Micro-FTIR Analysis and First-Principle Calculation of Structural Water in Coesite from NAMs
-
摘要: 从微观尺度研究结构水的分布状态可以为超高压变质岩的形成环境、构造演化动力学过程提供重要的依据.为探讨大别山地区超高压变质岩中"名义上无水矿物"(nominal anhydrous minerals,NAMs)结构水的分布特征、赋存状态与超微结构缺陷的关系,对大别山石马地区榴辉岩中的柯石英进行了傅立叶变换红外光谱(FTIR)分析和第一性原理计算.FTIR研究表明柯石英主要吸收峰为(Ⅰ)3 561~3 580 cm-1、(Ⅱ)3 433~3 462 cm-1和(Ⅲ)3 412~3 425 cm-1;柯石英颗粒结构水含量为15×10-6~52×10-6,平均值是32×10-6.第一性原理理论计算得到了柯石英(4H)Si和(AlH)Si复合缺陷超晶胞模型(2×1×1)的形成能分别是-4.92 eV和-3.10 eV;含氢缺陷模型计算结果得到3 526 cm-1和3 198 cm-1的拉曼峰与柯石英的合成实验结果基本符合.FTIR分析表明石马地区柯石英结构水含量具有不均一性;模拟计算得到(4H)Si复合缺陷模型比(AlH)Si有更低的复合缺陷形成能,有更加稳定的结构,柯石英结构水中(OH)4$ \Leftrightarrow $Si氢结合机制是优先模式,为实验研究提供理论依据.Abstract: The study of the distribution of structural water at microscopic scale can provide important evidences for the formation environment and tectonic evolution dynamics of UHP metamorphic rocks.In order to investigate the distribution characteristics and the relationship between occurrence state and microstructure defects of "nominal anhydrous minerals" (NAMs) structure water in ultrahigh pressure metamorphic rocks from Dabie Mountains, the NAMs such as coesite in eclogites of the Shima area from Dabie Mountains were studied by FTIR analysis and first-principle calculations. FTIR studies show that the main absorption peaks of coesite are (Ⅰ) 3 561-3 580 cm-1, (Ⅱ) 3 433-3 462 cm-1 and (Ⅲ) 3 412-3 425 cm-1 respectively. The structural water content of the coesites in Shima is 15×10-6-52×10-6, with an average of 32×10-6. The vacancy formation energies of the (4H)Si and (AlH)Si complex defect coesite supercells (2×1×1) calculated by the first principle are -4.92 eV and -3.10 eV respectively. The Raman peaks at 3 526 and 3 198 cm-1 in the hydrogen-containing defect models of coesite are consistent with the experimental results. The vacancy defect formation energy of the (4H)Si complex defect model is lower, which is the more stable structure than (AlH)Si. Moreover, the (OH)4$ \Leftrightarrow $Si hydrogen bonding mechanism is a preferential model, which provides the theoretical basis for the experimental research.
