• 中国出版政府奖提名奖

    中国百强科技报刊

    湖北出版政府奖

    中国高校百佳科技期刊

    中国最美期刊

    留言板

    尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

    姓名
    邮箱
    手机号码
    标题
    留言内容
    验证码

    纳米尺度下的生物矿物和生物矿化:基于介晶的视角

    李涵 姚奇志 周根陶

    李涵, 姚奇志, 周根陶, 2018. 纳米尺度下的生物矿物和生物矿化:基于介晶的视角. 地球科学, 43(5): 1425-1438. doi: 10.3799/dqkx.2018.402
    引用本文: 李涵, 姚奇志, 周根陶, 2018. 纳米尺度下的生物矿物和生物矿化:基于介晶的视角. 地球科学, 43(5): 1425-1438. doi: 10.3799/dqkx.2018.402
    Li Han, Yao Qizhi, Zhou Gentao, 2018. Biominerals and Biomineralization on Nanoscale: From Perspective of Mesocrystals. Earth Science, 43(5): 1425-1438. doi: 10.3799/dqkx.2018.402
    Citation: Li Han, Yao Qizhi, Zhou Gentao, 2018. Biominerals and Biomineralization on Nanoscale: From Perspective of Mesocrystals. Earth Science, 43(5): 1425-1438. doi: 10.3799/dqkx.2018.402

    纳米尺度下的生物矿物和生物矿化:基于介晶的视角

    doi: 10.3799/dqkx.2018.402
    基金项目: 

    国家自然科学基金项目 41372053

    国家自然科学基金项目 41672034

    国家自然科学基金项目 41572026

    国家重点基础研究发展计划资助项目 2014CB846003

    详细信息
      作者简介:

      李涵(1987-), 男, 博士后, 主要从事生物矿物学和环境矿物学研究

      通讯作者:

      周根陶

    • 中图分类号: P571

    Biominerals and Biomineralization on Nanoscale: From Perspective of Mesocrystals

    • 摘要: 纳米地质学的兴起和发展,促使地质工作者从纳米尺度重新认识固体地球物质,将对地球科学的各个领域产生广泛而深刻的影响.作为纳米地质学的重要分支,纳米矿物学也将走出传统矿物学只把矿物看成理想晶体点阵的局限,从纳米尺度深入探究矿物包括生物矿物在内的矿物结构与性质,突破口之一是介晶.介晶是一种特殊的结晶纳米结构,近年来得到了物理学家和化学家尤其是材料化学家越来越多的关注.介晶是非经典结晶过程产物,以纳米颗粒为基本构筑单元,具备纳米颗粒的性质和宏观尺寸.现已发现,许多生物矿物如脊椎动物骨骼和牙齿、贝壳珍珠层、蛋壳、海胆骨针、有孔虫和珊瑚等都具有介晶结构.因此,从纳米尺度和介晶角度重新理解生物矿化,有助于揭示生物矿物中纳米多级结构的成因机制,拓展纳米矿物学的科学内涵.首先介绍生物矿化和生物矿物的基本概念,之后对介晶的概念和结构特征进行阐述,最后介绍生物矿物中的介晶结构及介晶形成的典型机制,涉及有机基质辅助、物理场驱动、矿物桥或有机桥连接、空间限域、取向附集和晶面选择性分子作用等多种物理化学过程,有望进一步推动纳米矿物学的发展.

       

    • 图  1  方解石单晶对比

      Weiner and Dove(2003).棘皮动物硬组织(a)和人工合成的菱面体方解石(b)

      Fig.  1.  Comparison of calcite single crystals

      图  2  六方柱状球霰石的FESEM照片(a, b)、TEM照片(c, e)和SAED花样(d, f)

      Wang et al.(2015)

      Fig.  2.  FESEM images (a, b), TEM images (c, e) and SAED patterns (d, f) of hexagonal prismatic vaterite

      图  3  介晶形成机制

      Sturm and Cölfen(2016).a.有机基质辅助;b.物理场驱动;c.矿物桥或有机桥连接;d.空间限域;e.取向附集;f.晶面选择性分子作用

      Fig.  3.  Formation mechanisms of mesocrystals

      图  4  红鲍鱼Haliotis rufescens贝壳纵断面

      Zaremba et al.(1996)

