Nanoparticle: A Unique Geochemical Composition in Environment
-
摘要: 至少一维尺度上小于100 nm的颗粒物均称为纳米颗粒物,在人工纳米颗粒物产生的几十亿年前,地球已经通过其特有的生物地球化学过程合成各类天然纳米颗粒物.这些纳米颗粒物及其次生产物具有独特的理化特性,并参与各种地球化学过程,体现其非凡的地球化学意义.从地球化学的角度,解析了环境纳米颗粒物的定义和分类,重点阐述了风化壳与水体中天然和次生纳米颗粒物的形成,并在天然纳米颗粒物中区分了纳米矿物和矿物纳米颗粒物;同时,也讨论了大气纳米颗粒物的来源、成因与环境影响.该综述列举了目前环境中纳米颗粒物表征与鉴别的技术和方法,重点剖析了纳米颗粒物的地球化学功能和环境意义,并对该领域的研究前沿问题进行了概述.Abstract: With at least one dimension less than 100 nm, nanoparticles have been naturally synthesized through biogeochemistry processes in the earth system for billions of years.These nanoparticles have unique properties, and they can participate and thus play distinguished role in various geochemistry processes. From the geochemistry perspective, this paper elaborates the definition and classification of nanoparticles occurring in the environment, emphasizing naturally occurring nanoparticles and incidental nanoparticles in aquatic and weathering crust system, on basis of which nano-minerals are further distinguished from mineral nanoparticles. In addition, origin and formation of nanoparticles in atmosphere and related environmental impact are discussed. In this paper, it also presents current techniques and methods for the characterization and identification of environmental nanoparticles. Furthermore, the geochemistry functions of nanoparticles and their environmental implications are discussed and elucidated, and the frontier issues in this field are summarized.
-
Key words:
- naturally occurring nanoparticle /
- incidental nanoparticle /
- nano-mineral /
- geochemistry
-
图 1 某发电厂煤灰中的Magnéli相氧化钛颗粒
据Yang et al.(2017).a.TEM图; b.高分辨TEM图,显示其超细的纹理条带; c.相应的电子衍射图
Fig. 1. Magnéli phase of Ti oxides in coal ash from a coal power plant
-
[1] Alamo-Nole, L., Bailon-Ruiz, S., Perales-Perez, O., et al., 2012.Preparative Size-Exclusion Chromatography for Separation and Purification of Water-Stable Cd-Based Quantum Dots.Analytical Methods, 4(10):3127-3132. doi: 10.1039/c2ay25629k [2] Anastasio, C., Martin, S.T., 2001.Atmospheric Nanoparticles.Reviews in Mineralogy and Geochemistry, 44(1):293-349. doi: 10.2138/rmg.2001.44.08 [3] Ardondryer, K., Huang, Y.W., Cziczo, D.J., 2015.Laboratory Studies of Collection Efficiency of Sub-Micrometer Aerosol Particles by Cloud Droplets on a Single Droplet Basis.Atmospheric Chemistry and Physics, 15(16):9159-9171. doi: 10.5194/acp-15-9159-2015 [4] Baalousha, M., Lead, J.R., 2007.Characterization of Natural Aquatic Colloids (< 5 nm) by Flow-Field Flow Fractionation and Atomic Force Microscopy.Environmental Science & Technology, 41(4):1111-1117. doi: 10.1021/es061766n [5] Baalousha, M., Stolpe, B., Lead, J.R., 2011.Flow Field-Flow Fractionation for the Analysis and Characterization of Natural Colloids and Manufactured Nanoparticles in Environmental Systems:A Critical Review.Journal of Chromatography A, 1218(27):4078-4103. doi: 10.1016/j.chroma.2011.04.063 [6] Baalousha, M., Yang, Y., Vance, M.E., et al., 2016.Outdoor Urban Nanomaterials:The Emergence of a New, Integrated, and Critical Field of Study.Science of the Total Environment, 557:740-753. http://eprints.internano.org/643/ [7] Banfield, J.F., Welch, S.A., Zhang, H., et al., 2000.Aggregation-Based Crystal Growth