-
Key words:
- coesite /
- structural water /
- infrared spectroscopy /
- first-principle calculation /
- mineralogy
-
图 1 大别山地区岩石构造单元图
据董火根和郭振宇(1996).1.各构造单元(Ⅰ.北大别岛弧杂岩;Ⅱ.中大别碰撞杂岩;Ⅲ.南大别活化盖层和扬子大陆基底;Ⅳ.古生界弧后盆地;Ⅴ.扬子大陆前陆逆掩带);2.超高压变质岩;3.镁铁-超镁铁质岩;4.中生代花岗岩基;5.晚中生代碱性花岗岩;6.主要断裂带
Fig. 1. Tectonic units in Dabie Mountains
表 1 大别山石马地区柯石英的红外光谱分析结果
Table 1. FTIR analysis of coesite in Shima area of Dabie Mountains, China
样品 厚度(mm) 位置 组Ⅰ(3 561~3 580 cm-1) 组Ⅱ(3 433~3 462 cm-1) 组Ⅲ(3 412~3 425 cm-1) 结构水含量(10-6) 强度 FWHH Area 强度 FWHH Area 强度 FWHH Area SM-1 0.140 C 0.187 61.87 12.330 - - - 0.257 77.29 4.72 52±(3) R 0.223 39.37 9.330 0.057 25.67 1.57 - - - 15±(1) SM-2 0.210 C 0.110 90.29 9.820 0.045 53.71 2.60 0.076 68.02 6.56 33±(2) R 0.082 44.36 3.290 0.062 48.75 2.82 0.064 44.64 3.23 28±(2) SM-3 0.100 C 0.053 17.36 1.028 0.057 34.71 12.41 0.058 30.77 2.56 27±(2) R 0.075 87.68 7.770 - - - 0.068 28.79 4.80 38±(2) 表 2 理想情况、(4H)Si、(AlH)Si含氢缺陷的柯石英分别对应的超晶胞能量及复合缺陷形成能
Table 2. Total energy, vacancy formation energy of ideal model, (4H)Si and (AlH)Si hydrogen complex defects coesite supercells
模型 E(eV) δE(eV) 理想 -31 137.13 - (4H)Si -31 090.15 -4.92 (AlH)Si -31 104.50 -3.10 -
[1] Bell, D.R., Rossman, G.R., 1992.Water in Earth's Mantle:The Role of Nominally Anhydrous Mminerals.Science, 255(5050):1391-1397. doi: 10.1126/science.255.5050.1391 [2] Bell, D.R., Rossman, G.R., Moore, R.O., 2004.Abundance and Partitioning of OH in a High-Pressure Magmatic System:Megacrysts from the Monastery Kimberlite, South Africa.Journal of Petrology, 45(8):1539-1564. doi: 10.1093/petrology/egh015 [3] Deon, F., Koch-Müller, M., Hövelmann, J., et al., 2009.Coupled Boron and Hydrogenincorporation in Coesite.European Journal of Mineralogy, 21(1):9-16. doi: 10.1127/0935-1221/2009/0021-1843 [4] Dong, H.G., Guo, Z.Y., 1996.Structural Aspects of Ultrahigh-Pressure Metamorphic Rocks at Shuanghe, Dabie Mountains, China.Science China Earth Sciences, 26(Suppl.):89-96 (in Chinese with English abstract). http://api.elsevier.com/content/article/PII:S0012825202001332?httpAccept=text/xml [5] Huang, X.G., Xu, Y.S., Karoto, S.I., 2005.Water Content in the Transition Zone from Electrical Conductivity of Wadsleyite and Ringwoodite.Nature, 434(7034):746-749. doi: 10.1038/nature03426 [6] Katayama, I., Karato, S., Brandon, M., 2005.Evidence of High Water Content in the Upper Mantle Inferred from Deformation Microstructures.Geology, 33(7):613-616. doi: 10.1130/G21332.1 [7] Katayama, I., Nakashima, S., Yurimoto, H., 2006.Water Content in Natural Eclogite and Implication for Water Transport into the Deep Upper Mantle.Lithos, 86(3):245-259. http://www.sciencedirect.com/science/article/pii/S0024493705001490#! [8] Keppler, H., Smyth, J.R., 2006.Water in Nominally Anhydrous Minerals.Rev.Mineral.Geochem., 62:1-478. doi: 10.2138/rmg.2006.62.1 [9] Koch-Müller, M., Dera, P., Fei, Y., et al., 2003.OH-in Synthetic and Natural Coesite.American Mineralogist, 88(10):1436-1445. doi: 10.2138/am-2003-1007 [10] Koch-Müller, M., Fei, Y., Hauri E., et al., 2001.Location and