• 中国出版政府奖提名奖

    中国百强科技报刊

    湖北出版政府奖

    中国高校百佳科技期刊

    中国最美期刊

    留言板

    尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

    姓名
    邮箱
    手机号码
    标题
    留言内容
    验证码

    微晶石墨氧化-膨胀过程中微形貌与结构变化

    孙红娟 刘波 彭同江 段佳琪

    孙红娟, 刘波, 彭同江, 段佳琪, 2018. 微晶石墨氧化-膨胀过程中微形貌与结构变化. 地球科学, 43(5): 1481-1488. doi: 10.3799/dqkx.2018.407
    引用本文: 孙红娟, 刘波, 彭同江, 段佳琪, 2018. 微晶石墨氧化-膨胀过程中微形貌与结构变化. 地球科学, 43(5): 1481-1488. doi: 10.3799/dqkx.2018.407
    Sun Hongjuan, Liu Bo, Peng Tongjiang, Duan Jiaqi, 2018. Micromorphology and Structure Changes of Microcrystalline Graphite during Process of Oxidation and Expansion. Earth Science, 43(5): 1481-1488. doi: 10.3799/dqkx.2018.407
    Citation: Sun Hongjuan, Liu Bo, Peng Tongjiang, Duan Jiaqi, 2018. Micromorphology and Structure Changes of Microcrystalline Graphite during Process of Oxidation and Expansion. Earth Science, 43(5): 1481-1488. doi: 10.3799/dqkx.2018.407

    微晶石墨氧化-膨胀过程中微形貌与结构变化

    doi: 10.3799/dqkx.2018.407
    基金项目: 

    西南科技大学龙山学术人才科研支持计划 17LZXT11

    国家自然科学基金项目 41772036

    国家自然科学基金项目 U1630132

    详细信息
      作者简介:

      孙红娟(1976-), 女, 教授, 博士, 主要从事矿物材料的晶体化学及应用研究

    • 中图分类号: P57

    Micromorphology and Structure Changes of Microcrystalline Graphite during Process of Oxidation and Expansion

    • 摘要: 为深度揭示微晶石墨氧化和膨胀过程中结构的变化规律,分别采用SEM-EDS、XRD、Raman和FTIR等测试分析手段对其产物结构进行表征研究.结果表明:微晶石墨经氧化后,层间域被撑大,结构层上接入大量的羟基、羧基和环氧基等亲水性含氧官能团.随氧化剂(KMnO4)用量增加,产物层间距、结构缺陷和无序度逐渐增大.高温膨胀后,氧化微晶石墨被还原,结构中的部分吸附水和含氧官能团被除去,结构缺陷与无序度减小,部分sp2区域得到了恢复.膨胀微晶石墨颗粒含有丰富的网络型孔隙结构,孔径集中在2~5 nm.

       

    • 图  1  HJC-C-nKP系列样品经高温膨胀后的照片

      Fig.  1.  Pictures of HJC-C-nKP samples after high temperature expansion

      图  2  膨胀微晶石墨样品的SEM图

      a.HJC-C-1.2P样品的SEM图;b.HJC-C-1.2P样品的SEM图选区放大图;c.HJC-C-1.6P样品的SEM图;d.HJC-C-1.6P样品的SEM图选区放大图

      Fig.  2.  SEM of expanded microcrystalline graphite samples

      图  3  样品HJC-C-1.6P的氮气脱吸附曲线(a)与BJH孔径分布曲线(b)

      Fig.  3.  N2 adsorption-desorption isotherms (a) and pore size distributions calculated by BHJ method (b) of HJC-C-1.6P

      图  4  微晶石墨氧化(a)和膨胀(b)后产物XRD图

      Fig.  4.  XRD of oxidized microcrystalline graphite samples (a) and expanded microcrystalline graphite samples (b)

      图  5  微晶石墨氧化(a)和膨胀(b)后产物FTIR图

      Fig.  5.  FTIR of oxidized microcrystalline graphite samples (a) and expanded microcrystalline graphite samples (b)

      图  6  微晶石墨氧化(a)和膨胀(b)后产物Raman图

      Fig.  6.  Raman diagrams of oxidized microcrystalline graphite samples (a) and expanded microcrystalline graphite samples (b)

