Representation of H Odé Shear Deformation Theory at Nanoscale
-
摘要: 通常认为岩石是被剪破或张裂的,那么,为何我们能寻觅到位于同压力垂直方向的破裂构造呢?H Odé剪切变形理论给出一个精辟的回答:在塑性或粘-弹性变形中,由于介质的分异作用,存在一个从屈服条件中获得的速度不连续性,这样,其介质就能沿着等速的特征面剪切滑移.该理论亦称为塑性剪切作用准则,之前是从宏观-直观力学表象予以验证,如构造挤压带的破裂面、正压力下Griffith裂隙端点裂开和垂直压力下的碎裂流动等.进而,我们对花岗岩标本实施高温/高压实验,并取其位于轴压垂直方向裂隙的薄壳表层做扫描电镜观测.然后把从其表层观察的具有H Odé力学表象的微纳米现象,同一般剪切作用的屈服效应结构,从3个方面相比较鉴别.(1)粘-弹性变形:高温-高压的实验样品更容易产生塑性压缩容积流动,不仅具粘性也具弹性变形,随之,样品可展现纳米涂层作用和纳米分层作用.(2)纳米尺度结构:纳米尺度颗粒能成为单一纳米粒-纳米线-纳米层结构,且复体的纳米粒可细分成粒状的、线状的和片粒状的结构等.(3)有序组构:尽管H Odé破裂的粒化流动和纹理流动的优选方位,同普通剪切作用相比,处于弱势范畴,然而综合分析观之,这两者的屈服特征是完全一致的.反之,我们应用H Odé剪切理论去研究一些非常规的变形现象,必能拓展纳米地质学的研讨范畴和认知能力.Abstract: Generally speaking, a rock is broken by shearing action or tensile force, in that case, why can we find some fracture structures perpendicular to the pressure direction? It can be solved through H Odé shear deformation theory. In plastic (or viscous-elastic) deformation, there is a velocity discontinuity which may be gained from a yield condition due to a medium differentiation, and thus the medium can just shear slip along the characteristic planes with an equal velocity. This theory is also called the plastic shearing criteria, and it was firstly verified from a macroscopic-mesoscopic mechanics representation, including the fracture planes in compressive zone, extreme point rupture of Griffith crack under normal press, and cataclastic flow in vertical pressure. Furthermore, high temperature and high pressure (HT/HP) experiment to granite samples was carried out, and the thin shells of crack surfaces, which are perpendicular to the axle load, were taken for the SEM determination. Then the micro/nanosized phenomena observed in crack surfaces with H Odé mechanics representation are compared with the textures of general shearing yield function from three aspects. (1) Viscous-elastic deformation:the experimental specimens passed HT/HP are more likely to produce a plastic compactive volumetric flow, invloving not only viscous deformation but also elastic one. Consequently, the specimens can exhibit effects of nano-coating and nano-layering. (2) Nanosized texture:nanosized grain (with diameter 60-80 nm) can turn into single nanoparticle-nanoline-nanolayer texture, and aggregate grains may be subdivided into granular, linear granular and schistose granular textures, etc. (3) Ordered fabrication:though preferred orientations of the granular flow and streak flow in H Odé shear fractures belong to a weaker scale than common shearing, their yield characteristics are entirely corresponding with the latter from comprehensive analysis. It is suggested that H Odé shear theory can be applied to research some few unconventional deformation phenomena, and it can offer a new perspective for nanogeology researches.