and Microstructure Development in Natural Iron Oxyhydroxide Biomineralization Products.Science, 289(5480):751-754. doi: 10.1126/science.289.5480.751 [8] Banfield, J.F., Zhang, H., 2001.Nanoparticles in the Environment.Reviews in Mineralogy and Geochemistry, 44(1):1-58. doi: 10.2138/rmg.2001.44.01 [9] Bartczak, D., Vincent, P., Goenaga-Infante, H., 2015.Determination of Size-and Number-Based Concentration of Silica Nanoparticles in a Complex Biological Matrix by Online Techniques.Analytical Chemistry, 87(11):5482-5485. doi: 10.1021/acs.analchem.5b01052 [10] Bazylinski, D.A., Frankel, R.B., 2004.Magnetosome Formation in Prokaryotes.Nature Reviews Microbiology, 2(3):217-230. doi: 10.1038/nrmicro842 [11] Bergstrom, R.W., Pilewskie, P., Russell, P.B., et al., 2007.Spectral Absorption Properties of Atmospheric Aerosols.Atmospheric Chemistry and Physics, 7(23):5937-5943. doi: 10.5194/acp-7-5937-2007 [12] Bernhardt, E.S., Colman, B.P., Hochella, M.F., et al., 2010.An Ecological Perspective on Nanomaterial Impacts in the Environment.Journal of Environmental Quality, 39(6):1954-1965. doi: 10.2134/jeq2009.0479 [13] Buseck, P.R., Adachi, K., 2007.Nanoparticles in the Atmosphere.Elements, 4(6):389-394. https://www.researchgate.net/publication/235936925_Nanoparticles_in_the_Atmosphere [14] Chan, C.S., de Stasio, G., Welch, S.A., et al., 2004.Microbial Polysaccharides Template Assembly of Nanocrystal Fibers.Science, 303(5664):1656-1658. doi: 10.1126/science.1092098 [15] Chung, S.H., Seinfeld, J.H., 2005.Climate Response of Direct Radiative Forcing of Anthropogenic Black Carbon.Journal of Geophysical Research, 110:D11102. https://doi.org/10.1029/2004JD005441 [16] Dale, J.G., Cox, S.S., Vance, M.E., et al., 2017.Transformation of Cerium Oxide Nanoparticles from a Diesel Fuel Additive during Combustion in a Diesel Engine.Environmental Science & Technology, 51(4):1973-1980. doi: 10.1021/acs.est.6b03173 [17] Dan, Y., Shi, H., Stephan, C., et al., 2015a.Rapid Analysis of Titanium Dioxide Nanoparticles in Sunscreens Using Single Particle Inductively Coupled Plasma-Mass Spectrometry.Microchemical Journal, 122:119-126. doi: 10.1016/j.microc.2015.04.018 [18] Dan, Y., Zhang, W., Xue, R., et al., 2015b.Characterization of Gold Nanoparticle Uptake by Tomato Plants Using Enzymatic Extraction Followed by Single-Particle Inductively Coupled Plasma-Mass Spectrometry Analysis.Environmental Science & Technology, 49(5):3007-3014. doi: 10.1021/es506179e [19] Dockery, D.W., Pope, C.A., Xu, X.P., et al., 1993.An Association between Air Pollution and Mortality in Six U.S.Cities.New England Journal of Medicine, 329(24):1753-1759. doi: 10.1056/NEJM199312093292401 [20] Donovan, A.R., Adams, C.D., Ma, Y., et al., 2016.Single Particle ICP-MS Characterization of Titanium Dioxide, Silver, and Gold Nanoparticles during Drinking Water Treatment.Chemosphere, 144:148-153. doi: 10.1016/j.chemosphere.2015.07.081 [21] Dor, O., Ben-Zion, Y., Rockwell, T.K., et al., 2006.Pulverized Rocks in the Mojave Section of the San Andreas Fault Zone.Earth and Planetary Science Letters, 245(3):642-654. http://earth.usc.edu/files/htdocs/papers/benzion/Dor_etal_EPSL06.pdf [22] Fan, J., Leung, L.R., Rosenfeld, D., et