Structure Characteristics of Different Metamorphic Grade Coal-Based Graphites
-
摘要: 煤系石墨形成于煤层的接触变质带,通常被当作煤开采利用而造成严重的资源浪费.为了了解煤系石墨在成矿过程中分子结构的变化,利用X射线衍射(XRD)、透射电子显微镜(TEM)、拉曼光谱(Raman)等技术,对我国陕西凤县、湖南新化和湖南郴州鲁塘地区处于不同变质程度煤系石墨进行测试分析.结果表明:凤县样品石墨化度最低,仍处于超无烟煤阶段;新化石墨处于半石墨阶段,鲁塘样品石墨化程度最高,其结构比较完美,接近于三维有序理想石墨结构,但仍存在少量的无序化畴.XRD分析显示随着样品石墨化程度的升高,堆砌层数与堆砌延展度均增大;拉曼光谱中D峰减弱,G峰逐渐增强并尖锐,D峰与G峰的强度比和面积比均减小,显示碳原子sp2平面域增大.透射电子显微镜晶格像显示,由无烟煤向石墨结构转变过程中,煤的芳香片层首先形成类石墨结构的微柱体,然后这些微柱体之间相互联结,最后形成横向无限延展的石墨晶层.Abstract: To reveal the change of C atom lattice arrangements in coal-based graphite, samples with different metamorphic grades from several areas, such as Shaanxi Fengxian, Hunan Xinhua and Hunan Lutang, were characterized by X-ray diffraction (XRD), transmission electron microscopy (TEM) and Raman spectrum (Raman). The results show that the metamorphism degree of Fengxian graphite is in the stage of super anthracite, and that of Xinhua is semi-graphite.The graphitization degree of samples from Lutang is the highest, and its structure is close to the three dimensions ordered ideal graphite, but a little of disordered domain still exists in the structure of Lutang graphite. XRD shows that the distance between C atom layers decreases with graphitization degree increasing, but the numbers of layers and the area of single layers increase. The G peak in the Raman spectrum is gradually stronger and sharper while the D peak is weaker, and the intensity ratio and area ratio of D peak and G peak are all reduced with the graphitization increasing, which demonstrates the increasing sp2 planar area. The lattice images of TEM show that the graphite-like pillars were formed at first in the graphitization, and then these pillars were united laterally with each other to form the graphite lattice structure.
-
Key words:
- coal-based graphite /
- graphitization degree /
- microstructure /
- crystallography /
- mineralogy
-
表 1 样品的化学分析
Table 1. Chemical composition analysis of samples
样品编号 地区 Rmax(%) Mad(%) Aad(%) Vdaf(%) FCd(%) FX-1 凤县 5.70% 0.96 18.53 5.63 75.84 FX-2 凤县 5.72% 0.96 18.22 5.53 75.29 XH-1 新化 6.09% 0.36 2.50 5.80 91.34 XH-2 新化 8.23% 4.24 32.40 4.46 48.90 LT-1 鲁塘 0.63 29.77 3.95 65.65 LT-2 鲁塘 0.61 23.81 1.07 74.52 表 2 不同变质程度煤系石墨结构参数
Table 2. Structure parameters of different metamorphic grade graphites
编号 D(nm) g La(nm) Lc(nm) N(层) FX-1 0.352 9 -1.034 8.266 3.251 10.212 FX-2 0.352 8 -1.029 8.322 3.318 10.403 XH-1 0.341 6 0.274 8.599 3.890 12.386 XH-2 0.339 8 0.481 9.639 4.530 14.329 LT-1 0.337 0 0.805 50.039 13.908 42.263 LT-2 0.336 3 0.893 87.977 31.279 94.002 表 3 不同变质程度煤系石墨的拉曼光谱参数
Table 3. Raman parameters of different metamorphic grade graphites
编号 D峰(cm-1) G峰(cm-1) D峰半高宽(cm-1) G峰半高宽(cm-1) ID/IG AD/AG FX-1 1 346 1 601 57.06 51.97 1.79 1.91 FX-2 1 347 1 595 52.51 45.51 1.89 2.17 XH-1 1 331 1 593 66.30 69.60 1.75 1.61 XH-2 1 330 1 581 42.22 40.82 1.45 1.44 LT-1 1 328 1 573 51.28 26.26 0.52 0.98 LT-2 1 337 1 580 60.18 26.04 0.51 1.14 -