      Fig.  4.  Schematic of a vertical section of the shell of a red abalone (Haliotis rufescens)

      图  5  软体动物贝壳微观结构

      文石层断裂面(a)和横截面(b);文石层晶体堆积示意图(c)(Addadi et al., 2006).文石片的FETEM图像及SAED花样(d);文石片亚单元的FETEM图像(e)(Oaki and Imai, 2005);珍珠质层中局部共取向的文石柱(f)及其示意图(g)

      Fig.  5.  Molluscs shell microstructure

      图  6  介晶结构文石棒的典型FESEM照片

      a.低放大倍数;b.高放大倍数;c.具有假六方柱形表面的文石介晶.文石介晶的TEM照片(d, f)和SAED花样(e, g).文石晶体聚形结构示意图(h)和沿着不同结晶学方向的结构投影(i, j)(Zhou et al., 2009)

      Fig.  6.  Typical FESEM images of aragonite mesocrystal rods

      图  7  趋磁细菌磁小体晶体形貌特征

      a.立方八面体;b.子弹头形;c, d.假六方棱柱状(Bäuerlein, 2003)

      Fig.  7.  Crystal morphologies of magnetosomes from magnetotactic bacteria

      图  8  PASP存在下鸟粪石的形貌演化过程

      Li et al.(2015)

      Fig.  8.  Schematic illustration of the morphology evolution process of struvite in the presence of PASP