-
图 1 质点间应力集中现象的光弹实验
据Berka(1982)简化;3个嵌入松脂实验材料的波利质点,相互间距为质点直径的1/10,曲线为干涉条纹
Fig. 1. A photo-elastic experiment of strain concentration phenomena between particles
图 3 三轴压力实验样品1(a,b)和样品2(c,d)纳米结构和有序组构特征的SEM图像
a.变形早期形成的纳米层状构造已变成微米级碎块,稀少的拉长的纳米颗粒呈定向排列(箭头示),且同碎块的延长方向相一致;b.纳米颗粒构成了纳米线和纳米层(箭头),单体的纳米颗粒聚集成复体的纳米颗粒和多重复体的纳米颗粒,并显现花斑状构造(图片右边尤甚);c.长的碎块和拉长的微/纳米颗粒(箭头)大体上相互平行,在一定的程度上可以表示简单剪切作用的运动方向.其中央部分,一条粘性流变的条纹横过碎块分布范围,彰显了粘-弹态H Odé剪切运动中粘性和弹性变形中存在有不协调的现象;d.H Odé剪切面展现一光滑的面,剪切摩擦形成微/纳米复体颗粒泪滴状落在屈服界面上
Fig. 3. SEM images of the nanotexture and ordered fabrication characteristics about specimen 1 (a, b) and specimen 2 (c, d) in the triaxial compression experiment
表 1 岩石单轴挤压强度测试数据
Table 1. Determining data about uniaxial pressure strength in rocks
采样地点 地层岩性 标本编号 挤压强度RP(MPa) 强度比值 破裂P1 破碎P2 粉碎P3 P2/ P1 P3/ P2 江苏无锡大鸟嘴 中下泥盆统茅山群(D1-2 m)砂岩 B-102 39.20 71.00 20.98 1.81 2.95 无锡南大浮 同上 B-108 21.74 34.39 26.08 1.56 2.50 南京江宁湖山 中石炭统黄龙组(C2 h)灰岩 B-505 20.52 26.12 30.44 1.27 1.17 南京江宁栖霞山 同上 B-306 46.79 67.14 76.71 1.43 1.12 注:河海大学工程力学系朱文弦教授协助测试. 表 2 花岗岩样品三轴压力实验参数
Table 2. Experimental parameters of triaxial compression in the granitic specimens
样品号 轴压(MPa) 围压(MPa) 温度(℃) 实验用时(h) 应变率(s-1) 样品-1 1 600 260 365 10 7.63×10-6 样品-3 1 753 320 600 10 9.72×10-6 注:中国科学院地球化学研究所吴学益教授协助测试. -
[1] Aydin, A., Borja, R. I., Eichhubl, P., 2006.Geological and Mathematical Framework for Failure Modes in Granular Rock.Journal of Structural Geology, 28(1):83-98. https://doi.org/10.1016/j.jsg.2005.07.008 [2] Berka, L., 1982.On Stress Distribution in a Structure of Polycrystals.Journal of Materials Science, 17(5):1508-1512. doi: 10.1007/BF00752267 [3] Cashman, S.M., Baldwin, J.N., Cashman, K.V., et al., 2007.Microstructures Developed by Coseismic and Aseismic Faulting in Near-Surface Sediments, San Andreas Fault, California.Geology, 35(7):611-614. https://doi.org/10.1130/G23545A.1 [4] Feng, D., 1975.Physics of Metals.Science Press, Beijing, 623-822 (in Chinese). [5] Griffith, A.A., 1921.The Phenomena of Rupture and Flow in Solids.Philosophical Transactions of the Royal Society of London.Containing Papers of a Mathematical or Physical Character (Series A), 221:163-198. https://www.wenkuxiazai.com/doc/194f4b067e21af45b307a872-2.html [6] Hills, E.L., 1961.Elements of Structural Geology.Chapman and Hall Ltd., London, 95-97. https://doi.org/10.1007/978-94-009-5843-2 [7] Hochella, M.F., 2002.Nanoscience and Technology:The Next Revolution in the Earth Sciences.Earth and Planetary Science Letters, 203(2):593-605. https://doi.org/10.1016/S0012-821X(02)00818-X [8] Ju, Y.W., Sun, Y., Wan, Q., et al., 2016.Nanogeology:A Revolutionary Challenge in Geosciences.Bulletin of Mineralogy, Petrology and Geochemistry, 35(1):1-20 (in Chinese with English abstract). http://industry.wanfangdata.com.cn/yj/Detail/Periodical?id=Periodical_kwysdqhxtb201601001 [9] Lajtai, E.Z., 1971.A Theoretical and Experimental Evaluation of the Griffith Theory of Brittle Fracture.Tectonophysics, 11(2):129-156. https://doi.org/10.1016/0040-1951(71)90060-6 [10] Lu, X.C., Sun, Y., Shu, L.S., et al., 2005.Cataclastic Rheology of Carbonate Rocks.Science China Earth Sciences, 48(8):1227-1233. doi: 10.1360/04yd0085 [11] Odé, H., 1960.Memoir.Geology Society America, 79:293-322. doi: 10.1130/MEM79 [12] Paggi, M., Reinoso, J., 2015.An Anisotropic Large Displacement Cohesive Zone Model for Fibrillar and Crazing Interfaces.International Journal of Solids and Structures, 