[1] Bao, F., Li, Z.M., Zhang, M.Z., et al., 2012.Application of Laser Raman Spectrum in Organic Maceral Studies.Petroleum Geology & Experiment, 34(1):104-108 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-SYSD201201022.htm [2] Cao, D.Y., Li, X.M., Zhang, S.R., 2006.Effect of Structural Stress on Coalification:Stress Degradation Mechanism and Stress Polycondensation Mechanism.Science in China Earth Sciences, 36(1):59-68 (in Chinese). doi: 10.1007/s11430-007-2023-3 [3] Cao, D.Y., Zhang, H., Dong, Y.J., et al., 2017.Research Status and Key Orientation of Coal-Based Graphite Mineral Geology.Earth Science Frontiers, 24(5):317-327 (in Chinese with English abstract). [4] Cao, D.Y, Zhang, S.R., Ren, D.Y., 2002.The Influence of Structural Deformation on Coal Ification:A Case Study of Carboniferous Coal Measures in the Northern Foothills of the Dabie Orogenic Belt.Geological Review, 48(3):313-317 (in Chinese with English abstract). http://en.cnki.com.cn/article_en/cjfdtotal-dzlp200203014.htm [5] Chen, W.R., 1983.Calculation Formula of Graphitization Degree.Carbon Techniques, (6):28-31, 25 (in Chinese). [6] Chen, X.H., Zheng, Z., 1993.A Raman Spectral Study of Coal-Based Graphite.Acta Mineralogica Sinica, 13(4):313-318 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-KWXB199304003.htm [7] Feng, Y.L., Zheng.Z., Guo, Y.J., 2003.Researching on the Characteristics of Microstructures of Carbonated Tree.Acta Scientiarum Naturalium Universitatis Pekinensis, 39(5):727-731 (in Chinese with English abstract). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=bjdxxb200305018 [8] Hong, H.L., Fang, Q., .Wang, C.W., .et al., 2017.Constraints of Parent Magma on Altered Clay Minerls:A Case Study on the Ashes near the Permian-Triassic Boundary in Xinmin Section, Guizhou Province.Earth Science, 42(2):161-172 (in Chinese with English abstract). https://www.researchgate.net/profile/Nina_Gong2 [9] Koç, S., Kaorazli, Ö., Koçqk, I., 2016.Geochemistry of Kestelek Colemanite Deposit, Bursa, Turkey.Journal of Earth Science, 28(1):63-77. https://doi.org/10.1007/s12583-015-0616-x [10] Li, B.B., Yang K., Yuan, M., et al., 2017.Effect of Pore Pressure on Seepage Characteristics of Coal and Rock at Different Temperatures.Earth Science, 42(8):1403-1412 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-DQKX201708018.htm [11] Liu, D.H., Xiao, X.M., Tian, H., et al., 2013.Sample Maturation Calculated Using Raman Spectroscopic Parameters for Solid Organics:Methodology and Geological Applications.Chinese Science Bulletin, 58(13):1228-1241(in Chinese). http://en.cnki.com.cn/Article_en/CJFDTOTAL-JXTW201311013.htm [12] Qin, Y., 1994.Micropetrology and Structural Evolution of High-Rank Coals in P.R.China.China University of Mining & Technology Press, Xuzhou (in Chinese). [13] Qin, Y., 1999.The Study of Furthermore Discussion on the Making-up of Macro-Molecular Basic Structural Units in Coals.Earth Science Frontiers, 6(Suppl.1):29-34 (in Chinese with English abstract). http://en.cnki.com.cn/article_en/cjfdtotal-dxqy1999s1007.htm [14] Qin, Y., Jiang, B., Song, D.Y., et al, .1998.Characteristics and Mechanism on the 13C NMR Evolution of the Carbon Structure in the High-Rank Coals.Journal of