Biominerals and Biomineralization on Nanoscale: From Perspective of Mesocrystals
-
摘要: 纳米地质学的兴起和发展,促使地质工作者从纳米尺度重新认识固体地球物质,将对地球科学的各个领域产生广泛而深刻的影响.作为纳米地质学的重要分支,纳米矿物学也将走出传统矿物学只把矿物看成理想晶体点阵的局限,从纳米尺度深入探究矿物包括生物矿物在内的矿物结构与性质,突破口之一是介晶.介晶是一种特殊的结晶纳米结构,近年来得到了物理学家和化学家尤其是材料化学家越来越多的关注.介晶是非经典结晶过程产物,以纳米颗粒为基本构筑单元,具备纳米颗粒的性质和宏观尺寸.现已发现,许多生物矿物如脊椎动物骨骼和牙齿、贝壳珍珠层、蛋壳、海胆骨针、有孔虫和珊瑚等都具有介晶结构.因此,从纳米尺度和介晶角度重新理解生物矿化,有助于揭示生物矿物中纳米多级结构的成因机制,拓展纳米矿物学的科学内涵.首先介绍生物矿化和生物矿物的基本概念,之后对介晶的概念和结构特征进行阐述,最后介绍生物矿物中的介晶结构及介晶形成的典型机制,涉及有机基质辅助、物理场驱动、矿物桥或有机桥连接、空间限域、取向附集和晶面选择性分子作用等多种物理化学过程,有望进一步推动纳米矿物学的发展.Abstract: The rise and development of nanogeology lead to exploration of the solid earth materials at the nanoscale, exerting extensive and profound impact on various fields of earth science. As an important branch of nanogeology, nanomineralogy also explores the structure and properties of the minerals including biominerals at the nanoscale, eliminating the limitations of traditional mineralogy which only regards the mineral as ideal crystal lattice, of which mesocrystal is one breakthrough. Mesocrystals represent a class of crystalline nanostructured materials drawing increasing attention from physicists and chemists especially material chemists in recent years. Mesocrystals are the products of non-classical crystallization process with nanoparticles as the basic subunits, sharing the properties of nanoparticles with order on the macroscopic length scale. It has been found that a number of biominerals including vertebrate bones and teeth, nacre, egg shells, sea urchin spines, foraminifera, and corals have the mesocrystals structure. Therefore, re-understanding the biomineralization at the nanoscale and the perspective of mesocrystals will undoubtedly help to reveal the formation mechanisms of hierarchical nanostructures in biominerals and expand the scientific connotation of nanomineralogy. Firstly, the basic concepts of biomineralization and biominerals are introduced. Then, the concept and structural feature of mesocrystals are expounded. Finally, the mesocrystal structure in biominerals and the mechanisms of mesocrystal formation are clarified in detail, referring to several physical and chemical processes such as alignment by the organic matrix, alignment by physical forces, connection by mineral bridges or organic bridges, alignment by spatial constraints, alignment by oriented attachment and alignment by face selective molecules. It is expected that this study may promote the further development of nanomineralogy.
