• 中国出版政府奖提名奖

    中国百强科技报刊

    湖北出版政府奖

    中国高校百佳科技期刊

    中国最美期刊

    留言板

    尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

    姓名
    邮箱
    手机号码
    标题
    留言内容
    验证码

    武汉地区ZK145钻孔沉积物磁性特征及对古洪水的记录

    熊智秋 张玉芬 毛欣 熊友亮 熊德强 李军 宋喆 李长安

    熊智秋, 张玉芬, 毛欣, 熊友亮, 熊德强, 李军, 宋喆, 李长安, 2020. 武汉地区ZK145钻孔沉积物磁性特征及对古洪水的记录. 地球科学, 45(2): 663-671. doi: 10.3799/dqkx.2018.398
    引用本文: 熊智秋, 张玉芬, 毛欣, 熊友亮, 熊德强, 李军, 宋喆, 李长安, 2020. 武汉地区ZK145钻孔沉积物磁性特征及对古洪水的记录. 地球科学, 45(2): 663-671. doi: 10.3799/dqkx.2018.398
    Xiong Zhiqiu, Zhang Yufen, Mao Xin, Xiong Youliang, Xiong Deqiang, Li Jun, Song Zhe, Li Chang'an, 2020. Magnetic Characteristics of ZK145 Borehole Sediments in Wuhan Area and Its Records of Paleoflood. Earth Science, 45(2): 663-671. doi: 10.3799/dqkx.2018.398
    Citation: Xiong Zhiqiu, Zhang Yufen, Mao Xin, Xiong Youliang, Xiong Deqiang, Li Jun, Song Zhe, Li Chang'an, 2020. Magnetic Characteristics of ZK145 Borehole Sediments in Wuhan Area and Its Records of Paleoflood. Earth Science, 45(2): 663-671. doi: 10.3799/dqkx.2018.398

    武汉地区ZK145钻孔沉积物磁性特征及对古洪水的记录

    doi: 10.3799/dqkx.2018.398
    基金项目: 

    国家自然科学基金资助项目 41672355

    国家自然科学基金资助项目 41671011

    详细信息
      作者简介:

      熊智秋(1994—), 女, 硕士研究生, 主要从事环境磁学方面的研究

      通讯作者:

      张玉芬

    • 中图分类号: P318

    Magnetic Characteristics of ZK145 Borehole Sediments in Wuhan Area and Its Records of Paleoflood

    • 摘要: 长江中游是我国洪灾最为严重的地区,武汉江段是长江中游防洪重点.开展武汉地区长江古洪水研究,从而延长古洪水记录具有重要意义.选择长江武汉段堤后典型湖泊钻孔——ZK145钻孔,在沉积物岩性及沉积相分析的基础上,通过对岩心磁性特征和粒度特征分析,结合AMS 14C测年,对长江武汉段全新世古洪水频发期进行了研究.根据质量磁化率、频率磁化率曲线,将钻孔划分为5个沉积阶段.再结合中值粒径和砂含量,识别出9次特大古洪水事件,其年代为:10 580~10 510,10 280~10 200,9 690~9 670,9 530~9 500,8 660~8 450,7 700~75 00,6 270~5 910,4 850~4 800,3 560~3 500 cal.a BP,其中9 700~4 800 cal.a.BP为古洪水频发期.热磁曲线分析表明,古洪水沉积物的热磁曲线在510℃附近可见较明显的峰值,主导磁性矿物为磁铁矿.研究表明,质量磁化率高值、频率磁化率低值和较粗粒径为长江武汉段堤后湖泊古洪水沉积的识别标志.

       

    • 图  1  武汉ZK145钻孔位置分布(左图为中国部分区域图)

      Fig.  1.  The location distribution of ZK145 borehole in Wuhan

      图  2  ZK145钻孔质量磁化率、频率磁化率、中值粒径、砂含量曲线及岩性柱状图

      Fig.  2.  Mass magnetic susceptibility, frequency susceptibility, median particle size, sand content curve and lithologic column diagram of ZK145 borehole

      图  3  ZK145钻孔代表性样品κ-T曲线(红线为加热曲线,蓝线为冷却曲线,各图左上角数字表示样品号和取样深度)

      Fig.  3.  Temperature-dependence susceptibility measurements for the typical sample of ZK145 borehole

      图  4  ZK145钻孔第Ⅴ、Ⅲ和Ⅱ阶段的古洪水层识别

      Fig.  4.  Identification of paleoflood layers in stages Ⅴ, Ⅲ and Ⅱ of ZK145 borehole

      表  1  ZK145钻孔AMS14C测年及日历年龄校正

      Table  1.   AMS14C dating and calendar calibration of chronology in the ZK145 borehole

