Quantitative Characterization and Main Controlling Factors of Shale Gas Occurrence in Jiaoshiba Area, Fuling
-
摘要: 为解决页岩气开发过程中,单井实测含气量与测试产量存在明显矛盾的问题,系统开展了测井解释含气量和实测含气量的对比研究,认为在焦石坝地区使用测井解释含气量来代替实测含气量是可行的.在详细对比有机质丰度、有机质成熟度、孔隙结构、地层温度和压力等对页岩含气量影响的基础上,明确孔隙结构是控制页岩气赋存特征的主要因素.对涪陵焦石坝地区而言,由于纵向有机质丰度差异而带来的孔径和孔隙度等孔隙结构的不同是导致上、下部气层赋存状态变化的主要原因.对中国南方海相页岩开发选区评价而言,在今后的开发选区过程中,应更加注重开展页岩孔隙结构对赋存状态的影响研究.Abstract: In order to solve the problem of obvious contradiction between measured gas content and test yield in single well during shale gas development, a systematic comparative study of log interpretation gas content and measured gas content is carried out.It is considered that it is feasible to use log interpretation gas content to replace measured gas content in Jiaoshiba area.On the basis of detailed comparison of the effects of organic matter abundance, organic matter maturity, pore structure, formation temperature and pressure on shale gas content, it is clear that pore structure is the main factor controlling the occurrence characteristics of shale gas.The difference of pore size and porosity caused by the difference of vertical organic matter abundance is the main reason for the change of occurrence state of upper and lower gas reservoirs in Jiaoshiba area, Fuling.For the evaluation of marine shale development constituencies in southern China, more attention should be paid to the study of the influence of shale pore structure on the occurrence state in the optimization of favorable areas for future development.
-
Key words:
- shale gas /
- pore structure /
- occurrence characteristics /
- Jiaoshiba area /
- petroleum geology
-
图 10 焦页A井各小层孔径分布曲线
⑨2 530.6 m, TOC=0.62%, Vsh=60.97%;⑧2 552.7 m, TOC=1.61%, Vsh=48.97%;⑦2 565.9 m, TOC=1.52%, Vsh=39.38%;⑥2 574.0 m, TOC=1.58%, Vsh=39.81%;⑤2 584.7 m, TOC=2.49%, Vsh=37.31%;④2 594.7 m, TOC=2.48%, Vsh=32.63%;③2 607.0 m, TOC=3.53%, Vsh=29.90%;①2 618.8 m, TOC=4.22%, Vsh=23.65%
Fig. 10. Pore size distribution curves of each small layer of Well JY A
表 1 涪陵焦石坝地区取心井优质页岩段实测含气量
Table 1. Statistical data of measured gas content in high-quality shale of core wells in Jiaoshiba area, Fuling
井号 层位 实测含气量
(m3/t)解析气量
(m3/t)损失气量
(m3/t)测井解释
(m3/t)单井测试产量
(104m3/d)焦页A井 五峰-龙马溪组①~⑤小层 3.33 1.00 2.33 5.03 10.5 焦页B井 2.84 1.00 1.84 5.80 20.3 焦页C井 2.33 0.97 1.36 6.46 33.7 焦页D井 2.47 1.02 1.45 5.32 10.1 焦页E井 3.00 1.02 1.98 6.51 27.9 焦页F井 3.73 1.05 2.68 4.37 6.6 焦页G井 3.61 1.03 2.58 5.27 20.8 焦页H井 4.32 1.54 2.78 5.18 8.9 焦页Ⅰ井 3.05 1.98 1.07 4.27 0.1 焦页J井 5.19 1.11 4.08 5.93 21.1 表 2 焦页B井等温吸附试验数据
Table 2. Isothermal adsorption test data of Well JY B
样品编号 井深
(m)层位 实测
TOC
(%)方法一(校正)计算吸附气量(m3/t) 方法二计算吸附气量(m3/t) 1 2 330.46 龙马溪组 1.11 1.01 0.93 2 2 355.13 龙马溪组 1.62 1.35 1.32 3 2 363.40 龙马溪组 1.47 1.18 1.20 4 2 385.42 龙马溪组 3.59 2.77 2.83 5 2 397.13 龙马溪组 3.46 2.45 2.73 6 2 414.88 五峰组 4.97 3.32 3.48 表 3 焦页A、B、C井含气页岩段测井解释含气量分段统计
Table 3. Statistical data of log interpretation of gas content of gas-bearing shale section in wells JYA, JYB, JYC