-
Key words:
- nanogeology /
- nanomineralogy /
- biomineral /
- biomineralization /
- mesocrystal
-
图 1 方解石单晶对比
据Weiner and Dove(2003).棘皮动物硬组织(a)和人工合成的菱面体方解石(b)
Fig. 1. Comparison of calcite single crystals
图 2 六方柱状球霰石的FESEM照片(a, b)、TEM照片(c, e)和SAED花样(d, f)
Fig. 2. FESEM images (a, b), TEM images (c, e) and SAED patterns (d, f) of hexagonal prismatic vaterite
图 3 介晶形成机制
据Sturm and Cölfen(2016).a.有机基质辅助;b.物理场驱动;c.矿物桥或有机桥连接;d.空间限域;e.取向附集;f.晶面选择性分子作用
Fig. 3. Formation mechanisms of mesocrystals
图 4 红鲍鱼Haliotis rufescens贝壳纵断面
Fig. 4. Schematic of a vertical section of the shell of a red abalone (Haliotis rufescens)
图 5 软体动物贝壳微观结构
文石层断裂面(a)和横截面(b);文石层晶体堆积示意图(c)(Addadi et al., 2006).文石片的FETEM图像及SAED花样(d);文石片亚单元的FETEM图像(e)(Oaki and Imai, 2005);珍珠质层中局部共取向的文石柱(f)及其示意图(g)
Fig. 5. Molluscs shell microstructure
图 6 介晶结构文石棒的典型FESEM照片
a.低放大倍数;b.高放大倍数;c.具有假六方柱形表面的文石介晶.文石介晶的TEM照片(d, f)和SAED花样(e, g).文石晶体聚形结构示意图(h)和沿着不同结晶学方向的结构投影(i, j)(Zhou et al., 2009)
Fig. 6. Typical FESEM images of aragonite mesocrystal rods
图 7 趋磁细菌磁小体晶体形貌特征
a.立方八面体;b.子弹头形;c, d.假六方棱柱状(Bäuerlein, 2003)
Fig. 7. Crystal morphologies of magnetosomes from magnetotactic bacteria
图 8 PASP存在下鸟粪石的形貌演化过程
Fig. 8. Schematic illustration of the morphology evolution process of struvite in the presence of PASP
-
[1] Addadi, L., Joester, D., Nudelman, F., et al., 2006.Mollusk Shell Formation:A Source of New Concepts for Understanding Biomineralization Processes.Chemistry-A European Journal, 12(4):981-987. https://doi.org/10.1002/chem.200500980 [2] Addadi, L., Weiner, S., 1992.Control and Design Principles in Biological Mineralization.Angewandte Chemie-International Edition in English, 31(2):153-169. https://doi.org/10.1002/anie.199201531 [3] Aizenberg, J., Lambert, G., Weiner, S.et al., 2002.Factors Involved in the Formation of Amorphous and Crystalline Calcium Carbonate:A Study of an Ascidian Skeleton.Journal of the American Chemical Society, 124(1):32-39. https://doi.org/10.1021/ja016990l [4] Albeck, S., Aizenberg, J., Addadi, L., et al., 1993.Interactions of Various Skeletal Intracrystalline Components with Calcite Crystals.Journal of the American Chemical Society, 115:11691-11697. https://doi.org/10.1021/ja00078a005 [5] Albeck, S., Weiner, S., Addadi, L., 1996.Polysaccharides of Intracrystalline Glycoproteins Modulate Calcite Crystal Growth in Vitro.Chemistry-A European Journal, 2(3):278-284. https://doi.org/10.1002/chem.19960020308 [6] Amor, M., Busigny, V., Louvat, P., et al., 2016.Mass-Dependent and -Independent Signature of Fe Isotopes in Magnetotactic Bacteria.Science, 352(6286):705-708. https://doi.org/10.1126/science.aad7632 [7] Arakaki, A., Webb, J., Matsunaga, T., 2003.A Novel Protein Tightly Bound to Bacterial Magnetic Particles in Magnetospirillum Magneticum Strain AMB-1.Journal of Biological Chemistry, 278(10):8745-8750. https://doi.org/10.1074/jbc.M211729200 [8] Banfield, J. F., Navrotsky, A., 2001. Nanoparticles and the Environment. Mineralogical Society of America, Washington, D. C. . [9] Bäuerlein, E., 2003.Biomineralization of Unicellular Organisms:An Unusual Membrane Biochemistry for the Production of Inorganic Nano-and Microstructures.Angewandte Chemie-International Edition in English, 42(6):614-641. https://doi.org/10.1002/anie.200390176 [10] Bazylinski, D.A., Frankel, R.B., 2003.Biologically Controlled Mineralization in Prokaryotes.Reviews in Mineralogy and Geochemistry, 54 (1):217-247. https://doi.org/10.2113/0540217 [11] Bazylinski, D.A., Frankel, R.B., 2004.Magnetosome Formation in Prokaryotes.Nature Reviews Microbiology, 2(3):217-230. https://doi.org/10.1038/nrmicro842 [12] Bergström, L., Sturm, E.V., Salazar-Alvarez, G., et al., 2015.Mesocrystals in Biominerals and Colloidal Arrays.Accounts of Chemical Research, 48(5):1391-1402. https://doi.org/10.1021/ar500440b [13] Berridge, M.J., Bootman, M.D., Lipp, P., 1998.Calcium-A Life and Death Signal.Nature, 395(6703):645-648. https://doi.org/10.1038/27094 [14] Bu, F.X., Du.C.J., Jiang, J.S., 2014.Synthesis, Properties and Applications of Mesocrystals.Progress in Chemistry, 26(1):75-86 (in Chinese with English abstract). https://doi.org/10.7536/PC130647 [15] Cai, L., Xiao, H.R., Huang, S.M., et al., 2013.Solubilization of Magnesium-Bearing Silicate Minerals and the Subsequent Formation of Glushinskite by Aspergillus Niger.Geomicrobiology Journal, 30:302-312. https://doi.org/10.1080/01490451.2012.688924 [16] Chauhan, C.K., Joshi, M.J., 2013.In Vitro Crystallization, Characterization and Growth-Inhibition Study of Urinary Type Struvite Crystals.Journal of Crystal Growth, 362:330-337. https://doi.org/10.1016/j.jcrysgro.2011.11.008 [17] Chen, A.P., Berounsky, V.M., Chan, M.K., et al., 2014.Magnetic Properties of Uncultivated Magnetotactic Bacteria and Their Contribution to a Stratified Estuary Iron Cycle.Nature Communications, 5:4797. https://doi.org/10.1038/ncomms5797 [18] Chen, T.H., Xie, Q.Q., 2005.From Optical Microscopy to Electron Microscopy:Nanogeoscience.Journal of Hefei University of Technology, 28(9):1126-1129 (in Chinese with English abstract). http://www.eolss.net/Sample-Chapters/C05/E6-08-03-01.pdf [19] Cheng, Z.Y., Fernández-Remolar, D.C., Izawa, M.R.M., et al., 2016.Oxalate Formation under the Hyperarid Conditions of the Atacama Desert as a Mineral Marker to Provide Clues to the Source of Organic Carbon on Mars.Journal of Geophysical Research:Biogeosciences, 121(6):1593-1604. https://doi.org/10.1002/2016JG003439 [20] Coe, F.L., Evan, A., Worcester, E., 2005.Kidney Stone Disease.Journal of Clinical Investigation, 115(10):2598-2608. https://doi.org/10.1172/JCI26662 [21] Cui, F.Z., 2012.Biomineralization (2nd Edition).Tsinghua University Press, Beijing (in Chinese). [22] Dai, Y.D., 1994.Biogenic Mineralogy.Petroleum Industry Press, Beijing (in Chinese). [23] de Yoreo, J.J., Gilbert, P.U.P.A., Sommerdijk, N.A.J.M., et al., 2015.Crystallization by Particle Attachment in Synthetic, Biogenic, and Geologic Environments.Science, 349(6247):6760. https://doi.org/10.1126/science.aaa6760 [24] DiMasi, E., Sarikaya, M., 2004.Synchrotron X-Ray Microbeam Diffraction from Abalone Shell.Journal of Materials Research, 19(5):1471-1476. https://doi.org/10.1557/JMR.2004.0196 [25] Duan, Y., Yao, Y.C., Qiu, X., et al., 2017.Dolomite Formation Facilitated by Three Halophilic Archaea.Earth Science, 42(3):389-396 (in Chinese with English abstract). https://doi.org/10.3799/dqkx.2017.029 [26] Dupraz, C., Reid, R.P., Braissant, O., et al., 2009.Processes of Carbonate Precipitation in Modern Microbial