    • [1] Addadi, L., Joester, D., Nudelman, F., et al., 2006.Mollusk Shell Formation:A Source of New Concepts for Understanding Biomineralization Processes.Chemistry-A European Journal, 12(4):981-987. https://doi.org/10.1002/chem.200500980
      [2] Addadi, L., Weiner, S., 1992.Control and Design Principles in Biological Mineralization.Angewandte Chemie-International Edition in English, 31(2):153-169. https://doi.org/10.1002/anie.199201531
      [3] Aizenberg, J., Lambert, G., Weiner, S.et al., 2002.Factors Involved in the Formation of Amorphous and Crystalline Calcium Carbonate:A Study of an Ascidian Skeleton.Journal of the American Chemical Society, 124(1):32-39. https://doi.org/10.1021/ja016990l
      [4] Albeck, S., Aizenberg, J., Addadi, L., et al., 1993.Interactions of Various Skeletal Intracrystalline Components with Calcite Crystals.Journal of the American Chemical Society, 115:11691-11697. https://doi.org/10.1021/ja00078a005
      [5] Albeck, S., Weiner, S., Addadi, L., 1996.Polysaccharides of Intracrystalline Glycoproteins Modulate Calcite Crystal Growth in Vitro.Chemistry-A European Journal, 2(3):278-284. https://doi.org/10.1002/chem.19960020308
      [6] Amor, M., Busigny, V., Louvat, P., et al., 2016.Mass-Dependent and -Independent Signature of Fe Isotopes in Magnetotactic Bacteria.Science, 352(6286):705-708. https://doi.org/10.1126/science.aad7632
      [7] Arakaki, A., Webb, J., Matsunaga, T., 2003.A Novel Protein Tightly Bound to Bacterial Magnetic Particles in Magnetospirillum Magneticum Strain AMB-1.Journal of Biological Chemistry, 278(10):8745-8750. https://doi.org/10.1074/jbc.M211729200
      [8] Banfield, J. F., Navrotsky, A., 2001. Nanoparticles and the Environment. Mineralogical Society of America, Washington, D. C. .
      [9] Bäuerlein, E., 2003.Biomineralization of Unicellular Organisms:An Unusual Membrane Biochemistry for the Production of Inorganic Nano-and Microstructures.Angewandte Chemie-International Edition in English, 42(6):614-641. https://doi.org/10.1002/anie.200390176
      [10] Bazylinski, D.A., Frankel, R.B., 2003.Biologically Controlled Mineralization in Prokaryotes.Reviews in Mineralogy and Geochemistry, 54 (1):217-247. https://doi.org/10.2113/0540217
      [11] Bazylinski, D.A., Frankel, R.B., 2004.Magnetosome Formation in Prokaryotes.Nature Reviews Microbiology, 2(3):217-230. https://doi.org/10.1038/nrmicro842
      [12] Bergström, L., Sturm, E.V., Salazar-Alvarez, G., et al., 2015.Mesocrystals in Biominerals and Colloidal Arrays.Accounts of Chemical Research, 48(5):1391-1402. https://doi.org/10.1021/ar500440b
      [13] Berridge, M.J., Bootman, M.D., Lipp, P., 1998.Calcium-A Life and Death Signal.Nature, 395(6703):645-648. https://doi.org/10.1038/27094
      [14] Bu, F.X., Du.C.J., Jiang, J.S., 2014.Synthesis, Properties and Applications of Mesocrystals.Progress in Chemistry, 26(1):75-86 (in Chinese with English abstract). https://doi.org/10.7536/PC130647
      [15] Cai, L., Xiao, H.R., Huang, S.M., et al., 2013.Solubilization of Magnesium-Bearing Silicate Minerals and the Subsequent Formation of Glushinskite by Aspergillus Niger.Geomicrobiology Journal, 30:302-312. https://doi.org/10.1080/01490451.2012.688924
      [16] Chauhan, C.K., Joshi, M.J., 2013.In Vitro Crystallization, Characterization and Growth-Inhibition Study of Urinary Type Struvite Crystals.Journal of Crystal Growth, 362:330-337. https://doi.org/10.1016/j.jcrysgro.2011.11.008
      [17] Chen, A.P., Berounsky, V.M., Chan, M.K., et al., 2014.Magnetic Properties of Uncultivated Magnetotactic Bacteria and Their Contribution to a Stratified Estuary Iron Cycle.Nature Communications, 5:4797. https://doi.org/10.1038/ncomms5797