Quantitative Analysis of OH in Coesite.Physics and Chemistry of Minerals, 28(10):693-705. doi: 10.1007/s002690100195 [11] Lathe, C., Koch-Müller, M., Wirth, R., et al., 2005.The Influence of OH in Coesite on the Kinetics of the Coesite-Quartz Phase Transition.American Mineralogist, 90(1):36-43. doi: 10.2138/am.2005.1662 [12] Lu, R., Keppler, H., 1997.Water Solubility in Pyrope to 100 kbar.Contributionsto Mineralogy and Petrology, 129(1):35-42. doi: 10.1007/s004100050321 [13] Mosenfelder, J.L., 2000.Pressure Dependence of Hydroxyl Solubility in Coesite.Physics and Chemistry of Minerals, 27(9):610-617. doi: 10.1007/s002690000105 [14] Mosenfelder, J.L., Schertl, H.P., Smyth, J.R., et al., 2005.Factors in the Preservation of Coesite:The Importance of Fluid Filtration.American Mineralogist, 90(5):779-789. http://ammin.geoscienceworld.org/content/90/5-6/779.abstract [15] Rossman, G.R., Smyth, J.R., 1990.Hydroxyl Contents of Accessory Minerals in Mantle Eclogites and Related Rocks.American Mineralogist, 75(7):775-780. http://www.osti.gov/scitech/biblio/6304281 [16] Sheng, Y.M., Xia, Q.K., Hao, Y.D., et al., 2005.Water in UHP Eclogites at Shuanghe, Dabieshan:Micro-FTIR Analysis.Earth Science, 30(6):673-684 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-DZXE200201001.htm [17] Su, W., You, Z.D., Cong, B.L., et al., 2002.Cluster of Water Molecules in Garnet from Ultrahigh Pressure Eclogites.Geology, 30(7):611-614. doi: 10.1130/0091-7613(2002)030<0611:COWMIG>2.0.CO;2 [18] Su, W., You, Z.D., Cong, B.L., et al., 2003.Roles of Water in Deformed Omphacite in UHP Eclogite from Dabie Mountains, Eastern China.Acta Geologica Sinica, 77(3):320-325. doi: 10.1111/acgs.2003.77.issue-3 [19] Tian, Y., Xie, G.G., Wang, L.Z., et al., 2015.Provenance and Tectonic Settings of Triassic Xujiahe Formation in Qiyueshan Area, Southwest Hubei:Evidences from Petrology, Geochemistry and Zircon U-Pb Ages of Clastic Rocks.Earth Science, 40(12):2021-2036 (in Chinese with English abstract). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=dqkx201512006 [20] Withers, A.C., Wood, B.J., Carroll, M.R., 1998.The OH Content of Pyrope at High Pressure.Chemical Geology, 147(1):161-171. http://www.sciencedirect.com/science/article/pii/S0009254197001794 [21] Xia, Q.K., 2005.Water in the Deep Subducted Continental Plate:Message from NAMs.Bulletin of Mineralogy, Petrology and Geochemistry, 24(1):1-6 (in Chinese with English abstract). doi: 10.1029/92TC02641 [22] Xia, Q.K., Sheng, Y.M., Yang, X.Z., et al., 2005.Heterogeneity of Water in Garnets from UHP Eclogites, Eastern Dabieshan, China.Chemical Geology, 224(4):237-246. doi: 10.1016/j.chemgeo.2005.08.003 [23] Xu, H.J., Zhao, S.T., Wu, Y., 2016.Microstructure and Mechanism of Quartz Exsolution in Clinopyroxene.Earth Science, 41(6):948-970 (in Chinese with English abstract). https://www.deepdyve.com/lp/elsevier/exsolution-and-coarsening-in-iron-free-clinopyroxene-during-isothermal-V7T8JGtcxP [24] Xu, W., Liu, X.W., Jin, Z.M., 2006.Water in UHP Eclogites at CCSD:FTIR Analysis.Earth