Mats.Earth-Science Reviews, 96(3):141-162. https://doi.org/10.1016/j.earscirev.2008.10.005 [27] Frankel, R.B., Zhang, J.P., Bazylinski, D.A., 1998.Single Magnetic Domains in Magnetotactic Bacteria.Journal of Geophysical Research-Solid Earth, 103(B12):30601-30604. https://doi.org/10.1029/97JB03512 [28] George, A., Veis, A., 2008.Phosphorylated Proteins and Control over Apatite Nucleation, Crystal Growth, and Inhibition.Chemical Reviews, 108(11):4670-4693. https://doi.org/10.1021/cr0782729 [29] Gilbert, P.U.P.A., Abrecht, M., Frazer, B.H., 2005.The Organic-Mineral Interface in Biominerals.Reviews in Mineralogy & Geochemistry, 59:157-185. https://doi.org/10.2138/rmg.2005.59.7 [30] Gómez-Morales, J., Delgado-Lopez, J.M., Iafisco, M., et al., 2011.Amino Acidic Control of Calcium Phosphate Precipitation by Using the Vapor Diffusion Method in Microdroplets.Crystal Growth & Design, 11(11):4802-4809. https://doi.org/10.1021/cg2004547 [31] Gower, L.B., 2008.Biomimetic Model Systems for Investigating the Amorphous Precursor Pathway and Its Role in Biomineralization.Chemical Reviews, 108(11):4551-4627. https://doi.org/10.1021/cr800443h [32] Griffith, D.P., 1978.Struvite Stones.Kidney International, 13(5):372-382. https://doi.org/10.1038/ki.1978.55 [33] Hochella, M.F., 2002a.Nanoscience and Technology:The Next Revolution in the Earth Sciences.Earth and Planetary Science Letters, 203(2):593-605. https://doi.org/10.1016/S0012-821X(02)00818-X [34] Hochella, M.F., 2002b.There's Plenty of Room at the Bottom:Nanoscience in Geochemistry.Geochimica et Cosmochimica Acta, 66(5):735-743. https://doi.org/10.1016/S0016-7037(01)00868-7 [35] Hochella, M.F., Lower, S.K., Maurice, P.A., et al., 2008.Nanominerals, Mineral Nanoparticles, and Earth Systems.Science, 319(5870):1631-1635. https://doi.org/10.1126/science.1141134 [36] Jiang, S.D., Yao, Q.Z., Ma, Y.F., et al., 2015.Phosphate-Dependent Morphological Evolution of Hydroxyapatite and Implication for Biomineralisation.Gondwana Research, 28(2):858-868. https://doi.org/10.1016/j.gr.2014.04.005 [37] Ju, Y.W., Huang, C., Sun, Y., et al., 2017.Nanogeosciences:Research History, Current Status, and Development Trends.Journal of Nanoscience and Nanotechnology, 17:5930-5965. https://doi.org/10.1166/jnn.2017.14436 [38] Ju, Y.W., Sun, Y., Wan, Q., et al., 2016.Nanogeology:A Revolutionary Challenge in Geosciences.Bulletin of Mineralogy, Petrology and Geochemistry, 35(1):1-20 (in Chinese with English abstract). https://doi.org/10.3969/j.issn.1007-2802.2016.01.001 [39] Kim, Y.Y., Schenk, A.S., Ihli, J., et al., 2014.A Critical Analysis of Calcium Carbonate Mesocrystals.Nature Communications, 5:4341. https://doi.org/10.1038/ncomms5341 [40] Komeili, A., Li, Z., Newman, D.K., et al., 2006.Magnetosomes are Cell Membrane Invaginations Organized by the Actin-Like Protein MamK.Science, 311(5758):242-245. https://doi.org/10.1126/science.1123231 [41] Laird, D.F., Mucalo, M.R., Yokogawa, Y., 2006.Growth of Calcium Hydroxyapatite (Ca-HAp) on Cholesterol and Cholestanol Crystals from a Simulated Body Fluid:A Possible Insight into the Pathological Calcifications Associated with Atherosclerosis.Journal of Colloid and Interface Science, 295(2):348-363. https://doi.org/10.1016/j.jcis.2005.09.013 [42] Larsson, P.A., Howell, D.S., Pita, J.C., et al., 1988.Aspiration and Characterization of Predentin Fluid in Developing Rat Teeth by Means of a Micropuncture and Microanalytical Technique.Journal of Dental Research, 67(5):870-875. https://doi.org/10.1177/00220345880670051501 [43] Lefèvre, C.T., Posfai, M., Abreu, F., et al., 2011.Morphological Features of Elongated-Anisotropic Magnetosome Crystals in Magnetotactic Bacteria of the Nitrospirae Phylum and the Delta Proteobacteria Class.Earth and Planetary Science Letters, 312(1-2):194-200. https://doi.org/10.1016/j.epsl.2011.10.003 [44] Li, H., Yao, Q. Z., Wang, Y. Y., et al., 2015. Biomimetic Synthesis of Struvite with Biogenic Morphology and Implication for Pathological Biomineralization. Scientific Reports, 5: 7718. https://doi.org/10.1038/srep07718 [45] Li, H., Yao, Q.Z., Yu, S.H., et al., 2017.Bacterially Mediated Morphogenesis of Struvite and Its Implication for Phosphorus Recovery.American Mineralogist, 102(2):381-390. https://doi.org/10.2138/am-2017-5687 [46] Lian, B., Hu, Q.N., Chen, J., et al., 2006.Carbonate Biomineralization Induced by Soil Bacterium Bacillus Megaterium.Geochimica et Cosmochimica Acta, 70(22):5522-5535. https://doi.org/10.1016/j.gca.2006.08.044 [47] Lin, W., Pan, Y.X., 2012.Diversity of Magnetotactic Bacteria and Its Implications for Environment.Quaternary Sciences, 32(4):567-575 (in Chinese with English abstract). https://doi.org/10.3969/j.issn.1001-7410.2012.04.01 [48] Lin, W., Tian, L.X., Pan, Y.X., 2006.Formation of Magnetosomes in Magnetotactic Bacteria.Microbiology China, 33(3):133-137 (in Chinese with English abstract). https://doi.org/10.13344/j.microbiol.china.2006.03.028 [49] Lowenstam, H.A., Weiner, S., 1989.On Biomineralization.Oxford University Press, New York. [50] Lundgren, T., Linde, A., 1987.Regulation of Free Ca2+ by Subcellular-Fractions of Rat Incisor Odontoblasts.Archives of Oral Biology, 32(7):463-468. https://doi.org/10.1016/S0003-9969(87)80005-5 [51] Mahamid, J., Sharir, A., Addadi, L., et al., 2008.Amorphous Calcium Phosphate is a Major Component of the Forming Fin Bones of Zebrafish:Indications for an Amorphous Precursor Phase.Proceedings of the National Academy of Sciences of the United States of America, 105(35):12748-12753. https://doi.org/10.1073/pnas.0803354105 [52] Mann, S., 2001.Biomineralization:Principles and Concepts in Bioinorganic Materials Chemistry.Oxford University Press, New York. [53] Oaki, K., Imai, H., 2005.The Hierarchical Architecture of Nacre and Its Mimetic Material.Angewandte Chemie-International Edition in English, 44(40):6571-6575. https://doi.org/10.1002/anie.200500338 [54] Oaki, Y., Kotachi, A., Miura, T., et al., 2006.Bridged Nanocrystals in Biominerals and Their Biomimetics:Classical yet Modern Crystal Growth on the Nanoscale.Advanced Functional Materials, 16(12):1633-1639. https://doi.org/10.1002/adfm.200600262 [55] Ogoshi, T., Itoh, H., Kim, K.M., et al., 2002.Synthesis of Organic-Inorganic Polymer Hybrids Having Interpenetrating Polymer Network Structure by Formation of Ruthenium-Bipyridyl Complex.Macromolecules, 35(2):334-338. https://doi.org/10.1021/ma010819c [56] Portincasa, P., Moschetta, A., Palasciano, G., 2006.Cholesterol Gallstone Disease.Lancet, 