):26-32. http://cdmd.cnki.com.cn/Article/CDMD-10730-2010130689.htm [70] 马瑾, 郭彦双, 2014.失稳前断层加速协同化的实验室证据和地震事例.地震地质, 36(3):547-561. http://www.cqvip.com/QK/95728X/201403/662620942.html [71] 马瑾, Sherman, S.I., 郭彦双, 2012.地震前亚失稳应力状态的识别——以5°拐折断层变形温度场演化的实验为例.中国科学:地球科学, 42(5):633-645. http://www.oalib.com/paper/4151110 [72] 王志才, 王冬雷, 许洪泰, 等, 2015.安丘-莒县断裂北段几何结构与最新活动特征.地震地质, 37(1):176-191. http://www.cnki.com.cn/Article/CJFDTotal-DZDZ201501014.htm [73] 夏琤, 姚孝新, 1988.沂沭断裂带断层泥研究.中国地震, 4(3):151-157. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=dzdz199904008 [74] 杨主恩, 胡碧茹, 洪汉净, 1984.活断层中断层泥的石英碎砾的显微特征及其意义.科学通报, 29(8):484-486. http://www.cnki.com.cn/Article/CJFDTotal-JZGC201107058.htm [75] 姚大全, 汤有标, 1992.柔性断层错动产物的微观研究方法初探.地震研究, 15(1):60-69. http://www.cnki.com.cn/Article/CJFDTOTAL-DZYJ199201009.htm [76] 张秉良, 林传勇, 方仲景, 等, 1993.活断层中断层泥的显微构造特征及其意义.科学通报, 38(14):1306-1308. http://www.cqvip.com/QK/94252X/199314/1109036.html [77] 周本刚, 冉勇康, 环文林, 等, 2002.山东海阳断裂东石兰沟段晚更新世以来地表断错特征与最大潜在地震估计.地震地质, 24(2):159-166. http://www.cnki.com.cn/Article/CJFDTOTAL-DZDZ401.006.htm