• 中国出版政府奖提名奖

    中国百强科技报刊

    湖北出版政府奖

    中国高校百佳科技期刊

    中国最美期刊

    留言板

    尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

    姓名
    邮箱
    手机号码
    标题
    留言内容
    验证码

    NAMs柯石英中结构水的红外光谱和第一性原理计算

    刘卫平 吴秀玲 张晓玲 陈龙 孟大维

    刘卫平, 吴秀玲, 张晓玲, 陈龙, 孟大维, 2018. NAMs柯石英中结构水的红外光谱和第一性原理计算. 地球科学, 43(5): 1474-1480. doi: 10.3799/dqkx.2018.406
    引用本文: 刘卫平, 吴秀玲, 张晓玲, 陈龙, 孟大维, 2018. NAMs柯石英中结构水的红外光谱和第一性原理计算. 地球科学, 43(5): 1474-1480. doi: 10.3799/dqkx.2018.406
    Liu Weiping, Wu Xiuling, Zhang Xiaoling, Chen Long, Meng Dawei, 2018. Micro-FTIR Analysis and First-Principle Calculation of Structural Water in Coesite from NAMs. Earth Science, 43(5): 1474-1480. doi: 10.3799/dqkx.2018.406
    Citation: Liu Weiping, Wu Xiuling, Zhang Xiaoling, Chen Long, Meng Dawei, 2018. Micro-FTIR Analysis and First-Principle Calculation of Structural Water in Coesite from NAMs. Earth Science, 43(5): 1474-1480. doi: 10.3799/dqkx.2018.406

    NAMs柯石英中结构水的红外光谱和第一性原理计算

    doi: 10.3799/dqkx.2018.406
    基金项目: 

    国家自然科学基金项目 41472042

    国家自然科学基金项目 41172051

    详细信息
      作者简介:

      刘卫平(1974-), 男, 博士研究生, 主要从事矿物材料的微结构及其表征、模拟计算方面的研究

      通讯作者:

      孟大维

    • 中图分类号: P575

    Micro-FTIR Analysis and First-Principle Calculation of Structural Water in Coesite from NAMs

    • 摘要: 从微观尺度研究结构水的分布状态可以为超高压变质岩的形成环境、构造演化动力学过程提供重要的依据.为探讨大别山地区超高压变质岩中"名义上无水矿物"(nominal anhydrous minerals,NAMs)结构水的分布特征、赋存状态与超微结构缺陷的关系,对大别山石马地区榴辉岩中的柯石英进行了傅立叶变换红外光谱(FTIR)分析和第一性原理计算.FTIR研究表明柯石英主要吸收峰为(Ⅰ)3 561~3 580 cm-1、(Ⅱ)3 433~3 462 cm-1和(Ⅲ)3 412~3 425 cm-1;柯石英颗粒结构水含量为15×10-6~52×10-6,平均值是32×10-6.第一性原理理论计算得到了柯石英(4H)Si和(AlH)Si复合缺陷超晶胞模型(2×1×1)的形成能分别是-4.92 eV和-3.10 eV;含氢缺陷模型计算结果得到3 526 cm-1和3 198 cm-1的拉曼峰与柯石英的合成实验结果基本符合.FTIR分析表明石马地区柯石英结构水含量具有不均一性;模拟计算得到(4H)Si复合缺陷模型比(AlH)Si有更低的复合缺陷形成能,有更加稳定的结构,柯石英结构水中(OH)4$ \Leftrightarrow $Si氢结合机制是优先模式,为实验研究提供理论依据.

       

    • 图  1  大别山地区岩石构造单元图

      董火根和郭振宇(1996).1.各构造单元(Ⅰ.北大别岛弧杂岩;Ⅱ.中大别碰撞杂岩;Ⅲ.南大别活化盖层和扬子大陆基底;Ⅳ.古生界弧后盆地;Ⅴ.扬子大陆前陆逆掩带);2.超高压变质岩;3.镁铁-超镁铁质岩;4.中生代花岗岩基;5.晚中生代碱性花岗岩;6.主要断裂带

      Fig.  1.  Tectonic units in Dabie Mountains

      图  2  榴辉岩中柯石英的显微光学照片

      Omp.绿辉石;Coe.柯石英;Qtz.石英;Grt.石榴石

      Fig.  2.  Microphotograph of coesite in eclogites

      图  3  石马地区柯石英的典型红外光谱图

      Fig.  3.  Representative IR spectra of coesite samples from Shima area

      图  4  (a)和(b)分别代表柯石英(4H)Si、(AlH)Si复合缺陷超晶胞模型(2×1×1)