Science, 31(6):830-838 (in Chinese with English abstract). https://www.researchgate.net/publication/287907410_Water_in_UHP_eclogites_at_CCSD_FTIR_analysis [25] Yang, X.Z., Xia, Q.K., Yu, H.M., et al., 2006.The Possible Effect of Hydrogen on the High Electrical Conductivity in the Lower Continental Crust.Advances in Earth Science, 21(1):31-38 (in Chinese with English abstract). http://www.sciencedirect.com/science/article/pii/S0031920114000995 [26] You, Z.D., Zhong, Z.Q., Suo, S.T., 2007.The Mineralogical Criteria for Ultra-High Pressure Metamorphism.Geoscience, 21(2):195-202 (in Chinese with English abstract). http://jglobal.jst.go.jp/public/200902235181780435 [27] You, Z.D., Zhong, Z.Q., Tang, Z.D., et al., 1996.Corrosion-Reaction Margin with Inversion of Polysynthetic Twinning of Plagioclase in Migmatites:An Example from Quartzofeldspathic Gneiss in Dabieshan.Earth Science, 21(5):513-518 (in Chinese with English abstract). [28] Zhang, J.F., Green Ⅱ, H.W., Bizhilov, K., et al., 2004.Faulting Induced by Precipitation of Water at Grain Boundaries in Hot Subducting Oceanic Crust.Nature, 428(6983):633-636. doi: 10.1038/nature02475 [29] Zhang, J.F., Jin, Z.M., Green Ⅱ, H.W., 2005.Hydroxyl Induced Eclogite Fabric and Deformation Mechanism.Chinese Science Bulletin, 50(6):559-564 (in Chinese with English abstract). doi: 10.1360/982004-274.pdf [30] Zhang, J.F., Jin, Z.M., Green Ⅱ, H.W., et al., 2001.Hydroxyl in Continental Deep Subduction Zones:Evidences from UHP Eclogites of Dabie Mountains.Chinese Science Bulletin, 46(7):592-596. doi: 10.1007/BF02900418 [31] Zhang, X.L., Meng, D.W., Chen, L., et al., 2017.Mechanisms of Incorporation of Hydroxyl in Coesite.Journal of Nanoscience and Nanotechnology, 17(9):6716-6720. doi: 10.1166/jnn.2017.14519 [32] 董火根, 郭振宇, 1996.大别山双河超高压变质岩变形构造.中国科学:地球科学, 26(增刊):89-96. http://www.oalib.com/paper/4152252 [33] 盛英明, 夏群科, 郝艳东, 等, 2005.大别山双河超高压榴辉岩中的水:微区红外光谱分析.地球科学, 30(6):673-684. http://www.earth-science.net/WebPage/Article.aspx?id=1521 [34] 田洋, 谢国刚, 王令占, 等, 2015.鄂西南齐岳山须家河组物源及构造背景:来自岩石学、地球化学和锆石年代学的制约.地球科学, 40(12):2021-2036. http://www.earth-science.net/WebPage/Article.aspx?id=3206 [35] 夏群科, 2005.大陆深俯冲过程中的水:"名义上无水矿物"的信息.矿物岩石地球化学通报, 24(1):1-6. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=kwysdqhxtb200501001 [36] 徐海军, 赵素涛, 武云, 2016.单斜辉石中石英出溶体的显微结构和成因机制.地球科学, 41(6):948-970. http://www.earth-science.net/WebPage/Article.aspx?id=3310 [37] 徐薇, 刘祥文, 金振民, 2006.CCSD超高压榴辉岩中的水:红外光谱分析.地球科学, 31(6):830-838. http://www.earth-science.net/WebPage/Article.aspx?id=1646 [38] 杨晓志, 夏群科, 于慧敏, 等, 2006.大陆下地壳高电导率的起源:矿物中的结构水.地球科学进展, 21(1):31-38. doi: 10.11867/j.issn.1001-8166.2006.01.0031 [39] 游振东, 钟增球, 索书田, 2007.论超高压变质的矿物学标志.现代地质, 21(2):195-202. http://mall.cnki.net/magazine/Article/XDDZ200702004.htm [40] 游振东, 钟增球, 汤中道, 等, 1996.混合岩中斜长石的交代净边结构和倒转双晶研究——以大别罗田黄土岭长英片麻岩为例.地球科学, 21(5):513-518. http://www.earth-science.net/WebPage/Article.aspx?id=416 [41] 章军锋, 金振民, Green Ⅱ, H.W., 2005.结构水引起的榴辉岩变形组构和变形机制.科学通报, 50(6):559-564. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=kxtb200506010