368(9531):230-239. https://doi.org/10.1016/S0140-6736(06)69044-2 [57] Pósfai, M., Dunin-Borkowski, R.E., 2009.Magnetic Nanocrystals in Organisms.Elements, 5(4):235-240. https://doi.org/10.2113/gselements.5.4.235 [58] Prywer, J., Torzewska, A., 2009.Bacterially Induced Struvite Growth from Synthetic Urine:Experimental and Theoretical Characterization of Crystal Morphology.Crystal Growth & Design, 9(8):3538-3543. https://doi.org/10.1021/cg900281g [59] Prywer, J., Torzewska, A., 2010.Biomineralization of Struvite Crystals by Proteus Mirabilis from Artificial Urine and Their Mesoscopic Structure.Crystal Research and Technology, 45(12):1283-1289. https://doi.org/10.1002/crat.201000344 [60] Prywer, J., Torzewska, A., Plocinski, T., 2012.Unique Surface and Internal Structure of Struvite Crystals Formed by Proteus Mirabilis.Urological Research, 40(6):699-707. https://doi.org/10.1007/s00240-012-0501-3 [61] Qu, X.F., Yao, Q.Z., Zhou, G.T., 2011.Biomimetic Formation of Nanomagnetite Chain:Implication for Magnetosome Mineralization.Geological Journal of China Universities, 17(1):66-75 (in Chinese with English abstract). https://doi.org/10.16108/j.issn1006-7493.2011.01.014 [62] Rohanizadeh, R., Legeros, R.Z., 2007.Mineral Phase in Linguloid Brachiopod Shell:Lingula Adamsi.Lethaia, 40(1):61-68. https://doi.org/10.1111/j.1502-3931.2006.00006.x [63] Romanowski, Z., Kempisty, P., Prywer, J., et al., 2010.Density Functional Theory Determination of Structural and Electronic Properties of Struvite.Journal of Physical Chemistry A, 114(29):7800-7808. https://doi.org/10.1021/jp102887a [64] Ronholm, J., Schumann, D., Sapers, H.M., et al., 2014.A Mineralogical Characterization of Biogenic Calcium Carbonates Precipitated by Heterotrophic Bacteria Isolated from Cryophilic Polar Regions.Geobiology, 12(6):542-556. https://doi.org/10.1111/gbi.12102 [65] Salgado, A.J., Coutinho, O.P., Reis, R.L., 2004.Bone Tissue Engineering:State of the Art and Future Trends.Macromolecular Bioscience, 4(8):743-765. https://doi.org/10.1002/mabi.200400026 [66] Sánchez-Román, M., Rivadeneyra, M.A., Vasconcelos, C., et al., 2007.Biomineralization of Carbonate and Phosphate by Moderately Halophilic Bacteria.FEMS Microbiology Ecology, 61(2):273-284. https://doi.org/10.1111/j.1574-6941.2007.00336.x [67] Schäffer, T.E., Ionescu Zanetti, C., Proksch, R., et al., 1997.Does Abalone Nacre Form by Heteroepitaxial Nucleation or by Growth through Mineral Bridges? Chemistry of Materials, 9(8):1731-1740. https://doi.org/10.1021/cm960429i [68] Scheffel, A., Gruska, M., Faivre, D., et al., 2006.An Acidic Protein Aligns Magnetosomes along a Filamentous Structure in Magnetotactic Bacteria.Nature, 440(7080):110-114. https://doi.org/10.1038/nature04382 [69] Schindler, M., Hochella, M.F., 2016.Nanomineralogy as a New Dimension in Understanding Elusive Geochemical Processes in Soils:The Case of Low-Solubility-Index Elements.Geology, 44(7):515-518. https://doi.org/10.1130/G37774.1 [70] Shi, J.Y., Yao, Q.Z., Li, X.M., et al., 2012.Controlled Morphogenesis of Amorphous Silica and Its Relevance to Biosilicification.American Mineralogist, 97:1381-1392. https://doi.org/10.2138/am.2012.4081 [71] Shi, J.Y., Yao, Q.Z., Li, X.M., et al., 2013.Formation of Asymmetrical Structured Silica