      黄色、红色、白色和紫色分别代表Si、O、H和Al原子

      Fig.  4.  Defective crystals containing (4H)Si (a), (AlH)Si (b) vacancies in coesite (2×1×1) supercell

      图  5  柯石英(4H)Si和(AlH)Si缺陷模型理论计算的拉曼光谱图

      Fig.  5.  Theoretical Raman spectra of (4H)Si and (AlH)Si defect in coesite

      表  1  大别山石马地区柯石英的红外光谱分析结果

      Table  1.   FTIR analysis of coesite in Shima area of Dabie Mountains, China

      样品 厚度(mm) 位置 组Ⅰ(3 561~3 580 cm-1) 组Ⅱ(3 433~3 462 cm-1) 组Ⅲ(3 412~3 425 cm-1) 结构水含量(10-6)
      强度 FWHH Area 强度 FWHH Area 强度 FWHH Area
      SM-1 0.140 C 0.187 61.87 12.330 - - - 0.257 77.29 4.72 52±(3)
      R 0.223 39.37 9.330 0.057 25.67 1.57 - - - 15±(1)
      SM-2 0.210 C 0.110 90.29 9.820 0.045 53.71 2.60 0.076 68.02 6.56 33±(2)
      R 0.082 44.36 3.290 0.062 48.75 2.82 0.064 44.64 3.23 28±(2)
      SM-3 0.100 C 0.053 17.36 1.028 0.057 34.71 12.41 0.058 30.77 2.56 27±(2)
      R 0.075 87.68 7.770 - - - 0.068 28.79 4.80 38±(2)
      下载: 导出CSV

      表  2  理想情况、(4H)Si、(AlH)Si含氢缺陷的柯石英分别对应的超晶胞能量及复合缺陷形成能

      Table  2.   Total energy, vacancy formation energy of ideal model, (4H)Si and (AlH)Si hydrogen complex defects coesite supercells