      [18] Chen, T.H., Xie, Q.Q., 2005.From Optical Microscopy to Electron Microscopy:Nanogeoscience.Journal of Hefei University of Technology, 28(9):1126-1129 (in Chinese with English abstract). http://www.eolss.net/Sample-Chapters/C05/E6-08-03-01.pdf
      [19] Cheng, Z.Y., Fernández-Remolar, D.C., Izawa, M.R.M., et al., 2016.Oxalate Formation under the Hyperarid Conditions of the Atacama Desert as a Mineral Marker to Provide Clues to the Source of Organic Carbon on Mars.Journal of Geophysical Research:Biogeosciences, 121(6):1593-1604. https://doi.org/10.1002/2016JG003439
      [20] Coe, F.L., Evan, A., Worcester, E., 2005.Kidney Stone Disease.Journal of Clinical Investigation, 115(10):2598-2608. https://doi.org/10.1172/JCI26662
      [21] Cui, F.Z., 2012.Biomineralization (2nd Edition).Tsinghua University Press, Beijing (in Chinese).
      [22] Dai, Y.D., 1994.Biogenic Mineralogy.Petroleum Industry Press, Beijing (in Chinese).
      [23] de Yoreo, J.J., Gilbert, P.U.P.A., Sommerdijk, N.A.J.M., et al., 2015.Crystallization by Particle Attachment in Synthetic, Biogenic, and Geologic Environments.Science, 349(6247):6760. https://doi.org/10.1126/science.aaa6760
      [24] DiMasi, E., Sarikaya, M., 2004.Synchrotron X-Ray Microbeam Diffraction from Abalone Shell.Journal of Materials Research, 19(5):1471-1476. https://doi.org/10.1557/JMR.2004.0196
      [25] Duan, Y., Yao, Y.C., Qiu, X., et al., 2017.Dolomite Formation Facilitated by Three Halophilic Archaea.Earth Science, 42(3):389-396 (in Chinese with English abstract). https://doi.org/10.3799/dqkx.2017.029
      [26] Dupraz, C., Reid, R.P., Braissant, O., et al., 2009.Processes of Carbonate Precipitation in Modern Microbial Mats.Earth-Science Reviews, 96(3):141-162. https://doi.org/10.1016/j.earscirev.2008.10.005
      [27] Frankel, R.B., Zhang, J.P., Bazylinski, D.A., 1998.Single Magnetic Domains in Magnetotactic Bacteria.Journal of Geophysical Research-Solid Earth, 103(B12):30601-30604. https://doi.org/10.1029/97JB03512
      [28] George, A., Veis, A., 2008.Phosphorylated Proteins and Control over Apatite Nucleation, Crystal Growth, and Inhibition.Chemical Reviews, 108(11):4670-4693. https://doi.org/10.1021/cr0782729
      [29] Gilbert, P.U.P.A., Abrecht, M., Frazer, B.H., 2005.The Organic-Mineral Interface in Biominerals.Reviews in Mineralogy & Geochemistry, 59:157-185. https://doi.org/10.2138/rmg.2005.59.7
      [30] Gómez-Morales, J., Delgado-Lopez, J.M., Iafisco, M., et al., 2011.Amino Acidic Control of Calcium Phosphate Precipitation by Using the Vapor Diffusion Method in Microdroplets.Crystal Growth & Design, 11(11):4802-4809. https://doi.org/10.1021/cg2004547
      [31] Gower, L.B., 2008.Biomimetic Model Systems for Investigating the Amorphous Precursor Pathway and Its Role in Biomineralization.Chemical Reviews, 108(11):4551-4627. https://doi.org/10.1021/cr800443h
      [32] Griffith, D.P., 1978.Struvite Stones.Kidney International, 13(5):372-382. https://doi.org/10.1038/ki.1978.55
      [33] Hochella, M.F., 2002a.Nanoscience and Technology:The Next Revolution in the Earth Sciences.Earth and Planetary Science Letters, 203(2):593-605. https://doi.org/10.1016/S0012-821X(02)00818-X
      [34] Hochella, M.F., 2002b.There's Plenty of Room at the Bottom:Nanoscience in Geochemistry.Geochimica et Cosmochimica Acta, 66(5):735-743. https://doi.org/10.1016/S0016-7037(01)00868-7
      [35] Hochella, M.F., Lower, S.K., Maurice, P.A., et al., 2008.Nanominerals, Mineral Nanoparticles, and Earth Systems.Science, 319(5870):1631-1635. https://doi.org/10.1126/science.1141134
      [36] Jiang, S.D., Yao, Q.Z., Ma, Y.F., et al., 2015.Phosphate-Dependent Morphological Evolution of Hydroxyapatite and Implication for Biomineralisation.Gondwana Research, 28(2):858-868. https://doi.org/10.1016/j.gr.2014.04.005