      样品编号 取样深度(m) 岩性特征 AMS14C年龄(a BP) 日历年龄(cal.a BP)
      ZK145 14C-1 3.20 黑灰色黏土 3 380±35 3 623
      ZK145 14C-2 14.00 黑灰色黏土 4 270±35 4 844
      ZK145 14C-3 19.63 褐灰色黏土 8 670±40 9 614
      ZK145 14C-4 24.89 褐灰色黏土 8 800±41 9 828
      ZK145 14C-5 30.10 黑灰色黏土 9 480±50 10 738
      下载: 导出CSV

      表  2  ZK145钻孔磁化率和频率磁化率特征

      Table  2.   Characteristic of magnetic susceptibility and frequency susceptibility of ZK145 borehole

      阶段 深度(m) 年代(ka B.P) 质量磁化率(10-8 m3/kg) 频率磁化率(%)
      最大值 最小值 平均值 标准差 样品数 最大值 最小值 平均值 标准差 样品数
      1.30~2.83 3.41~3.58 98.06 27.44 48.46 17.05 13 4.62 1.88 3.11 0.93 13
      3.00~10.00 3.60~4.39 33.47 5.94 13.34 6.34 58 5.36 0.40 2.52 1.30 58
      10.13~22.23 4.41~9.72 87.63 7.16 27.75 17.77 94 8.34 0.74 4.28 1.75 94
      22.34~33.60 9.72~11.35 173.97 12.82 43.94 20.92 87 6.63 0.77 1.92 0.86 87
      33.80~37.90 11.38~12.10 64.87 8.99 23.38 21.25 5 2.48 1.23 1.80 0.49 5
      整个钻孔 3.41~12.10 173.97 5.94 30.94 257 8.34 0.40 2.98 257
      下载: 导出CSV
    • [1] Ao, H., Deng, C.L., 2007. Review in the Identification of Magnetic Minerals. Progress in Geophysics, 22(2):432-442(in Chinese with English abstract). http://en.cnki.com.cn/article_en/cjfdtotal-dqwj200702014.htm
      [2] Cui, J.X., Zhou, S.Z., Han, H.T., 2005. Fluvial-Lacustrine Sediments and Holocene Climatic and Hydrologic Events in the Renqiu Section, China. Marine Geology and Quaternary Geology, 25(4):107-113(in Chinese with English abstract). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=hydzydsjdz200504017
      [3] Deng, C. L., Zhu, R. X., Verosub, K. L., et al., 2000. Paleoclimatic Significance of the Temperature-Dependent Susceptibility of Holocene Loess along a NW-SE Transect in the Chinese Loess Plateau. Geophysical Research Letters, 27(22):3715-3718. https://doi.org/10.1029/2000gl008462
      [4] Deng, C. L., Zhu, R. X., Verosub, K. L., et al., 2004. Mineral Magnetic Properties of Loess/paleosol Couplets of the Central Loess Plateau of China over the last 1.2 Myr. Journal of Geophysical Research:Solid Earth, 109(B1):1-13. https://doi.org/10.1029/2003jb002532
      [5] Fang, Q., Hong, H.L., Zhao, L.L., et al., 2018. Climatic Implication of Authigenic Minerals Formed during Pedogenic Weathering Processes. Earth Science, 43(3):753-769(in Chinese with English abstract). http://d.old.wanfangdata.com.cn/Periodical/dqkx201803007
      [6] Ge, Z.S., Yang, D.Y., Li, X.S., et al., 2004. The Paleoflooding Record along the Up-Reaches of the Changjiang River since the Late Pleistocene Epoch. Quaternary Sciences, 24(5):555-560(in Chinese with English abstract). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=dsjyj200405012
      [7] Leigh, D. S., 2017. Vertical Accretion Sand Proxies of Gaged Floods along the Upper Little Tennessee River, Blue Ridge Mountains, USA. Sedimentary Geology, 364:342-350. https://doi.org/10.1016/j.sedgeo.2017.09.007.
      [8] Li, C.A., Yin, H.F., Yu, L.Z., et al., 2000. Silt Transform Characteristics and Latent Effect on Fluvial System Environment in Yangtze River. Resources and Environment in the Yangtze Basin. 9(4):504-509(in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-CJLY200004016.htm
      [9] Li, Q., Yi, L., Liu, S.Z., et al., 2016. Rock Magnetic Properties of the Lz908 Borehole Sediments from the Southern Bohai Sea, Eastern China. Chinese Journal of Geophysics, 59(5):1717-1728(in Chinese with English abstract). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=dqwlxb201605016
