• 中国出版政府奖提名奖

    中国百强科技报刊

    湖北出版政府奖

    中国高校百佳科技期刊

    中国最美期刊

    留言板

    尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

    姓名
    邮箱
    手机号码
    标题
    留言内容
    验证码

    不同变质程度煤系石墨结构特征

    刘钦甫 袁亮 李阔 崔先健 余力

    刘钦甫, 袁亮, 李阔, 崔先健, 余力, 2018. 不同变质程度煤系石墨结构特征. 地球科学, 43(5): 1663-1669. doi: 10.3799/dqkx.2018.419
    引用本文: 刘钦甫, 袁亮, 李阔, 崔先健, 余力, 2018. 不同变质程度煤系石墨结构特征. 地球科学, 43(5): 1663-1669. doi: 10.3799/dqkx.2018.419
    Liu Qinfu, Yuan Liang, Li Kuo, Cui Xianjian, Yu Li, 2018. Structure Characteristics of Different Metamorphic Grade Coal-Based Graphites. Earth Science, 43(5): 1663-1669. doi: 10.3799/dqkx.2018.419
    Citation: Liu Qinfu, Yuan Liang, Li Kuo, Cui Xianjian, Yu Li, 2018. Structure Characteristics of Different Metamorphic Grade Coal-Based Graphites. Earth Science, 43(5): 1663-1669. doi: 10.3799/dqkx.2018.419

    不同变质程度煤系石墨结构特征

    doi: 10.3799/dqkx.2018.419
    基金项目: 

    国家自然科学基金项目 41672150

    详细信息
      作者简介:

      刘钦甫(1964-), 男, 教授, 主要从事矿物学及应用、煤田地质学研究

    • 中图分类号: P57

    Structure Characteristics of Different Metamorphic Grade Coal-Based Graphites

    • 摘要: 煤系石墨形成于煤层的接触变质带,通常被当作煤开采利用而造成严重的资源浪费.为了了解煤系石墨在成矿过程中分子结构的变化,利用X射线衍射(XRD)、透射电子显微镜(TEM)、拉曼光谱(Raman)等技术,对我国陕西凤县、湖南新化和湖南郴州鲁塘地区处于不同变质程度煤系石墨进行测试分析.结果表明:凤县样品石墨化度最低,仍处于超无烟煤阶段;新化石墨处于半石墨阶段,鲁塘样品石墨化程度最高,其结构比较完美,接近于三维有序理想石墨结构,但仍存在少量的无序化畴.XRD分析显示随着样品石墨化程度的升高,堆砌层数与堆砌延展度均增大;拉曼光谱中D峰减弱,G峰逐渐增强并尖锐,D峰与G峰的强度比和面积比均减小,显示碳原子sp2平面域增大.透射电子显微镜晶格像显示,由无烟煤向石墨结构转变过程中,煤的芳香片层首先形成类石墨结构的微柱体,然后这些微柱体之间相互联结,最后形成横向无限延展的石墨晶层.

       

    • 图  1  不同实验样品的XRD图谱

      Fig.  1.  XRD patterns of graphite samples

      图  2  煤系石墨的透射电镜照片

      a.FX-1的透射电镜照片;b.FX-2的透射电镜照片;c.XH-1的透射电镜照片;d.XH-2的透射电镜照片;e.LT-1的透射电镜照片;f.LT-2的透射电镜照片

      Fig.  2.  TEM images of different graphites

      图  3  不同变质程度石墨拉曼光谱参数

      Fig.  3.  Raman spectrum of different metamorphic grade graphites

      表  1  样品的化学分析

      Table  1.   Chemical composition analysis of samples

      样品编号 地区 Rmax(%) Mad(%) Aad(%) Vdaf(%) FCd(%)
      FX-1 凤县 5.70% 0.96 18.53 5.63 75.84
      FX-2 凤县 5.72% 0.96 18.22 5.53 75.29
      XH-1 新化 6.09% 0.36 2.50 5.80 91.34
      XH-2 新化 8.23% 4.24 32.40 4.46 48.90
      LT-1 鲁塘 0.63 29.77 3.95 65.65
      LT-2 鲁塘 0.61 23.81 1.07 74.52
      下载: 导出CSV

      表  2  不同变质程度煤系石墨结构参数

      Table  2.   Structure parameters of different metamorphic grade graphites

      编号 D(nm) g La(nm) Lc(nm) N(层)
      FX-1 0.352 9 -1.034 8.266 3.251 10.212
      FX-2 0.352 8 -1.029 8.322 3.318 10.403
      XH-1 0.341 6 0.274 8.599 3.890 12.386
      XH-2 0.339 8 0.481 9.639 4.530 14.329
      LT-1 0.337 0 0.805 50.039 13.908 42.263
      LT-2 0.336 3 0.893 87.977 31.279 94.002
      下载: 导出CSV