      表  1  各膨胀微晶石墨样品的比表面积和孔容

      Table  1.   The specific surface areas and pore capacity of expanded microcrystalline graphite samples

      样品名称 BET比表面积(m2/g) 孔容(cm3/g) 平均孔径(nm)
      HJC-C-0.4P 59.88
      HJC-C-0.8P 65.89
      HJC-C-1.2P 137.53
      HJC-C-1.6P 189.75 1.02 29.33
      注:“—”表示未检测.
      下载: 导出CSV

      表  2  样品的FTIR谱图中官能团类型及波数

      Table  2.   The type of functional group and the wavenumbers in the FTIR

      官能团类型 C-OH C=C C=O C-O C-O-C H2O(OH)
      ν β ν ν ν ν ν β
      波数(cm-1) 1 048, 1 090 1 384 1 578, 1 462 1 739 1 270 880, 1 120 3 434 1 631
      下载: 导出CSV

      表  3  HJC-C-nKP系列和HJC-C-nP系列样品的Raman光谱参数

      Table  3.   Raman spectral parameters of HJC-C-nKP and HJC-C-nP samples

      样品编号 D峰(cm-1) G峰(cm-1) 峰间距(cm-1) ID/IG
      峰位 半峰宽 峰位 半峰宽
      HJC-C 1 352.21 38.01 1 581.53 22.00 229.32 0.43
      HJC-C-0.4KP 1 350.05 86.45 1 589.12 47.78 239.07 1.07
      HJC-C-0.8KP 1 349.50 93.30 1 590.34 52.27 240.84 1.14
      HJC-C-1.2KP 1 351.20 115.96 1 589.39 65.75 238.19 1.29
      HJC-C-1.6KP 1 354.96 130.20 1 587.16 74.78 232.20 1.44
      HJC-C-0.4P 1 356.43 70.79 1 583.27 30.92 226.84 0.88
      HJC-C-0.8P 1 356.61 69.51 1 589.80 54.40 233.19 1.15
      HJC-C-1.2P 1 355.10 89.74 1 586.34 54.18 231.24 1.15
      HJC-C-1.6P 1 355.29 123.53 1 588.52 67.38 233.23 1.40
      下载: 导出CSV
    • [1] Acik, M., Lee, G., Mattevi, C., et al., 2011.The Role of Oxygen during Thermal Reduction of Graphene Oxide Studied by Infrared Absorption Spectroscopy.The Journal of Physical Chemistry C, 115(40):19761-19781. https://doi.org/10.1021/jp2052618
      [2] Blechta, V., Mergl, M., Drogowska, K., et al., 2016.NO2 Sensor with a Graphite Nanopowder Working Electrode.Sensors & Actuators B:Chemical, 226:299-304. https://doi.org/10.1016/j.snb.2015.11.130
      [3] Bourlinos, A.B., Gournis, D., Petridis, D., et al., 2003.Graphite Oxide:Chemical Reduction to Graphite and Surface Modification with Primary Aliphatic Amines and Amino Acids.Langmuir, 19(15):6050-6055. https://doi.org/10.1021/la026525h
      [4] Duan, J.Q., Sun, H.J., Peng, T.J., 2017.Purification of Microcrystalline Graphite by Ultrasonic Treatment and Mixed Acid.Non-Metallic Mines, 40(1):58-61 (in Chinese with English abstract). doi: 10.1080/01496395.2016.1206933
      [5] Fang, Q., Hong, H.L., Zhao, L.L., et al., 2018.Climatic Implication of Authigenic Minerals Formed during Pedogenic Weathering Processes.Earth Science, 43(3):753-769 (in Chinese with English abstract). https://doi.org/10.3799/dqkx.2018.905
      [6] Feng, M.Z., Peng, T.J., Sun, H.J., at al., 2016.Effect of Oxidation Degree on Structure and Cation Exchange Capacity of Graphite Oxide.Chinese Journal of Inorganic Chemistry, 32(3):427-433 (in Chinese with English abstract). doi: 10.1021/jp027500u
      [7] Jian, Z.M., Liu, H.B., Kuang, J.C., et al., 2012.Natural Flake Graphite Modified by Mild Oxidation and Carbon Coating Treatment as Anode Material for Lithium Ion Batteries.Procedia Engineering, 27:55-62. https://doi.org/10.1016/j.proeng.2011.12.424
      [8] Kim, H.M., Kim, K.M., Lee, K.H., et al., 2012.Nano-Bio Interaction between Graphite Oxide Nanoparticles and Human Blood Components.European Journal of Inorganic Chemistry, (32):5343-5349. https://doi.org/10.1002/ejic.201200587