      [10] Luo, C., Zheng, Y., Zheng, H.B., et al., 2013. Magnetic Properties of Suspended Sediment in the Yangtze River and Its Provenance Implications. Quaternary Sciences, 33(4):684-696(in Chinese with English abstract). http://www.en.cnki.com.cn/Article_en/CJFDTOTAL-DSJJ201304006.htm
      [11] Mao, P. N., Pang, J. L., Huang, C. C., et al., 2016. A Multi-Index Analysis of the Extraordinary Paleoflood Events Recorded by Slackwater Deposits in the Yunxi Reach of the Upper Hanjiang River, China. Catena, 145:1-14. https://doi.org/10.1016/j.catena.2016.05.016
      [12] Matsumoto, D., Sawai, Y., Yamada, M., et al., 2016. Erosion and Sedimentation during the September 2015 Flooding of the Kinu River, Central Japan. Scientific Reports, 6(1):1-10. https://doi.org/10.1038/srep34168
      [13] Pan, F.Y., Yuan, D., 1996. Floodwater Depositional Marks of Lake Facies Deposit in Wujindan Lake within Xinghua City. Journal of Nanjing Normal University (Natural Science), 3):78-84(in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-NJSF603.017.htm
      [14] Wu, L., Zhu, C., Ma, C. M., et al., 2017. Mid-Holocene Palaeoflood Events Recorded at the Zhongqiao Neolithic Cultural Site in the Jianghan Plain, Middle Yangtze River Valley, China. Quaternary Science Reviews, 173:145-160. https://doi.org/10.1016/j.quascirev.2017.08.018
      [15] Xie, J.L., Zhang, K.X., Ma, X.L., et al., 2017. Magnetostratigraphy and Astronomically Tuned Time Scale of Yangtze Delta since Pliocene. Earth Science, 42(10):1760-1773(in Chinese with English abstract). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=dqkx201710011
      [16] Xie, Y.Y., Li, C.A., Wang, Q.L., et al., 2007. Sedimentary Records of Paleoflood Events During the Last 3 000 Years in Jianghan Plain. Scientia Geographica Sinica, 27(1):81-84(in Chinese with English abstract). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=dlkx200701013
      [17] Yang, X.Q., Li, H.M., 2002. The Correlation between the Content of the Different Grain Size and Magnetic Susceptibility in Lacustrine Sediments, Nihewan Basin. Acta Sedimentologica Sinica. 20(4):675-679(in Chinese with English abstract). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=cjxb200204023
      [18] Yu, J.Q., Kelts, K.R., 2002. Abrupt Changes in Climatic Conditions across the Late-Glacial/Holocene Transition on the N. E. Tibet-Qinghai Plateau:Evidence from Lake Qinghai, China. Journal of Paleolimnology, 28:195-206. https://doi.org/10.1023/A:1021635715857.
      [19] Zhang, W.G., Yu, L.Z., Xu, Y., 1995. Brief Reviews on Environmental Magnetism. Progress in Geophysics, 10(3):95-105(in Chinese with English abstract). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=hyhjkx200801023
      [20] Zhang, Y.F., Li, C.A., Yan, G.L., et al., 2004. A Comparative Study of Magnetic Fabric Characters Between Flooded Sediments and Normal River Sediments. Chinese Journal of Geophysics.47(4):639-645(in Chinese with English abstract). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=10.1002/cjg2.3543
      [21] Zhang, Y.F., Li, C.A., Cheng, L., et al., 2009. Magnetic Fabric of Holocene Palaeo-Floods Events in Jianghan Plain. Earth Science, 34(6):985-992(in Chinese with English abstract). http://d.old.wanfangdata.com.cn/Periodical/dqkx200906013
      [22] Zhang, Y.F., Li, C.A., Sun, X.L., 2015. Sediment Magnetism Characteristics and Its Climatic Environment Significance of Northeast Margin of Jianghan Plain. Earth Science. 41(7):1225-1230(in Chinese with English abstract). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=dqkx201607014