      [37] Ju, Y.W., Huang, C., Sun, Y., et al., 2017.Nanogeosciences:Research History, Current Status, and Development Trends.Journal of Nanoscience and Nanotechnology, 17:5930-5965. https://doi.org/10.1166/jnn.2017.14436
      [38] Ju, Y.W., Sun, Y., Wan, Q., et al., 2016.Nanogeology:A Revolutionary Challenge in Geosciences.Bulletin of Mineralogy, Petrology and Geochemistry, 35(1):1-20 (in Chinese with English abstract). https://doi.org/10.3969/j.issn.1007-2802.2016.01.001
      [39] Kim, Y.Y., Schenk, A.S., Ihli, J., et al., 2014.A Critical Analysis of Calcium Carbonate Mesocrystals.Nature Communications, 5:4341. https://doi.org/10.1038/ncomms5341
      [40] Komeili, A., Li, Z., Newman, D.K., et al., 2006.Magnetosomes are Cell Membrane Invaginations Organized by the Actin-Like Protein MamK.Science, 311(5758):242-245. https://doi.org/10.1126/science.1123231
      [41] Laird, D.F., Mucalo, M.R., Yokogawa, Y., 2006.Growth of Calcium Hydroxyapatite (Ca-HAp) on Cholesterol and Cholestanol Crystals from a Simulated Body Fluid:A Possible Insight into the Pathological Calcifications Associated with Atherosclerosis.Journal of Colloid and Interface Science, 295(2):348-363. https://doi.org/10.1016/j.jcis.2005.09.013
      [42] Larsson, P.A., Howell, D.S., Pita, J.C., et al., 1988.Aspiration and Characterization of Predentin Fluid in Developing Rat Teeth by Means of a Micropuncture and Microanalytical Technique.Journal of Dental Research, 67(5):870-875. https://doi.org/10.1177/00220345880670051501
      [43] Lefèvre, C.T., Posfai, M., Abreu, F., et al., 2011.Morphological Features of Elongated-Anisotropic Magnetosome Crystals in Magnetotactic Bacteria of the Nitrospirae Phylum and the Delta Proteobacteria Class.Earth and Planetary Science Letters, 312(1-2):194-200. https://doi.org/10.1016/j.epsl.2011.10.003
      [44] Li, H., Yao, Q. Z., Wang, Y. Y., et al., 2015. Biomimetic Synthesis of Struvite with Biogenic Morphology and Implication for Pathological Biomineralization. Scientific Reports, 5: 7718. https://doi.org/10.1038/srep07718
      [45] Li, H., Yao, Q.Z., Yu, S.H., et al., 2017.Bacterially Mediated Morphogenesis of Struvite and Its Implication for Phosphorus Recovery.American Mineralogist, 102(2):381-390. https://doi.org/10.2138/am-2017-5687
      [46] Lian, B., Hu, Q.N., Chen, J., et al., 2006.Carbonate Biomineralization Induced by Soil Bacterium Bacillus Megaterium.Geochimica et Cosmochimica Acta, 70(22):5522-5535. https://doi.org/10.1016/j.gca.2006.08.044
      [47] Lin, W., Pan, Y.X., 2012.Diversity of Magnetotactic Bacteria and Its Implications for Environment.Quaternary Sciences, 32(4):567-575 (in Chinese with English abstract). https://doi.org/10.3969/j.issn.1001-7410.2012.04.01
      [48] Lin, W., Tian, L.X., Pan, Y.X., 2006.Formation of Magnetosomes in Magnetotactic Bacteria.Microbiology China, 33(3):133-137 (in Chinese with English abstract). https://doi.org/10.13344/j.microbiol.china.2006.03.028
      [49] Lowenstam, H.A., Weiner, S., 1989.On Biomineralization.Oxford University Press, New York.
      [50] Lundgren, T., Linde, A., 1987.Regulation of Free Ca2+ by Subcellular-Fractions of Rat Incisor Odontoblasts.Archives of Oral Biology, 32(7):463-468. https://doi.org/10.1016/S0003-9969(87)80005-5
      [51] Mahamid, J., Sharir, A., Addadi, L., et al., 2008.Amorphous Calcium Phosphate is a Major Component of the Forming Fin Bones of Zebrafish:Indications for an Amorphous Precursor Phase.Proceedings of the National Academy of Sciences of the United States of America, 105(35):12748-12753. https://doi.org/10.1073/pnas.0803354105