al., 2013.Microphysical Effects Determine Macrophysical Response for Aerosol Impacts on Deep Convective Clouds.Proceedings of the National Academy of Sciences, 110(48):E4581-E4590. doi: 10.1073/pnas.1316830110 [23] Gallego-Urrea, J.A., Tuoriniemi, J., Hassellöv, M., 2011.Applications of Particle-Tracking Analysis to the Determination of Size Distributions and Concentrations of Nanoparticles in Environmental, Biological and Food Samples.TrAC Trends in Analytical Chemistry, 30(3):473-483. doi: 10.1016/j.trac.2011.01.005 [24] Gillespie, C., Halling, P., Edwards, D., 2011.Monitoring of Particle Growth at a Low Concentration of a Poorly Water Soluble Drug Using the Nano Sight LM20.Colloids and Surfaces A:Physicochemical and Engineering Aspects, 384(1):233-239. https://www.deepdyve.com/lp/elsevier/monitoring-of-particle-growth-at-a-low-concentration-of-a-poorly-water-GV4ifq9RWI [25] Glasauer, S., Langley, S., Beveridge, T.J., 2002.Intracellular Iron Minerals in a Dissimilatory Iron-Reducing Bacterium.Science, 295(5552):117-119. doi: 10.1126/science.1066577 [26] Gray, E.P., Coleman, J.G., Bednar, A.J., et al., 2013.Extraction and Analysis of Silver and Gold Nanoparticles from Biological Tissues Using Single Particle Inductively Coupled Plasma Mass Spectrometry.Environmental Science & Technology, 47(24):14315-14323. http://pubmed.cn/24218983 [27] Guo, H., Barnard, A.S., 2013.Naturally Occurring Iron Oxide Nanoparticles:Morphology, Surface Chemistry and Environmental Stability.Journal of Materials Chemistry A, 1(1):27-42. doi: 10.1039/C2TA00523A [28] Heal, M.R., Kumar, P., Harrison, R.M., 2012.Particles, Air Quality, Policy and Health.Chemical Society Reviews, 41(19):6606. doi: 10.1039/c2cs35076a [29] Helsper, J.P., Peters, R.J., van Bemmel, M.E., et al., 2016.Physicochemical Characterization of Titanium Dioxide Pigments Using Various Techniques for Size Determination and Asymmetric Flow Field Flow Fractionation Hyphenated with Inductively Coupled Plasma Mass Spectrometry.Analytical and Bioanalytical Chemistry, 408(24):6679-6691. doi: 10.1007/s00216-016-9783-6 [30] Hochella, M.F., Aruguete, D., Kim, B., et al., 2012.Naturally Occurring Inorganic Nanoparticles:General Assessment and a Global Budget for One of Earth's Last Unexplored Geochemical Components.In:Barnard, A.S., Guo, H.B., eds., Nature's Nanostructures.Pan Stanford Publishing, Singapore, 1-42. [31] Hochella, M.F., Lower, S.K., Maurice, P.A., et al., 2008.Nanominerals, Mineral Nanoparticles, and Earth Systems.Science, 319(5870):1631-1635. doi: 10.1126/science.1141134 [32] IPCC (Intergovernmental Panel on Climate Change), 2014. Climate Change 2014: The Physical Science Basis. Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change. [33] Jiang, G.X., Shen, Z.Y., Niu, J.F., et al., 2011.Nanotoxicity of Engineered Nanomaterials in the Environment.Progress in Chemistry, 23(8):1769-1781(in Chinese with English abstract). http://europepmc.org/articles/PMC2844666/ [34] Ju, Y.W., Sun, Y., Wan, Q., et al., 2016.Nanogeology:A Revolutionary Challenge in Geosciences.Bulletin of Mineralogy, Petrology and Geochemistry, 35(1):1-20 (in Chinese with English