A High-Precision Bench-Toprotary Ultrasonic Rock Coring Device
-
摘要: 将野外采集或实验室合成的岩石样品制备成小尺寸柱状岩心样品,是进行地质学岩石高温高压物性实验的重要环节.岩石样本的脆硬性和成分不均匀性严重影响常规岩石磨削取心加工过程的稳定性和取心质量.将取样工具的旋转超声振动与岩石磨削加工过程相结合,并通过气动系统实现岩石样本在竖直方向上的柔性进给,所研制的台式旋转超声岩石取心装置可实现实验室小尺寸柱状岩心样品的高精度自动磨削取心加工过程.多种不同地质材料的取心测试结果表明,该装置能进行不同硬度岩石样品的高效率和高质量小直径取心加工,满足地质学高温高压实验的高标准制样需求.Abstract: The preparation of small-size cylindrical rock samples from the rock samples collected in field or synthesized in the laboratory is an important procedure for high-pressure and high-temperature rock physics experiments in geosciences. The brittle hardness and in homogeneity of rock samples can affect significantly the stability and coring quality of conventional rock core grinding process. To overcome this technique difficulty, we combined the techniques of rotary ultrasonic vibration and rock grinding and developed a flexible high-pressure air-operated sample feeding system along the vertical direction in a bench-top rotary ultrasonic rock coring device. This device can realize high-precision automatic coring and grinding of small-size cylindrical rock specimen.The coring tests on rock specimens of various hardness show that the new device can conduct high-efficiency and highquality small-diameter sample coring and satisfy the high-standard requirements of high-pressure and high-temperature geological experiments.
-
表 1 取心加工材料的硬度值
Table 1. Hardness value of coring materials
材料 玻璃 氧化铝陶瓷 灰岩 片麻岩 榴辉岩 橄榄岩 安山岩 石英岩 莫式硬度/普氏硬度 5.5/- 9/- 3/2~4 -/14~16 6~7/- -/16~18 -/20~25 7.5/ > 25 表 2 不同硬度的硬脆材料超声磨削取心加工性能
Table 2. Ultrasonic coring properties of hard and brittle materials with different hardness
材料 样品长度(mm) 取样时间(min) 样品直径(mm) 样品头尾直径偏差(mm) 取样率 玻璃 10.0 9.0 2.69 0.03 100% 氧化铝陶瓷 10.0 16.3 2.70 0.02 100% 灰岩 9.5 4.1 2.68 0.02 100% 片麻岩 11.0 9.8 2.68 0.01 100% 榴辉岩 10.6 10.3 2.69 0.01 100% 橄榄岩 10.4 11.3 2.69 0.01 100% 安山岩 10.5 12.6 2.69 0.02 100% 石英岩 10.5 14.5 2.68 0.02 100% -
[1] Bao, X.Q., Bar-Cohen, Y., Chang, Z., et al., 2003. Modeling and Computer Simulation of Ultrasonic/Sonic.Driller/Corer (USDC). IEEE Transactions on Ultrasonics, Ferroelectrics, & Frequency Control, 50(9): 1147 [2] Bar-Cohen, Y., Sherrit, S., Dolgin, B.P., et al., 2001. Ultrasonic/Sonic Driller/Corer (USDC) as a Sampler for Planetary Exploration. Aerospace Conference, IEEE, 1/263-1/271. [3] Feng, P.F., Wang, J.J., Zhang, J.F., et al., 2017. Research Status and Future Prospects of Rotary Ultrasonic Machining of Hard and Brittle Materials. Journal of Mechanical Engineering, 53(19): 3-21(in Chinese with English abstract). doi: 10.3901/JME.2017.19.003 [4] Han, G.C., Liu, C.J., Wang, C., et al., 2016a. An Ultrasonic Assisted Rock Sampling Device and Method. Chinese Patent: 201410301083.8, 2016-03-23(in Chinese with English abstract). [5] Han, G.C., Pan, G.F., Liu, C.J., et al., 2016b. An Improved Rotary Ultrasonic Rock sampling Device and Method. Chinese Patent: 201610430016.5, 2016-06-17(in Chinese with English abstract). [6] Harkness, P., Cardoni, A., Lucas, M., 2009. Ultrasonic Rock Drilling Devices