      [52] Mann, S., 2001.Biomineralization:Principles and Concepts in Bioinorganic Materials Chemistry.Oxford University Press, New York.
      [53] Oaki, K., Imai, H., 2005.The Hierarchical Architecture of Nacre and Its Mimetic Material.Angewandte Chemie-International Edition in English, 44(40):6571-6575. https://doi.org/10.1002/anie.200500338
      [54] Oaki, Y., Kotachi, A., Miura, T., et al., 2006.Bridged Nanocrystals in Biominerals and Their Biomimetics:Classical yet Modern Crystal Growth on the Nanoscale.Advanced Functional Materials, 16(12):1633-1639. https://doi.org/10.1002/adfm.200600262
      [55] Ogoshi, T., Itoh, H., Kim, K.M., et al., 2002.Synthesis of Organic-Inorganic Polymer Hybrids Having Interpenetrating Polymer Network Structure by Formation of Ruthenium-Bipyridyl Complex.Macromolecules, 35(2):334-338. https://doi.org/10.1021/ma010819c
      [56] Portincasa, P., Moschetta, A., Palasciano, G., 2006.Cholesterol Gallstone Disease.Lancet, 368(9531):230-239. https://doi.org/10.1016/S0140-6736(06)69044-2
      [57] Pósfai, M., Dunin-Borkowski, R.E., 2009.Magnetic Nanocrystals in Organisms.Elements, 5(4):235-240. https://doi.org/10.2113/gselements.5.4.235
      [58] Prywer, J., Torzewska, A., 2009.Bacterially Induced Struvite Growth from Synthetic Urine:Experimental and Theoretical Characterization of Crystal Morphology.Crystal Growth & Design, 9(8):3538-3543. https://doi.org/10.1021/cg900281g
      [59] Prywer, J., Torzewska, A., 2010.Biomineralization of Struvite Crystals by Proteus Mirabilis from Artificial Urine and Their Mesoscopic Structure.Crystal Research and Technology, 45(12):1283-1289. https://doi.org/10.1002/crat.201000344
      [60] Prywer, J., Torzewska, A., Plocinski, T., 2012.Unique Surface and Internal Structure of Struvite Crystals Formed by Proteus Mirabilis.Urological Research, 40(6):699-707. https://doi.org/10.1007/s00240-012-0501-3
      [61] Qu, X.F., Yao, Q.Z., Zhou, G.T., 2011.Biomimetic Formation of Nanomagnetite Chain:Implication for Magnetosome Mineralization.Geological Journal of China Universities, 17(1):66-75 (in Chinese with English abstract). https://doi.org/10.16108/j.issn1006-7493.2011.01.014
      [62] Rohanizadeh, R., Legeros, R.Z., 2007.Mineral Phase in Linguloid Brachiopod Shell:Lingula Adamsi.Lethaia, 40(1):61-68. https://doi.org/10.1111/j.1502-3931.2006.00006.x
      [63] Romanowski, Z., Kempisty, P., Prywer, J., et al., 2010.Density Functional Theory Determination of Structural and Electronic Properties of Struvite.Journal of Physical Chemistry A, 114(29):7800-7808. https://doi.org/10.1021/jp102887a
      [64] Ronholm, J., Schumann, D., Sapers, H.M., et al., 2014.A Mineralogical Characterization of Biogenic Calcium Carbonates Precipitated by Heterotrophic Bacteria Isolated from Cryophilic Polar Regions.Geobiology, 12(6):542-556. https://doi.org/10.1111/gbi.12102
      [65] Salgado, A.J., Coutinho, O.P., Reis, R.L., 2004.Bone Tissue Engineering:State of the Art and Future Trends.Macromolecular Bioscience, 4(8):743-765. https://doi.org/10.1002/mabi.200400026
      [66] Sánchez-Román, M., Rivadeneyra, M.A., Vasconcelos, C., et al., 2007.Biomineralization of Carbonate and Phosphate by Moderately Halophilic Bacteria.FEMS Microbiology Ecology, 61(2):273-284. https://doi.org/10.1111/j.1574-6941.2007.00336.x
      [67] Schäffer, T.E., Ionescu Zanetti, C., Proksch, R., et al., 1997.Does Abalone Nacre Form by Heteroepitaxial Nucleation or by Growth through Mineral Bridges? Chemistry of Materials, 9(8):1731-1740. https://doi.org/10.1021/cm960429i
      [68] Scheffel, A., Gruska, M., Faivre, D., et al., 2006.An Acidic Protein Aligns Magnetosomes along a Filamentous Structure in Magnetotactic Bacteria.Nature, 440(7080):110-114. https://doi.org/10.1038/nature04382