      模型 E(eV) δE(eV)
      理想 -31 137.13 -
      (4H)Si -31 090.15 -4.92
      (AlH)Si -31 104.50 -3.10
      下载: 导出CSV
    • [1] Bell, D.R., Rossman, G.R., 1992.Water in Earth's Mantle:The Role of Nominally Anhydrous Mminerals.Science, 255(5050):1391-1397. doi: 10.1126/science.255.5050.1391
      [2] Bell, D.R., Rossman, G.R., Moore, R.O., 2004.Abundance and Partitioning of OH in a High-Pressure Magmatic System:Megacrysts from the Monastery Kimberlite, South Africa.Journal of Petrology, 45(8):1539-1564. doi: 10.1093/petrology/egh015
      [3] Deon, F., Koch-Müller, M., Hövelmann, J., et al., 2009.Coupled Boron and Hydrogenincorporation in Coesite.European Journal of Mineralogy, 21(1):9-16. doi: 10.1127/0935-1221/2009/0021-1843
      [4] Dong, H.G., Guo, Z.Y., 1996.Structural Aspects of Ultrahigh-Pressure Metamorphic Rocks at Shuanghe, Dabie Mountains, China.Science China Earth Sciences, 26(Suppl.):89-96 (in Chinese with English abstract). http://api.elsevier.com/content/article/PII:S0012825202001332?httpAccept=text/xml
      [5] Huang, X.G., Xu, Y.S., Karoto, S.I., 2005.Water Content in the Transition Zone from Electrical Conductivity of Wadsleyite and Ringwoodite.Nature, 434(7034):746-749. doi: 10.1038/nature03426
      [6] Katayama, I., Karato, S., Brandon, M., 2005.Evidence of High Water Content in the Upper Mantle Inferred from Deformation Microstructures.Geology, 33(7):613-616. doi: 10.1130/G21332.1
      [7] Katayama, I., Nakashima, S., Yurimoto, H., 2006.Water Content in Natural Eclogite and Implication for Water Transport into the Deep Upper Mantle.Lithos, 86(3):245-259. http://www.sciencedirect.com/science/article/pii/S0024493705001490#!
      [8] Keppler, H., Smyth, J.R., 2006.Water in Nominally Anhydrous Minerals.Rev.Mineral.Geochem., 62:1-478. doi: 10.2138/rmg.2006.62.1
      [9] Koch-Müller, M., Dera, P., Fei, Y., et al., 2003.OH-in Synthetic and Natural Coesite.American Mineralogist, 88(10):1436-1445. doi: 10.2138/am-2003-1007
      [10] Koch-Müller, M., Fei, Y., Hauri E., et al., 2001.Location and Quantitative Analysis of OH in Coesite.Physics and Chemistry of Minerals, 28(10):693-705. doi: 10.1007/s002690100195
      [11] Lathe, C., Koch-Müller, M., Wirth, R., et al., 2005.The Influence of OH in Coesite on the Kinetics of the Coesite-Quartz Phase Transition.American Mineralogist, 90(1):36-43. doi: 10.2138/am.2005.1662
      [12] Lu, R., Keppler, H., 1997.Water Solubility in Pyrope to 100 kbar.Contributionsto Mineralogy and Petrology, 129(1):35-42. doi: 10.1007/s004100050321
      [13] Mosenfelder, J.L., 2000.Pressure Dependence of Hydroxyl Solubility in Coesite.Physics and Chemistry of Minerals, 27(9):610-617. doi: 10.1007/s002690000105
      [14] Mosenfelder, J.L., Schertl, H.P., Smyth, J.R., et al., 2005.Factors in the Preservation of Coesite:The Importance of Fluid Filtration.American Mineralogist, 90(5):779-789. http://ammin.geoscienceworld.org/content/90/5-6/779.abstract
      [15] Rossman, G.R., Smyth, J.R., 1990.Hydroxyl Contents of Accessory Minerals in Mantle Eclogites and Related Rocks.American Mineralogist, 75(7):775-780. http://www.osti.gov/scitech/biblio/6304281
      [16] Sheng, Y.M., Xia, Q.K., Hao, Y.D., et al., 2005.Water in UHP Eclogites at Shuanghe, Dabieshan:Micro-FTIR Analysis.Earth Science, 30(6):673-684 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-DZXE200201001.htm
      [17] Su, W., You, Z.D., Cong, B.L., et al., 2002.Cluster of Water Molecules in Garnet from Ultrahigh Pressure Eclogites.Geology, 30(7):611-614. doi: 10.1130/0091-7613(2002)030<0611:COWMIG>2.0.CO;2
      [18] Su, W., You, Z.D., Cong, B.L., et al., 2003.Roles of Water in Deformed Omphacite in UHP Eclogite from Dabie Mountains, Eastern China.Acta Geologica Sinica, 77(3):320-325. doi: 10.1111/acgs.2003.77.issue-3
      [19] Tian, Y., Xie, G.G., Wang, L.Z., et al., 2015.Provenance and Tectonic Settings of Triassic Xujiahe Formation in Qiyueshan Area, Southwest Hubei:Evidences from Petrology, Geochemistry and Zircon U-Pb Ages of Clastic Rocks.Earth Science, 40(12):2021-2036 (in Chinese with English abstract). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=dqkx201512006