abstract). http://industry.wanfangdata.com.cn/yj/Detail/Periodical?id=Periodical_kwysdqhxtb201601001 [35] Kärcher, B., Yu, F., Schruder, F.P., et al., 1998.Ultrafine Aerosol Particles in Aircraft Plumes:Analysis of Growth Mechanisms.Geophysical Research Letters, 25(15):2793-2796. doi: 10.1029/98GL02114 [36] Kim, B., Levard, C., Murayama, M., et al., 2014.Integrated Approaches of X-Ray Absorption Spectroscopic and Electron Microscopic Techniques on Zinc Speciation and Characterization in a Final Sewage Sludge Product.Journal of Environmental Quality, 43(3):908-916. doi: 10.2134/jeq2013.10.0418 [37] Kim, B., Murayama, M., Colman, B.P., et al., 2012.Characterization and Environmental Implications of Nano-and Larger TiO2 Particles in Sewage Sludge, and Soils Amended with Sewage Sludge.Journal of Environmental Monitoring, 14(4):1128-1136. http://pubs.rsc.org/en/Content/ArticleLanding/EM/2012/C2EM10809G#!divAbstract [38] Kim, B., Park, C.S., Murayama, M., et al., 2010.Discovery and Characterization of Silver Sulfide Nanoparticles in Final Sewage Sludge Products.Environmental Science & Technology, 44(19):7509-7514. doi: 10.1021/es101565j [39] Kulmala, M., Vehkamäki, H., Petäjä, T., et al., 2004.Formation and Growth Rates of Ultrafine Atmospheric Particles:A Review of Observations.Journal of Aerosol Science, 35(2):143-176. doi: 10.1016/j.jaerosci.2003.10.003 [40] Kumar, P., Morawska, L., Birmili, W., et al., 2014.Ultrafine Particles in Cities.Environment International, 66:1-10. doi: 10.1016/j.envint.2014.01.013 [41] Laborda, F., Bolea, E., Jiménez-Lamana, J., 2013.Single Particle Inductively Coupled Plasma Mass Spectrometry:A Powerful Tool for Nanoanalysis.Analytical Chemistry, 86:2270-2278. http://archive-ouverte.unige.ch/unige:43632 [42] Liu, F.K., 2012.Using Size-Exclusion Chromatography to Monitor the Stabilization of Au Nanoparticles in the Presence of Salt and Organic Solvent.Chromatographia, 75(19-20):1099-1105. doi: 10.1007/s10337-012-2287-4 [43] Madden, A.S., Hochella, M.F., 2005.A Test of Geochemical Reactivity as a Function of Mineral Size:Manganese Oxidation Promoted by Hematite Nanoparticles.Geochimica et Cosmochimica Acta, 69(2):389-398. doi: 10.1016/j.gca.2004.06.035 [44] McMurry, P.H., Shepherd, M.F., Vickery, J.S., 2004.Particulate Matter Science for Policy Makers:A NARSTO Assessment.Cambridge University Press, Cambridge, 510. https://searchworks.stanford.edu/view/5754972 [45] Mehrabi, K., Nowack, B., Arroyo Rojas Dasilva, Y., et al., 2017.Improvements in Nanoparticle Tracking Analysis to Measure Particle Aggregation and Mass Distribution:A Case Study on Engineered Nanomaterial Stability in Incineration Landfill Leachates.Environmental Science & Technology, 51(10):5611-5621. doi: 10.1021/acs.est.7b00597 [46] Meier, C., Voegelin, A., Pradas del Real, A.E., et al., 2016.Transformation of Silver Nanoparticles in Sewage Sludge during Incineration.Environmental Science & Technology, 50(7):3503-3510. doi: 10.1021/acs.est.5b04804 [47] Michel, F.M., Ehm, L., Antao, S.M., et al., 2007.The Structure of Ferrihydrite, a Nanocrystalline Material.Science, 316:1726-1729. doi: 10.1126/science.1142525 [48] National Research Council (NRC), 2001.Basic Research Opportunities in Earth Science.National