Rare Metal Enrichment in Leucogranite within Nariyongcuo Gneiss Dome, South Tibet
-
摘要: 拿日雍措穹窿(错那洞穹窿)位于北喜马拉雅穹窿的东部,穹隆内花岗岩种类较多,有淡色花岗岩、含石榴子石淡色花岗岩、片理化淡色花岗岩、含石榴子石和含绿柱石伟晶岩.这些花岗岩为经历了斜长石、锆石、独居石、磷灰石、富Ti矿物等分离结晶作用而形成的高度演化花岗岩,相对于维氏世界花岗岩平均值,富集Bi、Cs、Li、Sn、Be、Pb、B、W、Ta等稀有金属成矿元素,略贫Nb元素.同时,围岩也相对富集稀有金属元素.全岩地球化学分析表明,引起拿日雍措穹隆淡色花岗岩富集稀有金属成矿元素的因素是分离结晶作用和热液交代作用.高度演化淡色花岗岩在喜马拉雅造山带广泛分布,铌铁矿、钽铁矿、锡石和绿柱石等稀有金属矿物已在多处露头被识别,暗示了喜马拉雅淡色花岗岩是未来稀有金属矿产勘探的重要靶区.Abstract: The Nariyongcuo gneiss dome, located to eastern Tethyan Himalaya, consists of many types of granites, containing twomica granite, foliated leucogranites, garnet-bearing leucogranite, garnet-bearing pegmatite, and beryl-bearing pegmatite. All the Nariyongcuo leucogranites are evolved granites and resulted from various degrees of collective fractional crystallization of plagioclase, zircon, monazite, apatite and Ti-rich mineral phases. Comparing with Victorinox value of granites, these granites are enriched in rare metal elements of Bi, Cs, Li, Sn, Be, Pb, B, W, Ta, but relatively depleted in Nb. In addition, the wall rocks are also enriched in rare metal elements. Whole rock geochemical data imply that fractional crystallization and hydrothermal metasomatism resulted in rare metal mineralization within the Nariyongcuo gneiss dome. In the Himalayan belt, high evolved granites are widely distributed, and commonly contain rare metal-bearing minerals (niobite, tapiolite, cassiterite, beryl), suggesting that the Himalaya belt could be another new important target for the exploration of race metal deposits.
-
Key words:
- South Tibet /
- Nariyongcuo gneiss dome /
- leucogranite /
- rare metals /
- beryl /
- petrology
-
图 5 拿日雍措片麻岩穹窿内各类淡色花岗岩的主量元素和微量元素特征
(a)SiO2-K2O、(b)A/CNK-A/NK、(c)Hf-Zr/Hf、(d)Eu/Eu*-Sr、(e)Ba-Rb/Sr和(f)Zr/Hf-Nb/Ta,(f)中的灰色的阴影区域来自文献Ballouard et al.(2016)
Fig. 5. Concentrations and ratios of main and trace elements for all kinds of leucogranites in the Nariyongcuo gneiss dome
图 6 拿日雍措片麻岩穹窿内各类淡色花岗岩的原始地幔标准化蜘蛛网图(a, b)和球粒陨石标准化稀土元素配分图(c, d)
原始地幔标准化值和球粒陨石标准化值来源于Sun and McDonough(1989)
Fig. 6. Primitive mantle (PM) -normalized trace element (a, b) and chondrite-normalized rare earth element (c, d) distribution patterns for all kinds of leucogranite in the Nariyongcuo gneiss dome
图 7 拿日雍措片麻岩穹窿内各类围岩的原始地幔标准化蜘蛛网图(a, b)和球粒陨石标准化稀土元素配分图(c, d)
原始地幔标准化值和球粒陨石标准化值来源于Sun and McDonough(1989)
Fig. 7. Primitive mantle (PM)-normalized trace element (a, b) and chondrite-normalized rare earth element (c, d) distribution patterns for all kinds of wall rocks in the Nariyongcuo gneiss dome
图 9 拿日雍措片麻岩穹窿内各类岩石的稀有金属(a)Pb、(b)Li、(c)Bi和(d)Cs与SiO2的关系图解
图中图例与图 8相同
Fig. 9. Selected rare metals (a) Pb, (b) Li, (c) Bi and (d) Cs plotted against SiO2 for all the rocks in the Nariyongcuo gneiss dome
表 1 拿日雍措片麻岩穹隆内所采样品的位置、岩性和序号
Table 1. Location and lithology of samples in the Nariyongcuo gneiss dome
位置 岩性 样品号 岩体 淡色花岗岩 T0388-1到T0388-10、T0701-3、T0701-4、T0701-6、T0701-9、
T0701-10、T0701-13A、T0701-13B