69:106-120. https://doi.org/10.1016/j.ijsolstr.2015.04.042 [13] Reiner, M., Leaderman, H., 1960.Deformation, Strain, and Flow.Physics Today, 13:47. https://doi.org/10.1063/1.3057119 [14] Shen, B.Y., Liu, B., Liu, H.L., et al., 2016.Xiaomei Ductile Shear Zone on Hainan Island in a Nanoscale Perspective.Earth Science, 41(9):1489-1498 (in Chinese with English abstract). https://doi.org/10.3799/dqkx.2016.504 [15] Sun, Y., Han, K.C., 1985.Division of Fractured Tectonic Zone.Science Press, Beijing, 1-163 (in Chinese). [16] Sun, Y., Jiang, S.Y., Wei, Z., et al., 2013.Nano-Coating Texture on the Shear Slip Surface in Rocky Materials.Advanced Materials Research, 669:108-114. https://doi.org/10.4028/www.scientific.net/AMR.669.108 [17] Sun, Y., Jiang, S.Y., Zhou, W., et al., 2014.Mechanical Analysis and Identification Markings of Nanoparticle Distribution in Narrow Friction Zones.Trans.Tech.Publications, 924:312-318. https://doi.org/10.4028/www.scientific.net/AMR.924.312 [18] Sun, Y., Lu, X.C., Zhang, X.H., et al., 2008.Nano-Texture of Penetrative Foliation in Metamorphic Rocks.Science China Earth Sciences, 51(12):1750. https://doi.org/10.1007/s11430-008-0138-9 [19] Sun, Y., Shen, X.Z., Gou, F.Y., 1986.Observation and Experiments on the H Odé Shearing Deformation.Journal of Guilin College of Geology, 6(4):347-351 (in Chinese with English abstract). http://eprints.whiterose.ac.uk/109369/ [20] Sun, Y., Yang, S.F., Zhang, Q.L., et al., 1992.Dissipative Structures of Rock-and Ore-Forming Systems in Faults.Chinese Journal of Geochemistry, 11(2):121-132. https://doi.org/10.1007/BF02871999 [21] Thorkelson, D.J., Breitsprecher, K., 2005.Partial Melting of Slab Window Margins:Genesis of Adakitic and Non-Adakitic Magmas.Lithos, 79(1):25-41. https://doi.org/10.1016/j.lithos.2004.04.049 [22] Viti, C., Hirose, T., 2009.Dehydration Reactions and Micro/Nanostructures in Experimentally-Deformed Serpentinites.Contributions to Mineralogy and Petrology, 157(3):327-338. https://doi.org/10.1007/s00410-008-0337-6 [23] Wang, P.F., Jiang, Z.X., Li, Z., et al., 2017.Micro-Nano Pore Structure Characteristics in the Lower Cambrian Niutitang Shale, Northeast Chongqing.Earth Science, 42(7):1147-1156 (in Chinese with English abstract). https://doi.org/10.3799/dqkx.2017.093 [24] Wang, X.G., Hu, B., Tang, H.M., et al., 2016.A Constitutive Model of Granite Shear Creep under Moisture.Journal of Earth Science, 27(4):677-685. https://doi.org/10.1007/s12583V016-0709-1 [25] Yang, T.Q., Luo, W.B., Xu, P., et al., 2004.Viscoelastic Theory and Application.Science Press, Beijing, 1-414 (in Chinese). [26] Zhou, W., Jiang, S.Y., Ju, Y.W., et al., 2017.Studies on Micro/Nano-Sized Grinding Grains on Shear-Slip Surfaces in Rocks.Journal of Nanoscience and Nanotechnology, 17(9):7069-7075. https://doi.org/10.1166/jnn.2017.14527 [27] 冯端, 1975.金属物理.北京:科学出版社, 623-822. [28] 琚宜文, 孙岩, 万泉, 等, 2016.纳米地质学:地学领域革命性挑战.矿物岩石地球化学通报, 35(1):1-20. http://www.cqvip.com/QK/84215X/201601/668146269.html [29] 沈宝云, 刘兵, 刘海龄, 等, 2016.海南岛小妹韧性剪切带的纳米尺度.地球科学, 41(9):1489-1498. http://www.earth-science.net/WebPage/Article.aspx?id=3354 [30] 孙岩, 韩克丛, 1985.断裂构造岩带的划分.北京:科学出版社, 1-163. [31] 孙岩, 沈修志, 勾佛仪, 1986.H Odé剪切变形的观察和实验研究.桂林冶金地质学院学报, 6(4):347-351. http://mall.cnki.net/magazine/Article/YYLX201303011.htm [32] 王朋飞, 姜振学, 李卓, 等, 2017.渝东北下寒武统牛蹄塘组页岩微纳米孔隙结构特征.地球科学, 42(7):1147-1156. http://www.earth-science.net/WebPage/Article.aspx?id=3603 [33] 杨挺青, 罗文波, 徐平, 等, 2004.粘弹性理论与应用.北京:科学出版社, 1-414.