      [9] Kim, K.J., Lee, T.S., Kim, H.G., et al., 2014.A Hard Carbon/Microcrystalline Graphite/Carbon Composite with a Core-Shell Structure as Novel Anode Materials for Lithium-Ion Batteries.Electrochimica Acta, 135(22):27-34. https://doi.org/10.1016/j.electacta.2014.04.171
      [10] Kuan, C.F., Tsai, K.C., Chen, C.H., et al., 2012.Preparation of Expandable Graphite via H2O2-Hydrothermal Process and Its Effect on Properties of High-Density Polyethylene Composites.Polymer Composites, 33(6):872-880. https://doi.org/10.1002/pc.22224
      [11] Lin, Y.X., Huang, Z.H., Yu, X.L., et al., 2014.Mildly Expanded Graphite for Anode Materials of Lithium Ion Battery Synthesized with Perchloric Acid.Electrochimica Acta, 116(2):170-174. https://doi.org/10.1016/j.electacta.2013.11.057
      [12] Malliga, T.V., Rajasekhar, R.V.J., 2017.Preparation and Characterization of Nanographite-and Cuo-Based Absorber and Performance Evaluation of Solar Air-Heating Collector.Journal of Thermal Analysis & Calorimetry, 129(1):233-240. https://doi.org/10.1007/s10973-017-6155-1
      [13] McAllister, M.J., Li, J.L., Adamson, D.H., et al., 2007.Single Sheet Functionalized Graphene by Oxidation and Thermal Expansion of Graphite.Chemistry of Materials, 19(18):4396-4404. https://doi.org/10.1021/cm0630800
      [14] Pang, X.Y., Tian, Y., Weng, M.Q., 2015.Preparation of Expandable Graphite with Silicate Assistant Intercalation and Its Effect on Flame Retardancy of Ethylene Vinyl Acetate Composite.Polymer Composites, 36(8):1407-1416. https://doi.org/10.1002/pc.23047
      [15] Park, S., Lee, K.S., Bozoklu, G., et al., 2008.Graphene Oxide Papers Modified by Divalent Ions-Enhancing Mechanical Properties via Chemical Cross-Linking.ACS Nano, 2(3):572-578. https://doi.org/10.1021/nn700349a
      [16] Park, T.H., Yeo, J.S., Seo, M.H., et al., 2013.Enhancing the Rate Performance of Graphite Anodes through Addition of Natural Graphite/Carbon Nanofibers in Lithium-Ion Batteries.Electrochimica Acta, 93:236-240. https://doi.org/10.1016/j.electacta.2012.12.124
      [17] Pielichowska, K., Bieda, J., Szatkowski, P., 2016.Polyurethane/Graphite Nano-Platelet Composites for Thermal Energy Storage.Renewable Energy, 91:456-465. https://doi.org/10.1016/j.renene.2016.01.076
      [18] Saji, J., Khare, A., Mahapatra, S.P., 2015.Impedance and Dielectric Spectroscopy of Nano-Graphite Reinforced Silicon Elastomer Nanocomposites.Fibers & Polymers, 16(4):883-893. https://doi.org/10.1007/s12221-015-0883-2
      [19] She, Z., Yang, F., Liu, W., et al., 2016.The Termination and Aftermath of the Lomagundi-Jatuli Carbon Isotope Excursions in the Paleoproterozoic Hutuo Group, North China.Journal of Earth Science, 27(2):297-316. https://doi.org/10.1007/s12583-015-0654-4
      [20] Shen, K., Huang, Z.H., Hu, K.X., et al., 2015.Advantages of Natural Microcrystalline Graphite Filler over Petroleum Coke in Isotropic Graphite Preparation.Carbon, 90:197-206. https://doi.org/10.1016/j.carbon.2015.03.068