T1138-A1到T1138-A3、T1138-B1到T1138-B4含石榴子石淡色花岗岩 T1137-GLG1、T1137-GLG2、T1137-GLG3 片理化淡色花岗岩 T1138-C1到T1138-C4、T1138-D1 含石榴子石伟晶岩 T1138-F2、T1138-F3 含绿柱石伟晶岩 T1137、T0388-11 围岩 黑云母片麻岩 T0701-1、T0701-2、T0701-5、T0388-9B、T0388-10B、
T0388-10C、T0388-13石墨片岩 T0701-7、T0701-8、T0701-P1到T0701-P4、T0388-P 石榴角闪岩 T0388-12、T1136-2到T1136-9 混合岩化石榴角闪岩 T1137-A1、T1137-A2、T1137-A3 含石榴子石的石英岩 T0701-GN1、T0701-GN2、T0387-2 含电气石石英岩 T1137-2 电气石岩 T0701-T、T1137-1 矽卡岩 T1138-E1、T1138-F1 -
[1] Antipin, V. S., Savina, E. A., Mitichkin, M. A., et al., 1997.Rare-Metal Lithium-Fluorine Granites, Ongonites, and Topazites of the Southern Baikal Region. Petrology, 7:147-159. [2] Ballouard, C., Poujol, M., Boulvais, P., et al., 2016. Nb-Ta Fractionation in Peraluminous Granites:A Marker of the Magmatic-Hydrothermal Transition. Geology, 44(3):231-234. https://doi.org/10.1130/g37475.1 [3] Bea, F., 1996.Controls on the Trace Element Composition of Crustal Melts.Transactions of the Royal Society of Edin-burgh:Earth Sciences, 87(1-2):33-41. doi: 10.1017/S0263593300006453 [4] Cerny, P., Belvin, P.L., Cuney, M., et al., 2005.Granite-Relat-ed Ore Deposits.Economic Geology, 107(2):383-384. [5] Chen, J., Lu, J.J., Chen, W.F., et al., 2008.W-Sn-Nb-Ta-Bear-ing Granites in the Nanling Range and Their Relation-ship to Metallogengesis. Geological Journal of China Universities, 14(4):459-473(in Chinese with English ab-stract). [6] Cuney, M., Marignac, C., Weisbrod, A., 1992. The Beauvoir Topaz-Lepidolite Albite Granite (Massif Central, France); The Disseminated Magmatic Sn-Li-Ta-Nb-Be Mineralization. Economic Geology, 87(7):1766-1794. https://doi.org/10.2113/gsecongeo.87.7.1766 [7] Dostal, J., Kontak, D.J., Gerel, O., et al., 2015.Cretaceous On-gonites (Topaz-Bearing Albite-Rich Microleucogranites)from Ongon Khairkhan, Central Mongolia:Products of Extreme Magmatic Fractionation and Pervasive Metaso-matic Fluid:Rock Interaction. Lithos, 236-237:173-189. https://doi.org/10.1016/j.lithos.2015.08.003 [8] Fu, J.G., Li, G.M., Wang, G.H., et al., 2018.Timing of E-W Extension Deformationin North Himalaya:Evidences from Ar-Ar Age in the Cuonadong Dome, SouthTibet.Earth Sicence, 43(8):2638-2650 (in Chinese with Eng-lish abstract). https://doi.org/10.3799/dqkx.2018.530 [9] Gao, L.E., Zeng, L.S., Asimow, P.D., 2017.Contrasting Geo-chemical Signatures of Fluid-Absent versus Flu-id-Fluxed Melting of Muscovite in Metasedimentary Sources:The Himalayan Leucogranites. Geology, 45(1):39-42. https://doi.org/10.1130/g38336.1 [10] Gao, L. E., Zeng, L. S., Gao, J. H., et al., 2017. The Miocene Leucogranite in the Nariyongcuo Gneiss Domes, South-ern Tibet:Products from Melting Metapelite and Frac-tional Crystallization. Acta Petrologica Sinica, 33(8):2395-2411(in Chinese with English abstract). [11] Glazner, A.F., Coleman, D.S., Bartley, J.M., 2008.The Tenu-ous Connection between High-Silica Rhyolites and Granodiorite Plutons. Geology, 36(2):183-186. https://doi.org/10.1130/g24496a.1 [12] Groves, D.I., McCarthy, T.S., 1978.Fractional Crystallization and the Origin of Tin Deposits in Granitoinds. Minerali-um