China Coal Society, 23(6):76-80 (in Chinese with English abstract). [15] Ross, J.V., Bustin, R.M., 1990.The Role of Strain Energy in Creep Graphitization of Anthracite.Nature, 343(6253):58-60. https://doi.org/10.1016/0166-5162(93)90029-A [16] Ross, J.V., Bustin, R.M., 1995.Natural Graphitization of Anthracite:Experimental Considerations.Carbon, 5(33):679-691. https://doi.org/10.1016/0008-6223(94)00155-S [17] Sun, S.L., Wu, G.Q., Cao, D.Y., et al., 2014.Mineral Resources in Coal Measures and Development Trend.Coal Geology of China, 26(11):1-11(in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-ZGMT201411001.htm [18] Wang, L., Zhang, P.Z.1997.XRD Study of Coal Structure.Coal Conversion, 20(1):50-53 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-MTZH199701008.htm [19] Wu, J.X., Xu, H., Zhang, J., 2014.Raman Spectroscopy of Graphene.Acta Chimica Sinica, 72(3):301-318 (in Chinese with English abstract). doi: 10.6023/A13090936 [20] Zheng, Z., 1991.HRTEM Studies of Microstructures of Coal-Based Graphite.Acta Mineralogica Sinica, 11(3):214-218 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTotal-KWXB199103003.htm [21] 鲍芳, 李志明, 张美珍, 等, 2012.激光拉曼光谱在有机显微组分研究中的应用.石油实验地质, 34(1):104-108. doi: 10.11781/sysydz201201104 [22] 曹代勇, 李小明, 张守仁, 2006.构造应力对煤化作用的影响——应力降解机制与应力缩聚机制.中国科学:地球科学, 36(1):59-68. http://www.cqvip.com/QK/98491X/200601/21099722.html [23] 曹代勇, 张鹤, 董业绩, 等, 2017.煤系石墨矿产地质研究现状与重点方向.地学前缘, 24(5):317-327. http://www.cqvip.com/QK/98600X/201705/672894076.html [24] 曹代勇, 张守仁, 任德贻, 2002.构造变形对煤化作用进程的影响——以大别造山带北麓地区石炭纪含煤岩系为例.地质论评, 48(3):313-317. http://www.oalib.com/paper/4886944 [25] 陈蔚然, 1983.关于石墨化度计算公式.炭素技术, (6):28-31, 25. http://mall.cnki.net/magazine/article/TSJS199004014.htm [26] 陈宣华, 郑辙, 1993.煤基石墨的喇曼光谱学研究.矿物学报, (4):313-318. http://www.cnki.com.cn/Article/CJFDTOTAL-SYSD201201022.htm [27] 冯有利, 郑辙, 郭延军, 2003.碳化树木的微结构特征研究.北京大学学报(自然科学版), 39(5):727-731. http://www.cqvip.com/QK/94075X/200305/8399907.html [28] 洪汉烈, 方谦, 王朝文, 等, 2017.岩浆母质对蚀变粘土矿物的约束:以贵州新民剖面P-T界线附近火山灰层为例.地球科学, 42(2):161-172. http://earth-science.net/WebPage/Article.aspx?id=3423 [29] 李波波, 杨康, 袁梅, 等, 2017.不同温度下孔隙压力对煤岩渗流特性的影响机制.地球科学, 42(8):1403-1412. http://earth-science.net/WebPage/Article.aspx?id=3616 [30] 刘德汉, 肖贤明, 田辉, 等, 2013.固体有机质拉曼光谱参数计算样品热演化程度的方法与地质应用.科学通报, 58(13):1228-1241. http://mall.cnki.net/magazine/Article/KXTB201313010.htm [31] 秦勇, 1994.中国高煤级煤的显微岩石学特征及结构演化.徐州:中国矿业大学出版社. [32] 秦勇, 1999.再论煤中大分子基本结构单元演化的拼叠作用.地学前缘, 6(增刊1):29-34. http://industry.wanfangdata.com.cn/dl/Detail/Periodical?id=Periodical_dxqy1999z1005 [33] 秦勇, 姜波, 宋党育, 等, 1998.高煤级煤碳结构13C NMR演化及其机理探讨.煤炭学报, 23(6):76-80. http://www.adearth.ac.cn/article/2014/1001-8166-2014-6-0700.html [34] 孙升林, 吴国强, 曹代勇, 等, 2014.煤系矿产资源及其发展趋势.中国煤炭地质, 26(11):1-11. doi: 10.3969/j.issn.1674-1803.2014.11.01 [35] 王丽, 张蓬洲, 1997.煤的XRD的结构分析.煤炭转化, 20(1):50-53. http://www.doc88.com/p-9793175169759.html [36] 吴娟霞, 徐华, 张锦, 2014.拉曼光谱在石墨烯结构表征中的应用.化学学报, 72(3):301-318. http://mall.cnki.net/magazine/Article/HXXB201403004.htm [37] 郑辙, 1991.煤基石墨微结构的高分辨电镜研究.矿物学报, 11(3):214-218. http://cpfd.cnki.com.cn/Article/CPFDTOTAL-SIDL199010001236.htm