      [20] Withers, A.C., Wood, B.J., Carroll, M.R., 1998.The OH Content of Pyrope at High Pressure.Chemical Geology, 147(1):161-171. http://www.sciencedirect.com/science/article/pii/S0009254197001794
      [21] Xia, Q.K., 2005.Water in the Deep Subducted Continental Plate:Message from NAMs.Bulletin of Mineralogy, Petrology and Geochemistry, 24(1):1-6 (in Chinese with English abstract). doi: 10.1029/92TC02641
      [22] Xia, Q.K., Sheng, Y.M., Yang, X.Z., et al., 2005.Heterogeneity of Water in Garnets from UHP Eclogites, Eastern Dabieshan, China.Chemical Geology, 224(4):237-246. doi: 10.1016/j.chemgeo.2005.08.003
      [23] Xu, H.J., Zhao, S.T., Wu, Y., 2016.Microstructure and Mechanism of Quartz Exsolution in Clinopyroxene.Earth Science, 41(6):948-970 (in Chinese with English abstract). https://www.deepdyve.com/lp/elsevier/exsolution-and-coarsening-in-iron-free-clinopyroxene-during-isothermal-V7T8JGtcxP
      [24] Xu, W., Liu, X.W., Jin, Z.M., 2006.Water in UHP Eclogites at CCSD:FTIR Analysis.Earth Science, 31(6):830-838 (in Chinese with English abstract). https://www.researchgate.net/publication/287907410_Water_in_UHP_eclogites_at_CCSD_FTIR_analysis
      [25] Yang, X.Z., Xia, Q.K., Yu, H.M., et al., 2006.The Possible Effect of Hydrogen on the High Electrical Conductivity in the Lower Continental Crust.Advances in Earth Science, 21(1):31-38 (in Chinese with English abstract). http://www.sciencedirect.com/science/article/pii/S0031920114000995
      [26] You, Z.D., Zhong, Z.Q., Suo, S.T., 2007.The Mineralogical Criteria for Ultra-High Pressure Metamorphism.Geoscience, 21(2):195-202 (in Chinese with English abstract). http://jglobal.jst.go.jp/public/200902235181780435
      [27] You, Z.D., Zhong, Z.Q., Tang, Z.D., et al., 1996.Corrosion-Reaction Margin with Inversion of Polysynthetic Twinning of Plagioclase in Migmatites:An Example from Quartzofeldspathic Gneiss in Dabieshan.Earth Science, 21(5):513-518 (in Chinese with English abstract).
      [28] Zhang, J.F., Green Ⅱ, H.W., Bizhilov, K., et al., 2004.Faulting Induced by Precipitation of Water at Grain Boundaries in Hot Subducting Oceanic Crust.Nature, 428(6983):633-636. doi: 10.1038/nature02475
      [29] Zhang, J.F., Jin, Z.M., Green Ⅱ, H.W., 2005.Hydroxyl Induced Eclogite Fabric and Deformation Mechanism.Chinese Science Bulletin, 50(6):559-564 (in Chinese with English abstract). doi: 10.1360/982004-274.pdf
      [30] Zhang, J.F., Jin, Z.M., Green Ⅱ, H.W., et al., 2001.Hydroxyl in Continental Deep Subduction Zones:Evidences from UHP Eclogites of Dabie Mountains.Chinese Science Bulletin, 46(7):592-596. doi: 10.1007/BF02900418
      [31] Zhang, X.L., Meng, D.W., Chen, L., et al., 2017.Mechanisms of Incorporation of Hydroxyl in Coesite.Journal of Nanoscience and Nanotechnology, 17(9):6716-6720. doi: 10.1166/jnn.2017.14519
      [32] 董火根, 郭振宇, 1996.大别山双河超高压变质岩变形构造.中国科学:地球科学, 26(增刊):89-96. http://www.oalib.com/paper/4152252
      [33] 盛英明, 夏群科, 郝艳东, 等, 2005.大别山双河超高压榴辉岩中的水:微区红外光谱分析.地球科学, 30(6):673-684. http://www.earth-science.net/WebPage/Article.aspx?id=1521
      [34] 田洋, 谢国刚, 王令占, 等, 2015.鄂西南齐岳山须家河组物源及构造背景:来自岩石学、地球化学和锆石年代学的制约.地球科学, 40(12):2021-2036. http://www.earth-science.net/WebPage/Article.aspx?id=3206
      [35] 夏群科, 2005.大陆深俯冲过程中的水:"名义上无水矿物"的信息.矿物岩石地球化学通报, 24(1):1-6. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=kwysdqhxtb200501001
      [36] 徐海军, 赵素涛, 武云, 2016.单斜辉石中石英出溶体的显微结构和成因机制.地球科学, 41(6):948-970. http://www.earth-science.net/WebPage/Article.aspx?id=3310
      [37] 徐薇, 刘祥文, 金振民, 2006.CCSD超高压榴辉岩中的水:红外光谱分析.地球科学, 31(6):830-838. http://www.earth-science.net/WebPage/Article.aspx?id=1646
      [38] 杨晓志, 夏群科, 于慧敏, 等, 2006.大陆下地壳高电导率的起源:矿物中的结构水.地球科学进展, 21(1):31-38. doi: 10.11867/j.issn.1001-8166.2006.01.0031
      [39] 游振东, 钟增球, 索书田, 2007.论超高压变质的矿物学标志.现代地质, 21(2):195-202. http://mall.cnki.net/magazine/Article/XDDZ200702004.htm
      [40] 游振东, 钟增球, 汤中道, 等, 1996.混合岩中斜长石的交代净边结构和倒转双晶研究——以大别罗田黄土岭长英片麻岩为例.地球科学, 21(5):513-518. http://www.earth-science.net/WebPage/Article.aspx?id=416
      [41] 章军锋, 金振民, Green Ⅱ, H.W., 2005.结构水引起的榴辉岩变形组构和变形机制.科学通报, 50(6):559-564. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=kxtb200506010
    • 加载中
    图(5) / 表(2)
    计量
    • 文章访问数:  4210
    • HTML全文浏览量:  1782
    • PDF下载量:  14
    • 被引次数: 0
    出版历程
    • 收稿日期:  2017-11-01
    • 刊出日期:  2018-05-15

    目录

      /

      返回文章
      返回