Deposita, 13(1):11-22. https://doi.org/10.1007/bf00202905. [13] Guo, C. L., Zeng, L. S., Gao, L. E., et al., 2017. Highly Frac-tionated Granitic Minerals and Whole-Rock Geochemis-try Prospecting Markers in Hetian, Fujian Province.Acta Geologica Sinica, 91(8):1796-1817(in Chinese with English abstract). [14] Hua, R.M., Zhang, W.L., Gu, S.Y., et al., 2007.Comparison between REE Granite and W-Sn Granite in the Nanling Region, South China, and Their Mineralization.Acta Pet-rologica Sinica, 23(10):2321-2328(in Chinese with English abstract). [15] Jiang, S.Y., Zhao, K.D., Jiang, Y.H., et al., 2006.New Type of Tin Mineralization Related to Granite in South China:Evidence from Mineral Chemistry, Element and Isotope Geochemistry. Acta Petrologica Sinica, 22(10):2509-2516(in Chinese with English abstract). [16] Kirwin, D., 2012.Granite-Related Ore Deposits.Economic Ge-ology, 107(2):383-384. https://doi.org/10.2113/econ-geo.107.2.383 [17] Li, G.M., Zhang, L.K., Jiao, Y.J., et al., 2017.First Discovery and Implications of Cuonadong Superlarge Be-W-Sn Polymetallic Deposit in Himalayan Meltallogenic Belt, Southern Tibet. Mineral Deposits, 36(4):1003-1008 (in Chinese with English abstract) [18] Li, X.H., Li, W.X., Li, Z.X., 2007a.On the Genetic Classifica-tion and Tectonic Implications of the Early Yanshanian Granitoids in the Nanling Range, South China. Chinese Science Bulletin, 52(14):1873-1885. https://doi.org/10.1007/s11434-007-0259-0 [19] Li, Z.L., Hu, R.Z., Yang, J.S., et al., 2007b.He, Pb and S Iso-topic Constraints on the Relationship between the A-Type Qitianling Granite and the Furong Tin Deposit, Hunan Province, China.Lithos, 97(1-2):161-173. https://doi.org/10.1016/j.lithos.2006.12.009 [20] Lin, B., Tang, J. X., Zheng, W. B., et al., 2016. Geochemical Characteristics, Age and Genesis of Cuonadong Leuco-granite, Tibet. Acta Petrologica et Mineralogica, 35(3):391-406(in Chinese with English abstract). [21] Linnen, R.L., Keppler, H., 1997.Columbite Solubility in Gra-nitic Melts:Consequences for the Enrichment and Frac-tionation of Nb and Ta in the Earth's Crust. Contribu-tions to Mineralogy and Petrology, 128(2-3):213-227. https://doi.org/10.1007/s004100050304 [22] Linnen, R.L., Keppler, H., 2002.Melt Composition Control of Zr/Hf Fractionation in Magmatic Processes.Geochimica et Cosmochimica Acta, 66(18):3293-3301. https://doi.org/10.1016/s0016-7037(02)00924-9 [23] Liu, Z.C., Wu, F.Y., Ding, L., et al., 2016.Highly Fractionat-ed Late Eocene (~35 Ma) Leucogranite in the Xiaru Dome, Tethyan Himalaya, South Tibet. Lithos, 240-243:337-354. https://doi.org/10.1016/j.lith-os.2015.11.026 [24] Mao, J. W., Xie, G. Q., Guo, C. L., et al., 2007. Large-Scale Tungsten-Tin Mineralization in the Nanling Region, South China:Metallogenic Ages and Corresponding Geo-dynamic Processes. Acta Petrologica Sinica, 23(10):2329-2338(in Chinese with English abstract). [25] Pollard, P. J., Nakapadungrat, S., Taylor, R. G., 1995. The Phuket Supersuite, Southwest Thailand; Fractionated