      [69] Schindler, M., Hochella, M.F., 2016.Nanomineralogy as a New Dimension in Understanding Elusive Geochemical Processes in Soils:The Case of Low-Solubility-Index Elements.Geology, 44(7):515-518. https://doi.org/10.1130/G37774.1
      [70] Shi, J.Y., Yao, Q.Z., Li, X.M., et al., 2012.Controlled Morphogenesis of Amorphous Silica and Its Relevance to Biosilicification.American Mineralogist, 97:1381-1392. https://doi.org/10.2138/am.2012.4081
      [71] Shi, J.Y., Yao, Q.Z., Li, X.M., et al., 2013.Formation of Asymmetrical Structured Silica Controlled by a Phase Separation Process and Implication for Biosilicification.PLoS One, 8(4):e61164. https://doi.org/10.1371/journal.pone.0061164
      [72] Shi, J.Y., Yao, Q.Z., Zhou, G.T., 2011.Organic Matrix-Mineral Interaction during Cell Wall Silicification in Diatoms.Geological Journal of China Universities, 17(1):76-85 (in Chinese with English abstract). https://doi.org/10.16108/j.issn1006-7493.2011.01.009
      [73] Sinha, A., Singh, A., Kumar, S., et al., 2014.Microbial Mineralization of Struvite:A Promising Process to Overcome Phosphate Sequestering Crisis.Water Research, 54:33-43. https://doi.org/10.1016/j.watres.2014.01.039
      [74] Skinner, H.C.W., 2005.Biominerals.Mineralogical Magazine, 69(5):621-641. https://doi.org/10.1180/0026461056950275
      [75] Song, H.J., Tong, J.N., 2016.Mass Extinction and Survival during the Permian-Triassic Crisis.Earth Science, 41(6):901-918(in Chinese with English abstract). https://doi.org/10.3799/dqkx.2016.077
      [76] Song, R.Q., Cölfen, H., 2010.Mesocrystals-Ordered Nanoparticle Superstructures.Advanced Materials, 22(12):1301-1330. https://doi.org/10.1002/adma.200901365
      [77] Sturm, E.V., Cölfen, H., 2016.Mesocrystals:Structural and Morphogenetic Aspects.Chemical Society Reviews, 45(21):5821-5833. https://doi.org/10.1039/c6cs00208k
      [78] Takahashi, K., Yamamoto, H., Onoda, A., et al., 2004.Highly Oriented Aragonite Nanocrystal-Biopolymer Composites in an Aragonite Brick of the Nacreous Layer of Pinctada Fucata.Chemical Communications, 8:996-997. https://doi.org/10.1039/b315478e
      [79] Tao, J.H., Zhou, D.M., Zhang, Z.S., et al., 2009.Magnesium-Aspartate-Based Crystallization Switch Inspired from Shell Molt of Crustacean.Proceedings of the National Academy of Sciences of the United States of America, 106(52):22096-22101. https://doi.org/10.1073/pnas.0909040106
      [80] Uebe, R., Schuler, D., 2016.Magnetosome Biogenesis in Magnetotactic Bacteria.Nature Reviews Microbiology, 14(10):621-637. https://doi.org/10.1038/nrmicro.2016.99
      [81] Wan, Q., 2012.Some Thoughts on Nanogeoscience.Acta Mineralogica Sinica, (Suppl.):50-51 (in Chinese). https://doi.org/10.16461/j.cnki.1000-4734.2012.s1.041
      [82] Wang, Y.X., Tian, X.K., 2016.New Opportunities for the Study of Geology:Nanogeology.Bulletin of Mineralogy, Petrology and Geochemistry, 35(1):79-86 (in Chinese with English abstract). http://www.learner.org/workshops/socialstudies/pdf/session8/8.WhatIsSocialStudies.pdf
      [83] Wang, Y.Y., Yao, Q.Z., Li, H., et al., 2015.Formation of Vaterite Mesocrystals in Biomineral-Like Structures and Implication for Biomineralization.Crystal Growth & Design, 15(4):1714-1725. https://doi.org/10.1021/cg501707f
      [84] Wang, Y.Y., Yao, Q.Z., Zhou, G.T., et al., 2013.Formation of Elongated Calcite Mesocrystals and Implicationfor Biomineralization.Chemical Geology, 360-361:126-133. https://doi.org/10.1016/j.chemgeo.2013.10.013
      [85] Weiner, S., 2008.Biomineralization:A Structural Perspective.Journal of Structural Biology, 163(3):229-234. https://doi.org/10.1016/j.jsb.2008.02.001
      [86] Weiner, S., Addadi, L., 1997.Design Strategies in Mineralized Biological Materials.Journal of Materials Chemistry, 7(5):689-702. https://doi.org/10.1039/a604512j