      表  3  不同变质程度煤系石墨的拉曼光谱参数

      Table  3.   Raman parameters of different metamorphic grade graphites

      编号 D峰(cm-1) G峰(cm-1) D峰半高宽(cm-1) G峰半高宽(cm-1) ID/IG AD/AG
      FX-1 1 346 1 601 57.06 51.97 1.79 1.91
      FX-2 1 347 1 595 52.51 45.51 1.89 2.17
      XH-1 1 331 1 593 66.30 69.60 1.75 1.61
      XH-2 1 330 1 581 42.22 40.82 1.45 1.44
      LT-1 1 328 1 573 51.28 26.26 0.52 0.98
      LT-2 1 337 1 580 60.18 26.04 0.51 1.14
      下载: 导出CSV
    • [1] Bao, F., Li, Z.M., Zhang, M.Z., et al., 2012.Application of Laser Raman Spectrum in Organic Maceral Studies.Petroleum Geology & Experiment, 34(1):104-108 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-SYSD201201022.htm
      [2] Cao, D.Y., Li, X.M., Zhang, S.R., 2006.Effect of Structural Stress on Coalification:Stress Degradation Mechanism and Stress Polycondensation Mechanism.Science in China Earth Sciences, 36(1):59-68 (in Chinese). doi: 10.1007/s11430-007-2023-3
      [3] Cao, D.Y., Zhang, H., Dong, Y.J., et al., 2017.Research Status and Key Orientation of Coal-Based Graphite Mineral Geology.Earth Science Frontiers, 24(5):317-327 (in Chinese with English abstract).
      [4] Cao, D.Y, Zhang, S.R., Ren, D.Y., 2002.The Influence of Structural Deformation on Coal Ification:A Case Study of Carboniferous Coal Measures in the Northern Foothills of the Dabie Orogenic Belt.Geological Review, 48(3):313-317 (in Chinese with English abstract). http://en.cnki.com.cn/article_en/cjfdtotal-dzlp200203014.htm
      [5] Chen, W.R., 1983.Calculation Formula of Graphitization Degree.Carbon Techniques, (6):28-31, 25 (in Chinese).
      [6] Chen, X.H., Zheng, Z., 1993.A Raman Spectral Study of Coal-Based Graphite.Acta Mineralogica Sinica, 13(4):313-318 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-KWXB199304003.htm
      [7] Feng, Y.L., Zheng.Z., Guo, Y.J., 2003.Researching on the Characteristics of Microstructures of Carbonated Tree.Acta Scientiarum Naturalium Universitatis Pekinensis, 39(5):727-731 (in Chinese with English abstract). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=bjdxxb200305018
      [8] Hong, H.L., Fang, Q., .Wang, C.W., .et al., 2017.Constraints of Parent Magma on Altered Clay Minerls:A Case Study on the Ashes near the Permian-Triassic Boundary in Xinmin Section, Guizhou Province.Earth Science, 42(2):161-172 (in Chinese with English abstract). https://www.researchgate.net/profile/Nina_Gong2
      [9] Koç, S., Kaorazli, Ö., Koçqk, I., 2016.Geochemistry of Kestelek Colemanite Deposit, Bursa, Turkey.Journal of Earth Science, 28(1):63-77. https://doi.org/10.1007/s12583-015-0616-x
      [10] Li, B.B., Yang K., Yuan, M., et al., 2017.Effect of Pore Pressure on Seepage Characteristics of Coal and Rock at Different Temperatures.Earth Science, 42(8):1403-1412 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-DQKX201708018.htm
      [11] Liu, D.H., Xiao, X.M., Tian, H., et al., 2013.Sample Maturation Calculated Using Raman Spectroscopic Parameters for Solid Organics:Methodology and Geological Applications.Chinese Science Bulletin, 58(13):1228-1241(in Chinese). http://en.cnki.com.cn/Article_en/CJFDTOTAL-JXTW201311013.htm
      [12] Qin, Y., 1994.Micropetrology and Structural Evolution of High-Rank Coals in P.R.China.China University of Mining & Technology Press, Xuzhou (in Chinese).
      [13] Qin, Y., 1999.The Study of Furthermore Discussion on the Making-up of Macro-Molecular Basic Structural Units in Coals.Earth Science Frontiers, 6(Suppl.1):29-34 (in Chinese with English abstract). http://en.cnki.com.cn/article_en/cjfdtotal-dxqy1999s1007.htm