      [21] Strom, T.A., Dillon, E.P., Hamilton, C.E., et al., 2010.Nitrene Addition to Exfoliated Graphene:A One-Step Route to Highly Functionalized Graphene.Chemical Communications, 46(23):4097-4099. https://doi.org/10.1039/C001488E
      [22] Wang, J., Huang, J., Yan, R., et al., 2015.Graphene Microsheets from Natural Microcrystalline Graphite Minerals:Scalable Synthesis and Unusual Energy Storage.Journal of Materials Chemistry A, 3(6):3144-3150. https://doi.org/10.1039/C4TA06332E
      [23] Wang, J.J., Li, G.Z., Feng, L.J., et al., 2017.Nano-Graphite Controlling Properties of Novel Composites with Damping-Absorption Functions and Storage-Loss Behaviors:Nano-Graphite/Pzt-Pmn-Pnn/Rtv.Current Applied Physics, 17(2):130-136. https://doi.org/10.1016/j.cap.2016.11.019
      [24] Xian, H.Y., Peng, T.J., Sun, H.J., et al., 2015.Mineralogical Characteristics of Some Typical Graphite Samples in China.Acta Mineralogica Sinica, 35(3):395-405(in Chinese with English abstract). http://www.journalssystem.com/ppmp/Mineralogical-characteristics-of-metallurgical-dust-in-the-vicinity-of-Glogow,79500,0,2.html
      [25] Xian, H.Y., Peng, T.J., Sun, H.J., et al., 2015.Preparation, Characterization and Supercapacitive Performance of Graphene Nanosheets from Microcrystalline Graphite.Journal of Materials Science Materials in Electronics, 26(1):242-249. https://doi.org/10.1007/s10854-014-2391-3
      [26] Xu, L.L., Jin, Z.M., Mei, S.H., 2017.Deformation-DIA Coupled with Synchrotron X-Ray Diffraction and Its Applications to Deformation Experiments of Minerals at High Temperature and High Pressure.Earth Science, 42(6):974-989 (in Chinese with English abstract). https://doi.org/10.3799/dqkx.2017.078
      [27] Ying, Z.R., Lin, X.M., Qi, Y., et al., 2008.Preparation and Characterization of Low-Temperature Expandable Graphite.Materials Research Bulletin, 43(10):2677-2686. https://doi.org/10.1016/j.materresbull.2007.10.027
      [28] Zhang, B., Li, F., Wu, T., et al., 2015.Adsorption of P-Nitrophenol from Aqueous Solutions Using Nanographite Oxide.Colloids & Surfaces A:Physicochemical & Engineering Aspects, 464:78-88. https://doi.org/10.1016/j.colsurfa.2014.10.020
      [29] Zhang, F.S., Zhao, Q., Yan, X., et al., 2016.Rapid Preparation of Expanded Graphite by Microwave Irradiation for the Extraction of Triazine Herbicides in Milk Samples.Food Chemistry, 197:943-949. https://doi.org/10.1016/j.foodchem.2015.11.056
      [30] 段佳琪, 孙红娟, 彭同江, 2017.超声-混酸法提纯微晶石墨.非金属矿, 40(1):58-61. http://www.cnki.com.cn/Article/CJFDTotal-TSJS201405009.htm
      [31] 方谦, 洪汉烈, 赵璐璐, 等, 2018.风化成土过程中自生矿物的气候指示意义.地球科学, 43(3):753-769. http://www.earth-science.net/WebPage/Article.aspx?id=3766
      [32] 冯明珠, 彭同江, 孙红娟, 等, 2016.氧化程度对氧化石墨结构与阳离子交换容量的影响.无机化学学报, 32(3):427-433. doi: 10.11862/CJIC.2016.047
      [33] 鲜海洋, 彭同江, 孙红娟, 等, 2015.我国若干典型石墨矿山石墨的矿物学特征.矿物学报, 35(3):395-405. http://industry.wanfangdata.com.cn/yj/Detail/Periodical?id=Periodical_kwxb201503017
      [34] 许丽丽, 金振民, Mei, S.H., 2017.D-DIA装置与同步辐射源结合技术及其在矿物高温高压变形实验中的应用.地球科学, 42(6):974-989. http://www.earth-science.net/WebPage/Article.aspx?id=3591
    • 加载中
    图(6) / 表(3)
    计量
    • 文章访问数:  5246
    • HTML全文浏览量:  1965
    • PDF下载量:  31
    • 被引次数: 0
    出版历程
    • 收稿日期:  2017-10-01
    • 刊出日期:  2018-05-15

    目录

      /

      返回文章
      返回