      [87] Weiner, S., Dove, P.M., 2003.An Overview of Biomineralization Processes and the Problem of the Vital Effect.Reviews in Mineralogy and Geochemistry, 54(1):1-29. https://doi.org/org/10.2113/0540001
      [88] Weiner, S., Wagner, H.D., 1998.The Material Bone:Structure Mechanical Function Relations.Annual Review of Materials Science, 28:271-298. https://doi.org/10.1146/annurev.matsci.28.1.271
      [89] Wit, J.C., de Nooijer, L.J., Haig, J., et al., 2017.Towards Reconstructing Ancient Seawater Mg/Ca by Combining Porcelaneous and Hyaline Foraminiferal Mg/Ca-Temperature Calibrations.Geochimica et Cosmochimica Acta, 211:341-354. https://doi.org/10.1016/j.gca.2017.05.036
      [90] Yao, Q.Z., Guan, Y.B., Zhou, G.T., et al., 2012.Witherite Nanorods Form Mesocrystals:A Direct Experimental Examination of a Dipole-Driven Self-Assembly Model.European Journal of Mineralogy, 24(3):519-526. https://doi.org/10.1127/0935-1221/2012/0024-2186
      [91] Zaremba, C.M., Belcher, A.M., Fritz, M., et al., 1996.Critical Transitions in the Biofabrication of Abalone Shells and Flat Pearls.Chemistry of Materials, 8(3):679-690. https://doi.org/10.1021/cm9503285
      [92] Zhou, G.T., Guan, Y.B., Yao, Q.Z., et al., 2010.Biomimetic Mineralization of Prismatic Calcite Mesocrystals:Relevance to Biomineralization.Chemical Geology, 279(3-4):63-72. https://doi.org/10.1016/j.chemgeo.2010.08.020
      [93] Zhou, G.T., Yao, Q.Z., Ni, J., et al., 2009.Formation of Aragonite Mesocrystals and Implication for Biomineralization.American Mineralogist, 94(2-3):293-302. https://doi.org/10.2138/am.2009.2957
      [94] Zhou, L., O'Brien, P., 2008.Mesocrystals:A New Class of Solid Materials.Small, 4(10):1566-1574. https://doi.org/10.1002/smll.200800520
      [95] 卜凡兴, 都晨杰, 姜继森, 2014.介晶的制备、性能与应用研究.化学进展, 26(1):75-86. http://cdmd.cnki.com.cn/Article/CDMD-10338-1015564335.htm
      [96] 陈天虎, 谢巧勤, 2005.电子显微镜时代与纳米地球科学.合肥工业大学学报(自然科学版), 28(9):1126-1129. http://www.cqvip.com/QK/90962X/200509/20242993.html
      [97] 崔福斋, 2012.生物矿化(第2版).北京:清华大学出版社.
      [98] 戴永定, 1994.生物成因矿物学.北京:石油工业出版社.
      [99] 段勇, 药彦辰, 邱轩, 等, 2017.三株嗜盐古菌诱导形成白云石.地球科学, 42(3):389-396. http://www.earth-science.net/WebPage/Article.aspx?id=3542
      [100] 琚宜文, 孙岩, 万泉, 等, 2016.纳米地质学:地学领域革命性挑战.矿物岩石地球化学通报, 35(1):1-20. http://www.cqvip.com/QK/84215X/201601/668146269.html
      [101] 林巍, 潘永信, 2012.趋磁细菌多样性及其环境意义.第四纪研究, 32(4):567-575. https://www.researchgate.net/profile/Wei_Lin/publication/235413438_Diversity_of_magnetotactic_bacteria_and_its_implications_for_environments/links/0fcfd5115acbfbcde9000000/Diversity-of-magnetotactic-bacteria-and-its-implications-for-environments.pdf
      [102] 林巍, 田兰香, 潘永信, 2006.趋磁细菌磁小体研究进展.微生物学通报, 33(3):133-137. http://cpfd.cnki.com.cn/Article/CPFDTOTAL-DZDQ200702001017.htm
      [103] 曲晓飞, 姚奇志, 周根陶, 2011.纳米磁铁矿链的仿生合成及其生物矿化意义.高校地质学报, 17(1):66-75. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=gxdzxb201101009
      [104] 史家远, 姚奇志, 周根陶, 2011.硅藻细胞壁硅化过程中有机质-矿物的相互作用.高校地质学报, 17(1):76-85. http://industry.wanfangdata.com.cn/dl/Detail/Periodical?id=Periodical_gxdzxb201101010
      [105] 宋海军, 童金南, 2016.二叠纪-三叠纪之交生物大灭绝与残存.地球科学, 41(6):901-918. http://www.earth-science.net/WebPage/Article.aspx?id=3307
      [106] 万泉, 2012.关于纳米地球科学的一些思考.矿物学报, (增刊):50-51. http://www.cqvip.com/QK/96984X/200406/11309951.html
      [107] 王焰新, 田熙科, 2016.地学研究的新机遇——纳米地质学.矿物岩石地球化学通报, 35(1):79-86. http://industry.wanfangdata.com.cn/yj/Detail/Periodical?id=Periodical_kwysdqhxtb201601010
    • 加载中
    图(8)
    计量
    • 文章访问数:  6100
    • HTML全文浏览量:  1950
    • PDF下载量:  65
    • 被引次数: 0
    出版历程
    • 收稿日期:  2017-09-02
    • 刊出日期:  2018-05-15

    目录

      /

      返回文章
      返回