Using Longitudinal-Torsional Compound Vibration. Ultrasonics Symposium, IEEE, 2088-2091. http://d.old.wanfangdata.com.cn/NSTLHY/NSTL_HYCC0210259687/ [7] Harkness, P., Lucas, M., Cardoni, A., 2012. Coupling and Degenerating Modes in Longitudinal-Torsional Step Horns. Ultrasonics, 52(8): 980-988. https://doi.org/10.1016/j.ultras.2012.05.002 [8] Huang, S.X., Qin, S., Wu, X., 2019. Elasticity and Anisotropy of the Pyrite-Type FeO2H-FeO2 System in Earth's Lowermost Mantle. Journal of Earth Science, 30(6): 1293-1301. https://doi.org/10.1007/s12583-018-0836-y [9] Jin, Z.M., Zhang, J.F., Green, H. W., et al., 2001. Rheological Strength of Uhp Eclogite from Dabieshan: Evidences from High P-T Experiments. Journal of Earth Science, 26(6):574-580. [10] Liang, C.H., 2015. Research on the Impact of Ultrasonic/Sonic Driller/Corer(USDC)'s Connection Mode(Dissertation). China University of Geosciences, Beijing (in Chinese with English abstract). [11] Sherrit, S., Dolgin, B. P., Bar-Cohen, Y., et al., 1999. Modeling of Horns for Sonic/Ultrasonic Applications. Proceedings of the IEEE International Ultrasonics Symposium, Lake Tahoe, CA, 647-651.. [12] Sun, Z.H., 2017. Study on the Effect of Ultrasonic Vibration on Frequency on Granite Fracture Law(Dissertation). Jilin University, Changchun (in Chinese with English abstract). [13] Xu, L.L., Jin, Z.M., Mei, S.H., 2017. Deformation-DIA Coupled with Synchrotron X-Ray Diffraction and Its Applications to Deformation Experiments of Minerals at High Temperature and High Pressure. Earth Science, 42(6): 974-989(in Chinese with English abstract). [14] Yang, K., 2012. Research on Drilling Corer Based on Ultrasonic/acoustic Energy Coupling Mechanism(Dissertation). Nanjing University of Aeronautics and Astronautics, Nanjing(in Chinese with English abstract). [15] Zhang, D.Y., Xin, W.L., Jiang, X.G., et al., 2016. Research Trends of Ultrasonic Machining Technology. Electromachining & Mould, (S1): 11-13(in Chinese with English abstract). [16] Zhang, J.F., Wang, C., Wang, Y.F., 2012. Experimental Constraints on the Destruction Mechanism of the North China Craton. Lithos, 149: 91-99. https://doi.org/10.1016/j.lithos.2012.03.015 [17] 冯平法, 王健健, 张建富, 等, 2017.硬脆材料旋转超声加工技术的研究现状及展望.机械工程学报, 53(19): 3-21 http://d.old.wanfangdata.com.cn/Periodical/jxgcxb201719002 [18] 韩光超, 刘初见, 王超, 等, 2016a.一种超声辅助岩石取样装置及方法.中国专利: 201410301083.8, 2016-03-23. [19] 韩光超, 潘高峰, 刘初见, 等, 2016b.一种改进型旋转超声岩石取样装置及方法.中国专利: 201610430016.5, 2016-06-17. [20] 梁彩红, 2015.联接方式对太空超声取样钻性能影响的研究(硕士毕业论文).北京: 中国地质大学. http://cdmd.cnki.com.cn/Article/CDMD-11415-1015391299.htm [21] 孙梓航, 2017.超声波振动频率对花岗岩破碎规律影响的研究(博士毕业论文).长春: 吉林大学. http://cdmd.cnki.com.cn/Article/CDMD-10183-1017160705.htm [22] 许丽丽, 金振民, Mei, S.H., 2017. D-DIA装置与同步辐射源结合技术及其在矿物高温高压变形实验中的应用.地球科学, 42(6): 974-989. doi: 10.3799/dqkx.2017.078 [23] 杨康, 2012.基于超声波声波能量耦合机理的钻探器研究(硕士毕业论文).南京: 南京航空航天大学. http://cdmd.cnki.com.cn/Article/CDMD-10287-1012041081.htm [24] 张德远, 辛文龙, 姜兴刚, 等, 2016.超声加工技术研究趋势.电加工与模具, (增刊1): 11-13 http://d.old.wanfangdata.com.cn/Periodical/djgymj2016z1003