I-Type Granites Associated with Tin-Tantalum Mineral-ization. Economic Geology, 90(3):586-602. https://doi.org/10.2113/gsecongeo.90.3.586 [26] Pollard, P. J., Pichavant, M., Charoy, B., 1987. Contrasting Evolution of Fluorine-and Boron-Rich Tin Systems.Mineralium Deposita, 22(4):315-321. https://doi.org/10.1007/bf00204525 [27] Raimbault, L., Cuney, M., Azencott, C., et al., 1995.Geochem-ical Evidence for a Multistage Magmatic Genesis of Ta-Sn-Li Mineralization in the Granite at Beauvoir, French Massif Central. Economic Geology, 90(3):548-576. https://doi.org/10.2113/gsecongeo.90.3.548 [28] Ren, M.H., 2004.Partitioning of Sr, Ba, Rb, Y, and LREE be-tween Alkali Feldspar and Peraluminous Silicic Magma.American Mineralogist, 89(8-9):1290-1303. https://doi.org/10.2138/am-2004-8-918 [29] Simons, B., Andersen, J.C.Ø., Shail, R.K., et al., 2017.Frac-tionation of Li, Be, Ga, Nb, Ta, In, Sn, Sb, W and Bi in the Peraluminous Early Permian Variscan Granites of the Cornubian Batholith:Precursor Processes to Magmat-ic-Hydrothermal Mineralisation.Lithos, 278-281:491-512. https://doi.org/10.1016/j.lithos.2017.02.007 [30] Sun, S. S., McDonough, W. F., 1989. Chemical and Isotopic Systematics of Oceanic Basalts:Implications for Mantle Composition and Processes.Geological Society, London, Special Publications, 42(1):313-345. https://doi.org/10.1144/gsl.sp.1989.042.01.19 [31] Wang, R. C., Wu, F. Y., Xie, L., et al., 2017. A Preliminary Study of Rare-Metal Mineralization in the Himalayan Leucogranite Belts, South Tibet. Science China Earth Sciences, 60(9):1655-1663. https://doi.org/10.1007/s11430-017-9075-8 [32] Wang, X. X., Zhang, J. J., Wang, J. M., 2016. Geochronology and Formation Mechanism of the Paiku Granite in the Northern Himalaya, and Its Tectonic Implications.Earth Science, 41(6):982-998 (in Chinese with English ab-stract). https://doi.org/10.3799/dqkx.2016.082 [33] Wang, Y., 2008. Some Further Discussions on the Genetic Types of the Early Yanshanian (Jurassic) Granitoids in the Nanling Area, SE China. Geological Review, 54(2):162-174(in Chinese with English abstract). [34] Wolf, M.B., London, D., 1994.Apatite Dissolution into Peralu-minous Haplogranitic Melts:An Experimental Study of Solubilities and Mechanisms.Geochimica et Cosmochimi-ca Acta, 58(19):4127-4145. https://doi.org/10.1016/0016-7037(94)90269-0 [35] Wu, F.Y., Liu, X.C., Ji, W.Q., et al., 2017.Highly Fractionat-ed Granites:Recognition and Research. Science China:Earth Sciences, 60(7):1201-1219. https://doi.org/10.1007/s11430-016-5139-1 [36] Wu, F.Y., Liu, Z.C., Liu, X.C., et al., 2015.Himalayan Leuco-granite:Petrogenesis and Implications to Orogenesis and Plateau Uplift. Acta Petrologica Sinica, 31(1):1-36(in Chinese with English abstract). http://d.old.wanfangdata.com.cn/Periodical/ysxb98201501001 [37] Zeng, L. S., Gao, L. E., 2017. Cenozoic Crustal Anatexis and the Leucogranites in the Himalayan Collisional Orogenic Belt.Acta Petrologica Sinica, 33(5):1420-1444(in Chi-nese with English abstract). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=ysxb98201705004 [38] Zeng, L. S., Gao, L. E., Xie, K. J., et al., 2011. Mid-Eocene High Sr/Y Granites in the Northern Himalayan Gneiss Domes:Melting Thickened Lower Continental Crust.Earth and Planetary Science Letters, 303(3-4):251-266. https://doi.org/10.1016/j.epsl.2011.01.005 [39] Zhang, H. F., Harris, N., Parrish, R., et al., 2004. Causes and Consequences of Protracted Melting of the Mid-Crust Exposed in the North Himalayan Antiform. Earth and Planetary Science Letters, 228(1-2):195-212. https://doi.org/10.1016/j.epsl.2004.09.031 [40] Zhang, Z., Zhang, L.K., Li, G.M., et al., 2017.The Cuonadong Gneiss Dome of North Himalaya:A New Member of Gneiss Dome and a New Proposition for the Ore-Con-trolling Role of North Himalaya Gneiss Domes. Acta Geoscientica Sinica, 38(5):754-766(in Chinese with English abstract). [41] Zhu, J. C., Chen, J., Wang, R. C., et al., 2008. Early Yansha-nian NE-Trending Sn/W-Bearing A-Type Granites in the Western-Middle Part of Nanling Mts Region.Geolog-ical Journal of China Universities, 14(4):474-484(in Chinese with English abstract). [42] 陈骏, 陆建军, 陈卫锋, 等, 2008.南岭地区钨锡铌钽花岗岩及其成矿作用.高校地质学报, 14(4):459-473. doi: 10.3969/j.issn.1006-7493.2008.04.001 [43] 付建刚, 李光明, 王根厚, 等, 2018.北喜马拉雅E-W向伸展变形时限:来自藏南错那洞穹隆Ar-Ar年代学证据.地球科学, 43(8):2638-2650. https://doi.org/10.3799/dqkx.2018.530 [44] 高利娥, 曾令森, 高家昊, 等, 2017.藏南拿日雍措片穹窿中新世淡色花岗岩的形成过程:变泥质岩部分熔融与分离结晶作用.岩石学报, 33(8):2395-2411. http://www.cnki.com.cn/Article/CJFDTotal-YSXB201708005.htm [45] 郭春丽, 曾令森, 高利娥, 等, 2017.福建河田高分异花岗岩的矿物和全岩地球化学找矿标志研究.地质学报, 91(8):1796-1817. doi: 10.3969/j.issn.0001-5717.2017.08.010 [46] 华仁民, 张文兰, 顾晟彦, 等, 2007.南岭稀土花岗岩、钨锡花岗岩及其成矿作用的对比.岩石学报, 23(10):2321-2328. doi: 10.3969/j.issn.1000-0569.2007.10.001 [47] 蒋少涌, 赵葵东, 姜耀辉, 等, 2006.华南与花岗岩有关的一种新类型的锡成矿作用:矿物学、元素和同位素地球化学证据.岩石学报, 22(10):2509-2516. http://d.old.wanfangdata.com.cn/Periodical/ysxb98200610011 [48] 李光明, 张林奎, 焦彦杰, 等, 2017.西藏喜马拉雅成矿带错那洞超大型铍锡钨多金属矿床的发现及意义.矿床地质, 36(4):1003-1008. http://d.old.wanfangdata.com.cn/Periodical/kcdz201704014 [49] 林彬, 唐菊兴, 郑文宝, 等, 2016.西藏错那洞淡色花岗岩地球化学特征、成岩时代及岩石成因.岩石矿物学杂志, 35(3):391-406. doi: 10.3969/j.issn.1000-6524.2016.03.002 [50] 毛景文, 谢桂青, 郭春丽, 等, 2007.南岭地区大规模钨锡多金属成矿作用:成矿时限及地球动力学背景.岩石学报, 23(10):2329-2338. doi: 10.3969/j.issn.1000-0569.2007.10.002 [51] 王晓先, 张进江, 王佳敏, 2016.北喜马拉雅佩枯花岗岩年代学、成因机制及其构造意义.地球科学, 41(6):982-998. https://doi.org/10.3799/dqkx.2016.082 [52] 汪洋, 2008.南岭燕山早期花岗岩成因类型的进一步探讨.地质论评, 54(2):162-174. doi: 10.3321/j.issn:0371-5736.2008.02.003 [53] 吴福元, 刘志超, 刘小驰, 等, 2015.喜马拉雅淡色花岗岩.岩石学报, 31(1):1-36. http://d.old.wanfangdata.com.cn/Periodical/dqkx200503003 [54] 曾令森, 高利娥, 2017.喜马拉雅碰撞造山带新生代地壳深熔作用与淡色花岗岩.岩石学报, 33(5):1420-1444. http://d.old.wanfangdata.com.cn/Periodical/ysxb98201705004 [55] 张志, 张林奎, 李光明, 等, 2017.北喜马拉雅错那洞穹隆:片麻岩穹隆新成员与穹隆控矿新命题.地球学报, 38(5):754-766. http://d.old.wanfangdata.com.cn/Periodical/dqkx201808008 [56] 朱金初, 陈骏, 王汝成, 等, 2008.南岭中西段燕山早期北东向含锡钨A型花岗岩带.高校地质学报, 14(4):474-484. doi: 10.3969/j.issn.1006-7493.2008.04.002 -
dqkx-44-6-1860-Table.pdf