Controlled by a Phase Separation Process and Implication for Biosilicification.PLoS One, 8(4):e61164. https://doi.org/10.1371/journal.pone.0061164 [72] Shi, J.Y., Yao, Q.Z., Zhou, G.T., 2011.Organic Matrix-Mineral Interaction during Cell Wall Silicification in Diatoms.Geological Journal of China Universities, 17(1):76-85 (in Chinese with English abstract). https://doi.org/10.16108/j.issn1006-7493.2011.01.009 [73] Sinha, A., Singh, A., Kumar, S., et al., 2014.Microbial Mineralization of Struvite:A Promising Process to Overcome Phosphate Sequestering Crisis.Water Research, 54:33-43. https://doi.org/10.1016/j.watres.2014.01.039 [74] Skinner, H.C.W., 2005.Biominerals.Mineralogical Magazine, 69(5):621-641. https://doi.org/10.1180/0026461056950275 [75] Song, H.J., Tong, J.N., 2016.Mass Extinction and Survival during the Permian-Triassic Crisis.Earth Science, 41(6):901-918(in Chinese with English abstract). https://doi.org/10.3799/dqkx.2016.077 [76] Song, R.Q., Cölfen, H., 2010.Mesocrystals-Ordered Nanoparticle Superstructures.Advanced Materials, 22(12):1301-1330. https://doi.org/10.1002/adma.200901365 [77] Sturm, E.V., Cölfen, H., 2016.Mesocrystals:Structural and Morphogenetic Aspects.Chemical Society Reviews, 45(21):5821-5833. https://doi.org/10.1039/c6cs00208k [78] Takahashi, K., Yamamoto, H., Onoda, A., et al., 2004.Highly Oriented Aragonite Nanocrystal-Biopolymer Composites in an Aragonite Brick of the Nacreous Layer of Pinctada Fucata.Chemical Communications, 8:996-997. https://doi.org/10.1039/b315478e [79] Tao, J.H., Zhou, D.M., Zhang, Z.S., et al., 2009.Magnesium-Aspartate-Based Crystallization Switch Inspired from Shell Molt of Crustacean.Proceedings of the National Academy of Sciences of the United States of America, 106(52):22096-22101. https://doi.org/10.1073/pnas.0909040106 [80] Uebe, R., Schuler, D., 2016.Magnetosome Biogenesis in Magnetotactic Bacteria.Nature Reviews Microbiology, 14(10):621-637. https://doi.org/10.1038/nrmicro.2016.99 [81] Wan, Q., 2012.Some Thoughts on Nanogeoscience.Acta Mineralogica Sinica, (Suppl.):50-51 (in Chinese). https://doi.org/10.16461/j.cnki.1000-4734.2012.s1.041 [82] Wang, Y.X., Tian, X.K., 2016.New Opportunities for the Study of Geology:Nanogeology.Bulletin of Mineralogy, Petrology and Geochemistry, 35(1):79-86 (in Chinese with English abstract). http://www.learner.org/workshops/socialstudies/pdf/session8/8.WhatIsSocialStudies.pdf [83] Wang, Y.Y., Yao, Q.Z., Li, H., et al., 2015.Formation of Vaterite Mesocrystals in Biomineral-Like Structures and Implication for Biomineralization.Crystal Growth & Design, 15(4):1714-1725. https://doi.org/10.1021/cg501707f [84] Wang, Y.Y., Yao, Q.Z., Zhou, G.T., et al., 2013.Formation of Elongated Calcite Mesocrystals and Implicationfor Biomineralization.Chemical Geology, 360-361:126-133. https://doi.org/10.1016/j.chemgeo.2013.10.013 [85] Weiner, S., 2008.Biomineralization:A Structural Perspective.Journal of Structural Biology, 163(3):229-234. https://doi.org/10.1016/j.jsb.2008.02.001 [86] Weiner, S., Addadi, L., 1997.Design Strategies in Mineralized Biological Materials.Journal of Materials Chemistry, 7(5):689-702. https://doi.org/10.1039/a604512j [87] Weiner, S., Dove, P.M., 2003.An Overview of Biomineralization Processes