      [14] Qin, Y., Jiang, B., Song, D.Y., et al, .1998.Characteristics and Mechanism on the 13C NMR Evolution of the Carbon Structure in the High-Rank Coals.Journal of China Coal Society, 23(6):76-80 (in Chinese with English abstract).
      [15] Ross, J.V., Bustin, R.M., 1990.The Role of Strain Energy in Creep Graphitization of Anthracite.Nature, 343(6253):58-60. https://doi.org/10.1016/0166-5162(93)90029-A
      [16] Ross, J.V., Bustin, R.M., 1995.Natural Graphitization of Anthracite:Experimental Considerations.Carbon, 5(33):679-691. https://doi.org/10.1016/0008-6223(94)00155-S
      [17] Sun, S.L., Wu, G.Q., Cao, D.Y., et al., 2014.Mineral Resources in Coal Measures and Development Trend.Coal Geology of China, 26(11):1-11(in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-ZGMT201411001.htm
      [18] Wang, L., Zhang, P.Z.1997.XRD Study of Coal Structure.Coal Conversion, 20(1):50-53 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-MTZH199701008.htm
      [19] Wu, J.X., Xu, H., Zhang, J., 2014.Raman Spectroscopy of Graphene.Acta Chimica Sinica, 72(3):301-318 (in Chinese with English abstract). doi: 10.6023/A13090936
      [20] Zheng, Z., 1991.HRTEM Studies of Microstructures of Coal-Based Graphite.Acta Mineralogica Sinica, 11(3):214-218 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTotal-KWXB199103003.htm
      [21] 鲍芳, 李志明, 张美珍, 等, 2012.激光拉曼光谱在有机显微组分研究中的应用.石油实验地质, 34(1):104-108. doi: 10.11781/sysydz201201104
      [22] 曹代勇, 李小明, 张守仁, 2006.构造应力对煤化作用的影响——应力降解机制与应力缩聚机制.中国科学:地球科学, 36(1):59-68. http://www.cqvip.com/QK/98491X/200601/21099722.html
      [23] 曹代勇, 张鹤, 董业绩, 等, 2017.煤系石墨矿产地质研究现状与重点方向.地学前缘, 24(5):317-327. http://www.cqvip.com/QK/98600X/201705/672894076.html
      [24] 曹代勇, 张守仁, 任德贻, 2002.构造变形对煤化作用进程的影响——以大别造山带北麓地区石炭纪含煤岩系为例.地质论评, 48(3):313-317. http://www.oalib.com/paper/4886944
      [25] 陈蔚然, 1983.关于石墨化度计算公式.炭素技术, (6):28-31, 25. http://mall.cnki.net/magazine/article/TSJS199004014.htm
      [26] 陈宣华, 郑辙, 1993.煤基石墨的喇曼光谱学研究.矿物学报, (4):313-318. http://www.cnki.com.cn/Article/CJFDTOTAL-SYSD201201022.htm
      [27] 冯有利, 郑辙, 郭延军, 2003.碳化树木的微结构特征研究.北京大学学报(自然科学版), 39(5):727-731. http://www.cqvip.com/QK/94075X/200305/8399907.html
      [28] 洪汉烈, 方谦, 王朝文, 等, 2017.岩浆母质对蚀变粘土矿物的约束:以贵州新民剖面P-T界线附近火山灰层为例.地球科学, 42(2):161-172. http://earth-science.net/WebPage/Article.aspx?id=3423
      [29] 李波波, 杨康, 袁梅, 等, 2017.不同温度下孔隙压力对煤岩渗流特性的影响机制.地球科学, 42(8):1403-1412. http://earth-science.net/WebPage/Article.aspx?id=3616
      [30] 刘德汉, 肖贤明, 田辉, 等, 2013.固体有机质拉曼光谱参数计算样品热演化程度的方法与地质应用.科学通报, 58(13):1228-1241. http://mall.cnki.net/magazine/Article/KXTB201313010.htm
      [31] 秦勇, 1994.中国高煤级煤的显微岩石学特征及结构演化.徐州:中国矿业大学出版社.
      [32] 秦勇, 1999.再论煤中大分子基本结构单元演化的拼叠作用.地学前缘, 6(增刊1):29-34. http://industry.wanfangdata.com.cn/dl/Detail/Periodical?id=Periodical_dxqy1999z1005
      [33] 秦勇, 姜波, 宋党育, 等, 1998.高煤级煤碳结构13C NMR演化及其机理探讨.煤炭学报, 23(6):76-80. http://www.adearth.ac.cn/article/2014/1001-8166-2014-6-0700.html
      [34] 孙升林, 吴国强, 曹代勇, 等, 2014.煤系矿产资源及其发展趋势.中国煤炭地质, 26(11):1-11. doi: 10.3969/j.issn.1674-1803.2014.11.01
      [35] 王丽, 张蓬洲, 1997.煤的XRD的结构分析.煤炭转化, 20(1):50-53. http://www.doc88.com/p-9793175169759.html
      [36] 吴娟霞, 徐华, 张锦, 2014.拉曼光谱在石墨烯结构表征中的应用.化学学报, 72(3):301-318. http://mall.cnki.net/magazine/Article/HXXB201403004.htm
      [37] 郑辙, 1991.煤基石墨微结构的高分辨电镜研究.矿物学报, 11(3):214-218. http://cpfd.cnki.com.cn/Article/CPFDTOTAL-SIDL199010001236.htm
    • 加载中
    图(3) / 表(3)
    计量
    • 文章访问数:  4298
    • HTML全文浏览量:  1842
    • PDF下载量:  35
    • 被引次数: 0
    出版历程
    • 收稿日期:  2017-07-03
    • 刊出日期:  2018-05-15

    目录

      /

      返回文章
      返回