      [23] Zhang, Y. Z., Huang, C. C., Pang, J. L., et al., 2013. Holocene Paleofloods Related to Climatic Events in the Upper Reaches of the Hanjiang River Valley, Middle Yangtze River Basin, China. Geomorphology, 195:1-12. https://doi.org/10.1016/j.geomorph.2013.03.032
      [24] Zhu, C., Lu, C.C., 1997. The Study of Holocene Environmental Archaeology and Extreme Flood Disaster in the Three Gorges of the Changjiang River and the Jianghan Plain. Acta Geographica Sinica, 52(3):268-278(in Chinese with English abstract).
      [25] Zhu, C., Zheng, C.G., Ma, C.M., et al., 2005.Study on Identification of Strata Paleoflood Deposits in the ZhongbaSite in the Three Gorges Reservoir Area of the Yangtze River. Chinese Science Bulletin, 50(20):2240-2250(in Chinese). doi: 10.1360/04td0364
      [26] Zhu, Z. M., Feinberg, J. M., Xie, S. C., et al., 2017. Holocene ENSO-Related Cyclic Storms Recorded by Magnetic Minerals in Speleothems of Central China. Proceedings of the National Academy of Sciences, 114(5):852-857. https://doi.org/10.1073/pnas.1610930114
      [27] 敖红, 邓成龙, 2007.磁性矿物学的磁学鉴别方法回顾.地球物理学进展, 22(2):432-442. doi: 10.3969/j.issn.1004-2903.2007.02.015
      [28] 崔建新, 周尚哲, 韩海涛, 等, 2005.河北任丘剖面河湖相沉积及全新世水文气候事件.海洋地质与第四纪地质, 25(4):107-113. http://d.old.wanfangdata.com.cn/Periodical/hydzydsjdz200504017
      [29] 葛兆帅, 杨达源, 李徐生, 等, 2004.晚更新世晚期以来的长江上游古洪水记录.第四纪研究, 24(5):555-560. doi: 10.3321/j.issn:1001-7410.2004.05.012
      [30] 方谦, 洪汉烈, 赵璐璐, 等, 2018.风化成土过程中自生矿物的气候指示意义.地球科学, 43(3):753-769. doi: 10.3799/dqkx.2018.905
      [31] 李倩, 易亮, 刘素贞, 等, 2016.渤海南部莱州湾Lz908孔沉积物的岩石磁学性质.地球物理学报, 59(5):1717-1728. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=dqwlxb201605016
      [32] 李长安, 殷鸿福, 俞立中, 2000.长江流域泥沙特点及对流域环境的潜在影响.长江流域资源与环境, 9(4):504-509. doi: 10.3969/j.issn.1004-8227.2000.04.017
      [33] 罗超, 郑妍, 郑洪波, 等, 2013.长江流域悬浮物磁性特征及其物源指示意义.第四纪研究, 33(4):684-696. doi: 10.3969/j.issn.1001-7410.2013.04.06
      [34] 潘凤英, 袁丁, 1996.兴化市乌巾荡湖相沉积层中鉴别洪水沉积标志的研究.南京师大学报(自然科学版), (3):78-84. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=QK199600773127
      [35] 谢建磊, 张克新, 马小林, 等, 2017.长江三角洲上新世以来磁性地层及天文调谐年代标尺.地球科学, 42(10):1760-1773. doi: 10.3799/dqkx.2017.569
      [36] 谢远云, 李长安, 王秋良, 等, 2007.江汉平原近3000年来古洪水事件的沉积记录.地理科学, 27(1):81-84. doi: 10.3969/j.issn.1000-0690.2007.01.013
      [37] 杨小强, 李华梅, 2002.泥河湾盆地沉积物粒度组分与磁化率变化相关性研究.沉积学报, 20(4):675-679. doi: 10.3969/j.issn.1000-0550.2002.04.023
      [38] 张卫国, 俞立中, 许羽, 1995.环境磁学研究的简介.地球物理学进展, 10(3):95-105. http://d.old.wanfangdata.com.cn/Periodical/gcdqwlxb201204010
      [39] 张玉芬, 李长安, 阎桂林, 等, 2004.长江中游地区洪泛沉积物与正常河流沉积物磁组构特征对比研究.地球物理学报, 47(4):639-645. doi: 10.3321/j.issn:0001-5733.2004.04.014
      [40] 张玉芬, 李长安, 陈亮, 等, 2009.基于磁组构特征的江汉平原全新世古洪水事件.地球科学-中国地质大学学报, 34(6):985-992. doi: 10.3321/j.issn:1000-2383.2009.06.013
      [41] 张玉芬, 李长安, 孙习林, 等, 2016.江汉平原东北缘麻城剖面磁化率特征及气候环境意义.地球科学, 41(7):1225-1230. doi: 10.3799/dqkx.2016.100
      [42] 朱诚, 卢春成, 1997.长江三峡及江汉平原地区全新世环境考古与异常洪涝灾害研究.地理学报, 52(3):268-278. doi: 10.3321/j.issn:0375-5444.1997.03.010
      [43] 朱诚, 郑朝贵, 马春梅, 等, 2005.长江三峡库区中坝遗址地层古洪水沉积判别研究.科学通报, 50(20):2240-2250. doi: 10.3321/j.issn:0023-074X.2005.20.011
    • 加载中
    图(4) / 表(2)
    计量
    • 文章访问数:  3218
    • HTML全文浏览量:  1200
    • PDF下载量:  42
    • 被引次数: 0
    出版历程
    • 收稿日期:  2018-12-31
    • 刊出日期:  2020-02-15

    目录

      /

      返回文章
      返回