井号 小层号 顶深(m) 底深(m) 厚度(m) 总气量(m3/t) 吸附气(m3/t) 游离气(m3/t) 吸附气:游离气 焦页A井 ⑧、⑨ 2 519.2 2 563.3 44.1 1.7 0.9 0.8 53:47 ⑥、⑦ 2 563.3 2 579.5 16.2 2.9 1.2 1.7 41:59 ④、⑤ 2 579.5 2 599.5 20.0 4.3 1.8 2.6 40:60 ①、②、③ 2 599.5 2 622.0 22.5 7.2 2.7 4.5 37:63 焦页B井 ⑧、⑨ 2 326.5 2 353.5 27.0 2.4 1.2 1.2 50:50 ⑥、⑦ 2 353.5 2 377.5 24.0 3.4 1.4 2.0 41:59 ④、⑤ 2 377.5 2 398.0 20.5 5.6 2.2 3.5 39:61 ①、②、③ 2 398.0 2 415.5 17.5 8.7 3.1 5.6 36:64 焦页C井 ⑧、⑨ 2 476.8 2 511.2 34.4 2.2 1.0 1.2 45:55 ⑥、⑦ 2 511.2 2 534.6 23.4 3.1 1.3 1.8 42:58 ④、⑤ 2 534.6 2 554.7 20.1 5.1 1.9 3.2 37:63 ①、②、③ 2 554.7 2 575.0 20.3 7.4 2.7 4.7 36:64 表 4 涪陵焦石坝地区焦页A井五峰-龙马溪组龙一段页岩孔径分布数据
Table 4. Pore size data of Long 1 Member of Wufeng-Longmaxi Formation in Well JY A in Jiaoshiba area, Fuling
井深(m) 层位 不同孔径孔隙所占总孔隙体积 峰值孔隙直径(nm) <2 nm 2~50 nm >50 nm 2 530.80 ⑨ 17.26 74.01 8.73 3.56 2 546.08 ⑧ 1.74 95.43 2.83 3.59 2 566.09 ⑦ 16.16 79.22 4.62 3.65 2 574.31 ⑥ 15.76 80.38 3.86 3.68 2 582.19 ⑤ / 95.18 4.82 3.97 2 596.02 ④ 12.68 84.25 3.07 4.15 2 608.70 ③ / 97.78 2.22 4.92 2 620.66 ① / 97.91 2.09 5.92 -
[1] Chalmers, G.R.L., Bustin, R.M., 2008a.Lower Cretaceous Gas Shales in Northeastern British Columbia, Part Ⅰ:Geological Controls on Methane Sorption Capacity.Bulletin of Canadian Petroleum Geology, 56(1):1-21. https://doi.org/10.2113/gscpgbull.56.1.1 [2] Chalmers, G.R.L., Bustin, R.M., 2008b.Lower Cretaceous Gas Shales in Northeastern British Columbia, Part Ⅱ:Evaluation of Regional Potential Gas Resources.Bulletin of Canadian Petroleum Geology, 56(1):22-61. https://doi.org/10.2113/gscpgbull.56.1.22 [3] Curtis, J.B., 2002.Fractured Shale-Gas Systems.AAPG Bulletin, 86(11):1921-1938. https://doi.org/10.1306/61eeddbe-173e-11d7-8645000102c1865d [4] Dai, F.Y., Hao, F., Hu, H.Y., et al., 2017.Occurrence Mechanism and Key Controlling Factors of Wufeng-Longmaxi Shale Gas, Eastern Sichuan Basin.Earth Science, 42(7):1185-1194 (in Chinese with English abstract). https://doi.org/10.3799/dqkx.2017.096 [5] Fan, M., Yu, L.J., Xu, E.S., et al., 2018.Preservation Mechanism of Fuling Shale Gas.Petroleum Geology & Experiment, 40(1):126-132 (in Chinese with English abstract). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=sysydz201801018 [6] Gasparik, M.G.A., Bertier, P., Krooss, B.M., et al., 2012.High-Pressure Methane Sorption Isotherms of Black Shales from the Netherlands.Energy & Fuels, 26(8):4995-5004. https://doi.org/10.1021/ef300405g [7] Hou, Y.G., He, S., Yi, J.Z., et al., 2014.Effect of Pore Structure on Methane Sorption Capacity of Shales.Petroleum Exploration and Development, 41(2):248-256 (in Chinese with English abstract). [8] Jarvie, D.M., Hill, R.J., Ruble, T.E., et al., 2007.Unconventional Shale-Gas Systems:The Mississippian Barnett Shale of North-Central Texas as One Model for Thermogenic Shale-Gas Assessment.AAPG Bulletin, 91(4):475-499. https://doi.org/10.1306/12190606068 [9] Jiang, Z.X., Tang, X.L., Li, Z., et al., 2016.The Whole-Aperture Pore Structure