Academy Press, Washington, D.C.. [49] Nel, A., Xia, T., Mädler, L., et al., 2006.Toxic Potential of Materials at the Nanolevel.Science, 311(5761):622-627. doi: 10.1126/science.1114397 [50] Nodwell, L.M., Price, N.M., 2001.Direct Use of Inorganic Colloidal Iron by Marine Mixotrophic Phytoplankton.Limnology and Oceanography, 46(4):765-777. doi: 10.4319/lo.2001.46.4.0765 [51] Novikov, A.P., Kalmykov, S.N., Utsunomiya, S., et al., 2006.Colloid Transport of Plutonium in the Far-Field of the Mayak Production Association, Russia.Science, 314(5799):638-641. doi: 10.1126/science.1131307 [52] Nowack, B., Bucheli, T.D., 2007.Occurrence, Behavior and Effects of Nanoparticles in the Environment.Environmental Pollution, 150(1):5-22. doi: 10.1016/j.envpol.2007.06.006 [53] Oberdörster, G., Oberdörster, E., Oberdörster, J., 2005.Nanotoxicology:An Emerging Discipline Evolving from Studies of Ultrafine Particles.Environmental Health Perspectives, 113(7):823. doi: 10.1289/ehp.7339 [54] Pace, H.E., Rogers, N.J., Jarolimek, C., et al., 2011.Determining Transport Efficiency for the Purpose of Counting and Sizing Nanoparticles via Single Particle Inductively Coupled Plasma Mass Spectrometry.Analytical Chemistry, 83(24):9361-9369. doi: 10.1021/ac201952t [55] Pace, H.E., Rogers, N.J., Jarolimek, C., et al., 2012.Single Particle Inductively Coupled Plasma-Mass Spectrometry:A Performance Evaluation and Method Comparison in the Determination of Nanoparticle Size.Environmental Science & Technology, 46(22):12272-12280. doi: 10.1021/es301787d [56] Paydary, P., Larese-Casanova, P., 2015.Separation and Quantification of Quantum Dots and Dissolved Metal Cations by Size Exclusion Chromatography-ICP-MS.International Journal of Environmental Analytical Chemistry, 95(15):1450-1470. doi: 10.1080/03067319.2015.1114108 [57] Philippe, A., Schaumann, G.E., 2014.Interactions of Dissolved Organic Matter with Natural and Engineered Inorganic Colloids:A Review.Environmental Science & Technology, 48(16):8946-8962. doi: 10.1021/es502342r [58] Pitkänen, L., Striegel, A.M., 2016.Size-Exclusion Chromatography of Metal Nanoparticles and Quantum Dots.TrAC Trends in Analytical Chemistry, 80:311-320. doi: 10.1016/j.trac.2015.06.013 [59] Poulton, S.W., Raiswell, R., 2002.The Low-Temperature Geochemical Cycle of Iron:From Continental Fluxes to Marine Sediment Deposition.American Journal of Science, 302(9):774-805. doi: 10.2475/ajs.302.9.774 [60] Poulton, S.W., Raiswel, R., 2005.Chemical and Physical Characteristics of Iron Oxides in Riverine and Glacial Meltwater Sediments.Chemical Geology, 218(3):203-221. http://linkinghub.elsevier.com/retrieve/pii/S0009254105000288 [61] Pradas del Real, A.E., Castillo-Michel, H., Kaegi, R., et al., 2016.Fate of Ag-NPs in Sewage Sludge after Application on Agricultural Soils.Environmental Science & Technology, 50(4):1759-1768. doi: 10.1021/acs.est.5b04550 [62] Prospero, J.M., Lamb, P.J., 2003.African Droughts and Dust Transport to the Caribbean:Climate Change Implications.Science, 302(5647):1024-1027. doi: 10.1126/science.1089915 [63] Ramanathan, V., Carmichael, G., 2008.Global and Regional Climate Changes Due to Black Carbon.Nature Geoscience, 1(4):221-227. doi: 