and the Problem of the Vital Effect.Reviews in Mineralogy and Geochemistry, 54(1):1-29. https://doi.org/org/10.2113/0540001 [88] Weiner, S., Wagner, H.D., 1998.The Material Bone:Structure Mechanical Function Relations.Annual Review of Materials Science, 28:271-298. https://doi.org/10.1146/annurev.matsci.28.1.271 [89] Wit, J.C., de Nooijer, L.J., Haig, J., et al., 2017.Towards Reconstructing Ancient Seawater Mg/Ca by Combining Porcelaneous and Hyaline Foraminiferal Mg/Ca-Temperature Calibrations.Geochimica et Cosmochimica Acta, 211:341-354. https://doi.org/10.1016/j.gca.2017.05.036 [90] Yao, Q.Z., Guan, Y.B., Zhou, G.T., et al., 2012.Witherite Nanorods Form Mesocrystals:A Direct Experimental Examination of a Dipole-Driven Self-Assembly Model.European Journal of Mineralogy, 24(3):519-526. https://doi.org/10.1127/0935-1221/2012/0024-2186 [91] Zaremba, C.M., Belcher, A.M., Fritz, M., et al., 1996.Critical Transitions in the Biofabrication of Abalone Shells and Flat Pearls.Chemistry of Materials, 8(3):679-690. https://doi.org/10.1021/cm9503285 [92] Zhou, G.T., Guan, Y.B., Yao, Q.Z., et al., 2010.Biomimetic Mineralization of Prismatic Calcite Mesocrystals:Relevance to Biomineralization.Chemical Geology, 279(3-4):63-72. https://doi.org/10.1016/j.chemgeo.2010.08.020 [93] Zhou, G.T., Yao, Q.Z., Ni, J., et al., 2009.Formation of Aragonite Mesocrystals and Implication for Biomineralization.American Mineralogist, 94(2-3):293-302. https://doi.org/10.2138/am.2009.2957 [94] Zhou, L., O'Brien, P., 2008.Mesocrystals:A New Class of Solid Materials.Small, 4(10):1566-1574. https://doi.org/10.1002/smll.200800520 [95] 卜凡兴, 都晨杰, 姜继森, 2014.介晶的制备、性能与应用研究.化学进展, 26(1):75-86. http://cdmd.cnki.com.cn/Article/CDMD-10338-1015564335.htm [96] 陈天虎, 谢巧勤, 2005.电子显微镜时代与纳米地球科学.合肥工业大学学报(自然科学版), 28(9):1126-1129. http://www.cqvip.com/QK/90962X/200509/20242993.html [97] 崔福斋, 2012.生物矿化(第2版).北京:清华大学出版社. [98] 戴永定, 1994.生物成因矿物学.北京:石油工业出版社. [99] 段勇, 药彦辰, 邱轩, 等, 2017.三株嗜盐古菌诱导形成白云石.地球科学, 42(3):389-396. http://www.earth-science.net/WebPage/Article.aspx?id=3542 [100] 琚宜文, 孙岩, 万泉, 等, 2016.纳米地质学:地学领域革命性挑战.矿物岩石地球化学通报, 35(1):1-20. http://www.cqvip.com/QK/84215X/201601/668146269.html [101] 林巍, 潘永信, 2012.趋磁细菌多样性及其环境意义.第四纪研究, 32(4):567-575. https://www.researchgate.net/profile/Wei_Lin/publication/235413438_Diversity_of_magnetotactic_bacteria_and_its_implications_for_environments/links/0fcfd5115acbfbcde9000000/Diversity-of-magnetotactic-bacteria-and-its-implications-for-environments.pdf [102] 林巍, 田兰香, 潘永信, 2006.趋磁细菌磁小体研究进展.微生物学通报, 33(3):133-137. http://cpfd.cnki.com.cn/Article/CPFDTOTAL-DZDQ200702001017.htm [103] 曲晓飞, 姚奇志, 周根陶, 2011.纳米磁铁矿链的仿生合成及其生物矿化意义.高校地质学报, 17(1):66-75. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=gxdzxb201101009 [104] 史家远, 姚奇志, 周根陶, 2011.硅藻细胞壁硅化过程中有机质-矿物的相互作用.高校地质学报, 17(1):76-85. http://industry.wanfangdata.com.cn/dl/Detail/Periodical?id=Periodical_gxdzxb201101010 [105] 宋海军, 童金南, 2016.二叠纪-三叠纪之交生物大灭绝与残存.地球科学, 41(6):901-918. http://www.earth-science.net/WebPage/Article.aspx?id=3307 [106] 万泉, 2012.关于纳米地球科学的一些思考.矿物学报, (增刊):50-51. http://www.cqvip.com/QK/96984X/200406/11309951.html [107] 王焰新, 田熙科, 2016.地学研究的新机遇——纳米地质学.矿物岩石地球化学通报, 35(1):79-86. http://industry.wanfangdata.com.cn/yj/Detail/Periodical?id=Periodical_kwysdqhxtb201601010