10.1038/ngeo156 [64] Rosenfeld, D., Lohmann, U., Raga, G.B., et al., 2008.Flood or Drought:How do Aerosols Affect Precipitation? Science, 321(5894):1309-1313. doi: 10.1126/science.1160606 [65] Sanchís, J., Bosch-Orea, C., Farré, M., et al., 2015.Nanoparticle Tracking Analysis Characterization and Parts-Per-quadrillion Determination of Fullerenes in River Samples from Barcelona Catchment Area.Analytical and Bioanalytical Chemistry, 407(15):4261-4275. doi: 10.1007/s00216-014-8273-y [66] Schindler, M., Hochella, M.F., 2015.Soil Memory in Mineral Surface Coatings:Environmental Processes Recorded at the Nanoscale.Geology, 43(5):415-418. doi: 10.1130/G36577.1 [67] Schindler, M., Hochella, M.F., 2016.Nanomineralogy as a New Dimension in Understanding Elusive Geochemical Processes in Soils:The Case of Low-Solubility-Index Elements.Geology, 44(7):515-518. doi: 10.1130/G37774.1 [68] Schwertfeger, D.M., Velicogna, J.R., Jesmer, A.H., et al., 2017.Extracting Metallic Nanoparticles from Soils for Quantitative Analysis:Method Development Using Engineered Silver Nanoparticles and SP-ICP-MS.Analytical Chemistry, 89(4):2505-2513. doi: 10.1021/acs.analchem.6b04668 [69] Sekine, R., Brunetti, G., Donner, E., et al., 2014.Speciation and Lability of Ag-, AgCl-, and Ag2S-Nanoparticles in Soil Determined by X-Ray Absorption Spectroscopy and Diffusive Gradients in Thin Films.Environmental Science & Technology, 49(2):897-905. http://eprints.lancs.ac.uk/82379/ [70] Smith, K.L., Robison, B.H., Helly, J.J., et al., 2007.Free-Drifting Icebergs:Hot Spots of Chemical and Biological Enrichment in the Weddell Sea.Science, 317(5837):478-482. doi: 10.1126/science.1142834 [71] Soden, B.J., Wetherald, R.T., Stenchikov, G.L., et al., 2002.Global Cooling after the Eruption of Mount Pinatubo:A Test of Climate Feedback by Water Vapor.Science, 296(5568):727-730. doi: 10.1126/science.296.5568.727 [72] Stankus, D.P., Lohse, S.E., Hutchison, J.E., et al., 2010.Interactions between Natural Organic Matter and Gold Nanoparticles Stabilized with Different Organic Capping Agents.Environmental Science & Technology, 45(8):3238-3244. http://cat.inist.fr/?aModele=afficheN&cpsidt=24098947 [73] Tinsley, B.A., Zhou, L., 2006.Initial Results of a Global Circuit Model with Variable Stratospheric and Tropospheric Aerosols.Journal of Geophysical Research:Atmospheres, 111(D16):3505-3515. doi: 10.1029/2005JD006988 [74] Tinsley, B.A., Zhou, L., 2015.Parameterization of Aerosol Scavenging Due to Atmospheric Ionization.Journal of Geophysical Research:Atmospheres, 120(16):8389-8410. doi: 10.1002/2014JD023016 [75] Tou, F., Yang, Y., Feng, J., et al., 2017.Environmental Risk Implications of Metals in Sludges from Waste Water Treatment Plants:The Discovery of Vast Stores of Metal-Containing Nanoparticles.Environmental Science & Technology, 51(9):4831-4840. doi: 10.1021/es505329q [76] Villalobos, M., Bargar, J., Sposito, G., 2005.Mechanisms of Pb (Ⅱ) Sorption on a Biogenic Manganese Oxide.Environmental Science & Technology, 39(2):569-576. https://ci.nii.ac.jp/naid/80017122527 [77] Wan, Q., Qin, Z.H., Ju, Y.W., et al., 2016.Nanogeochemistry:Origin, Recent Advances and Future Directions.Bulletin of Mineralogy, Petrology and Geochemistry, 35(1):21-27 (in Chinese with English abstract). doi: 10.1111/j.2042-3306.2012.00671.x [78] Wang, P., Menzies, N.W., Dennis, P.G., et al., 2016.Silver Nanoparticles Entering Soils via the Wastewater-Sludge-Soil Pathway Pose Low Risk to Plants but Elevated Cl Concentrations Increase Ag Bioavailability.Environmental Science & Technology, 50(15):8274-8281. http://espace.library.uq.edu.au/view/UQ:405902 [79] Wang, X.Q., Zhang, B.M., Yao, W.S., et al., 2014.Geochemical Exploration:From Nanoscale to Global-Scale Patterns.Earth Science Frontiers, 21(1):65-74 (in Chinese with English abstract). https://www.researchgate.net/publication/282788070_Geochemical_exploration_From_nanoscale_to_global-scale_patterns [80] Wang, Y.X., Tian, X.K., 2016.New Opportunities for the Study of Geology:Nano Geology.Bulletin of Mineralogy, Petrology and Geochemistry, 35(1):79-86 (in Chinese with English abstract). https://www.researchgate.net/publication/318861937_New_Opportunities_for_the_Study_of_Geology_Nano_Geology [81] Wang, Z.Y., Zhao, J., Li, N., et al., 2010.Review of Ecotoxicity and Mechanism of Engineered Nanoparticles to Aquatic Organisms.Environmental Science, 31(6):1409-1418 (in Chinese with English abstract). https://www.researchgate.net/publication/45602304_Review_of_ecotoxicity_and_mechanism_of_engineered_nanoparticles_to_aquatic_organisms [82] Wells, M.L., Goldberg, E.D., 1991.Occurrence of Small Colloids in Sea Water.Nature, 353(6342):342-344. doi: 10.1038/353342a0 [83] Wells, M.L., Goldberg, E.D., 1994.The Distribution of Colloids in the North Atlantic and Southern Oceans.Limnology and Oceanography, 39(2):286-302. doi: 10.4319/lo.1994.39.2.0286 [84] Wiesner, M.R., Plata, D.L., 2012.Environmental, Health and Safety Issues:Incinerator Filters Nanoparticles.Nature Nanotechnology, 7:487-488. doi: 10.1038/nnano.2012.133 [85] Wigginton, N.S., Haus, K.L., Hochella, M.F., 2007.Aquatic Environmental Nanoparticles.Journal of Environmental Monitoring, 9(12):1306-1316. doi: 10.1039/b712709j [86] Wilson, B., Dewers, T., Reches, Z., et al., 2005.Particle Size and Energetics of Gouge from Earthquake Rupture Zones.Nature, 434(7034):749-752. doi: 10.1038/nature03433 [87] Wise, M.E., Semeniuk, T.A., Bruintjes, R., et al., 2007.Hygroscopic Behavior of NaCl-Bearing Natural Aerosol Particles Using Environmental Transmission Electron Microscopy.Journal of Geophysical Research:Atmospheres, 112:D10224. http://espace.library.uq.edu.au/view/UQ:405902 [88] Xie, Y., Zhou, L.X., 2012.Thermodynamics and Kinetics of Adsorption of Arsenite in Acid Mining Drainage by Biogenic Secondary Iron Minerals.Acta Pedologica Sinica, 49(3):481-490(in Chinese with English abstract). http://d.wanfangdata.com.cn/Periodical_trxb201203009.aspx [89] Xu, J., Murayama, M., Roco, C.M., et al., 2016.Highly-Defective Nanocrystals of ZnS Formed via Dissimilatory Bacterial Sulfate Reduction:A Comparative Study with Their Abiogenic Analogues.Geochimica et Cosmochimica Acta, 180:1-14. doi: 10.1016/j.gca.2016.02.007 [90] Yang, Y., Chen, B., Hower, J., et al., 2017.Discovery and Ramifications of Incidental Magnéli Phase Generation and Release from Industrial Coal-Burning.Nature Communications, 8(1):194. https://doi.org/10.1038/s41467-017-00276-2 [91] Yang, Y., Colman, B.P., Bernhardt, E.S., et al., 2015.Importance of a Nanoscience Approach in the Understanding of Major Aqueous Contamination Scenarios:Case Study from a Recent Coal Ash Spill.Environmental Science & Technology, 49(6):3375-3382. doi: 10.1021/es505662q [92] Yang, Y., Vance, M., Tou, F., et al., 2016.Nanoparticles in Road Dust from Impervious Urban Surfaces:Distribution, Identification, and Environmental Implications.Environmental Science:Nano, 3(3):534-544. doi: 10.1039/C6EN00056H [93] Yang, Y., Wang, Y., Westerhoff, P., et al., 2014.Metal and Nanoparticle Occurrence in Biosolid-Amended Soils.Science of the Total Environment, 485:441-449. https://www.ncbi.nlm.nih.gov/pubmed/24742554 [94] Yu, F., Turco, R.P., 1997.The Role of Ions in the Formation and Evolution of Particles in Aircraft Plumes.Geophysical Research Letters, 24(15):1927-1930. doi: 10.1029/97GL01822 [95] Yu, F., Turco, R.P., 2001.From Molecular Clusters to Nanoparticles:Role of Ambient Ionization in Tropospheric Aerosol Formation.Journal of Geophysical Research:Atmospheres, 106(D5):4797-4814. doi: 10.1029/2000JD900539 [96] Yuan, R.M., Zhang, B.L., Xu, X.W., et al., 2014.Features and Genesis of Micro-Nanometer-Sized Grains on Shear Slip Surface of the 2008 Wenchuan Earthquake.Science China Earth Sciences, 44(8):1821-1832(in Chinese). doi: 10.1007/s11430-014-4859-7 [97] Zhou, D., Abdel-Fattah, A.I., Keller, A.A., 2012.Clay Particles Destabilize Engineered Nanoparticles in Aqueous Environments.Environmental Science & Technology, 46(14):7520-7526. doi: 10.1021/es3004427 [98] Zhou, L., Tinsley, B.A., Plemmons, A., 2009.Scavenging in Weakly Electrified Saturated and Subsaturated Clouds, Treating Aerosol Particles and Droplets as Conducting Spheres.Journal of Geophysical Research, 114(D18):4939-4952. doi: 10.1029/2008JD011527 [99] Zhou, X.X., Liu, J.F., Jiang, G.B., 2017.Elemental Mass Size Distribution for Characterization, Quantification and Identification of Trace Nanoparticles in Serum and Environmental Waters.Environmental Science & Technology, 51(7):3892-3901. doi: 10.1021/acs.est.6b05539 [100] 蒋国翔, 沈珍瑶, 牛军峰, 等, 2011.环境中典型人工纳米颗粒物毒性效应.化学进展, 23(8):1769-1781. http://manu56.magtech.com.cn/progchem/CN/abstract/abstract10676.shtml [101] 琚宜文, 孙岩, 万泉, 等, 2016.纳米地质学:地学领域革命性挑战.矿物岩石地球化学通报, 35(1):1-20. http://www.cqvip.com/QK/84215X/201601/668146269.html [102] 万泉, 覃宗华, 琚宜文, 等, 2016.纳米地球化学刍析:起源、研究进展和发展方向.矿物岩石地球化学通报, 35(1):21-27. http://industry.wanfangdata.com.cn/yj/Detail/Periodical?id=Periodical_kwysdqhxtb201601002 [103] 王学求, 张必敏, 姚文生, 等, 2014.地球化学探测:从纳米到全球.地学前缘, 21(1):65-74. http://www.cnki.com.cn/Article/CJFDTotal-DXQY201401010.htm [104] 王焰新, 田熙科, 2016.地学研究的新机遇——纳米地质学.矿物岩石地球化学通报, 35(1):79-86. http://industry.wanfangdata.com.cn/yj/Detail/Periodical?id=Periodical_kwysdqhxtb201601010 [105] 王震宇, 赵建, 李娜, 等, 2010.人工纳米颗粒对水生生物的毒性效应及其机制研究进展.环境科学, 31(6):1409-1418. http://mall.cnki.net/magazine/Article/HJKZ201006003.htm [106] 谢越, 周立祥, 2012.生物成因次生铁矿物对酸性矿山废水中三价砷的吸附.土壤学报, 49(3):481-490. doi: 10.11766/trxb201012280553 [107] 袁仁茂, 张秉良, 徐锡伟, 等, 2014.汶川地震剪切滑动面微纳米级颗粒的特征、形成机制及地震意义.中国科学:地球科学, 44(8):1821-1832. http://www.oalib.com/paper/4152475