Characteristics and Its Effect on Gas Content of the Longmaxi Formation Shale in the Southeastern Sichuan Basin.Earth Science Frontiers, 23(2):126-134 (in Chinese with English abstract). http://d.old.wanfangdata.com.cn/Periodical/dxqy201602013 [10] Lin, J.F., Hu, H.Y., Li, Q., 2017.Geochemical Characteristics and Implications of Shale Gas in Jiaoshiba, Eastern Sichuan, China.Earth Science, 42(7):1124-1133 (in Chinese with English abstract). https://doi.org/10.3799/dqkx.2017.091 [11] Liu, Y., Xia, X.H., Li, W., et al., 2015.Pore Characteristics and Relation with Shale Gas in the Longmaxi Formation Shale Reservoir.Natural Gas Geoscience, 26(8):1596-1603 (in Chinese with English abstract). http://d.old.wanfangdata.com.cn/Periodical/trqdqkx201508020 [12] Nie, H.K., Tang, X., Bian, R.K., 2009.Controlling Factors for Shale Gas Accumulation and Prediction of Potential Development Area in Shale Gas Reservoir of South China.Acta Petrolei Sinica, 30(4):484-491 (in Chinese with English abstract). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=syxb200904002 [13] Pu, B.L., Jiang, Y.L., Wang, Y., et al., 2010.Reservoir-Forming Conditions and Favorable Exploration Zones of Shale Gas in Lower Silurian Longmaxi Formation of Sichuan Basin.Acta Petrolei Sinica, 31(2):225-230 (in Chinese with English abstract). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=syxb201002008 [14] Tang, Y., Li, L.Z., Jiang, S.X., 2014.A Logging Interpretation Methodology of Gas Content in Shale Reservoirs and Its Application.Natural Gas Industry, 34(12):46-54 (in Chinese with English abstract). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=trqgy201412006 [15] Tang, Y., Zhang, J.C., Liu, Z.J., et al., 2011.Use and Improvement of the Desorption Method in Shale Gas Content Tests.Natural Gas Industry, 31(10):108-112 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTotal-TRQG201110032.htm [16] Tian, H., Zhang, S.C., Liu, S.B., et al., 2012.Determination of Organic-Rich Shale Pore Features by Mercury Injection and Gas Adsorption Methods.Acta Petrolei Sinica, 33(3):419-427 (in Chinese with English abstract). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=syxb201203011 [17] Tian, H., Zhang, S.C., Liu, S.B., et al., 2016.The Dual Influence of Shale Composition and Pore Size on Adsorption Gas Storage Mechanism of Organic-Rich Shale.Natural Gas Industry, 27(3):494-502 (in Chinese with English abstract). http://d.old.wanfangdata.com.cn/Periodical/trqdqkx201603011 [18] Wan, J.B., He, Y.F., Liu, M., et al., 2015.Shale Gas Content Measurement and Calculation Method.Well Logging Technology, 39(6):756-761 (in Chinese with English abstract). http://d.old.wanfangdata.com.cn/Periodical/sysydz201406015 [19] Wang, F.Y., Guan, J., Feng, W.P., et al., 2013.Evolution of Overmature Marine Shale Porosity and Implication to the Free Gas Volume.Petroleum Exploration and Development, 40(6):764-768 (in Chinese with English abstract). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=syktykf201306019 [20] Wang, F.Y., He, Z.Y., Meng, X.H., et al., 2011.Occurrence of Shale Gas and Prediction of Original Gas In-Place(OGIP).Natural Gas Geoscience, 22(3):501-510 (in Chinese with English abstract). http://d.old.wanfangdata.com.cn/Periodical/trqdqkx201103018 [21] Wang, H.Y., Liu, Y.Z., Dong, D.Z., et al., 2013.Scientific Issues on Effective Development of Marine Shale Gas in Southern China.Petroleum Exploration and Development, 40(5):574-579 (in Chinese with English abstract). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=syktykf201305009 [22] Wang, J., 2017.Genetic Analysis of Shale Gas of Wufeng-Longmaxi Formation in Fuling Jiaoshiba Area.Jianghan Petroleum Science and Technology, 27(3):1-4 (in Chinese with English abstract). [23] Xie, Q.M., Cheng, L.J., Liu, J.F., et al., 2014.Well Logging Interpretation and Evaluation of Gas Shale Reservoir at Longmaxi Formation in Qianjiang Area of Southeast of Chongqing Area.Progress in Geophysics, 29 (3):1312-1318 (in Chinese with English abstract). [24] Xu, Z., Shi, W.Z., Zhai, G.Y., et al., 2017.Relationship Differences and Causes between Porosity and Organic Carbon in Black Shales of the Lower Cambrian and the Lower Silurian in Yangtze Area.Earth Science, 42(7):1223-1234 (in Chinese with English abstract). https://doi.org/10.3799/dqkx.2017.099 [25] Zhang, J.C., Nie, H.K., Xu, B., et al., 2008.Geological Condition of Shale Gas Accumulation in Sichuan Basin.Natural Gas Industry, 28(2):151-156 (in Chinese with English abstract). http://d.old.wanfangdata.com.cn/Periodical/zgdzdc201804003 [26] 戴方尧, 郝芳, 胡海燕, 等, 2017.川东焦石坝五峰-龙马溪组页岩气赋存机理及其主控因素.地球科学, 42(7):1185-1194. https://doi.org/10.3799/dqkx.2017.096 [27] 范明, 俞凌杰, 徐二社, 等, 2018.页岩气保存机制探讨.石油实验地质, 40(1):126-132. http://d.old.wanfangdata.com.cn/Periodical/sysydz201801018 [28] 侯宇光, 何生, 易积正, 等, 2014.页岩孔隙结构对甲烷吸附能力的影响.石油勘探与开发, 41(2):248-256. http://d.old.wanfangdata.com.cn/Periodical/syktykf201402017 [29] 姜振学, 唐相路, 李卓, 等, 2016.川东南地区龙马溪组页岩孔隙结构全孔径表征及其对含气性的控制.地学前缘, 23(2):126-134. http://d.old.wanfangdata.com.cn/Periodical/dxqy201602013 [30] 林俊峰, 胡海燕, 黎祺, 2017.川东焦石坝地区页岩气特征及其意义.地球科学, 42(7):1124-1133. https://doi.org/10.3799/dqkx.2017.091 [31] 刘宇, 夏筱红, 李伍, 等, 2015.重庆綦江地区龙马溪组页岩孔隙特征与页岩气赋存关系探讨.天然气地球科学, 26(8):1596-1603. http://d.old.wanfangdata.com.cn/Periodical/trqdqkx201508020 [32] 聂海宽, 唐玄, 边瑞康, 2009.页岩气成藏控制因素及中国南方页岩气发育有利区预测.石油学报, 30(4):484-491. doi: 10.3321/j.issn:0253-2697.2009.04.002 [33] 蒲泊伶, 蒋有录, 王毅, 等, 2010.四川盆地下志留统龙马溪组页岩气成藏条件及有利地区分析.石油学报, 31(2):225-230. doi: 10.3969/j.issn.1001-8719.2010.02.011 [34] 唐颖, 李乐忠, 蒋时馨, 等, 2014.页岩储层含气量测井解释方法及其应用研究.天然气工业, 34(12):46-54. doi: 10.3787/j.issn.1000-0976.2014.12.006 [35] 唐颖, 张金川, 刘珠江, 等, 2011.解吸法测量页岩含气量及其方法的改进.天然气工业, 31(10):108-112. doi: 10.3787/j.issn.1000-0976.2011.10.026 [36] 田华, 张水昌, 柳少波, 等, 2012.压汞法和气体吸附法研究富有机质页岩孔隙特征.石油学报, 33(3):419-427. http://d.old.wanfangdata.com.cn/Periodical/syxb201203011 [37] 田华, 张水昌, 柳少波, 等, 2016.富有机质页岩成分与孔隙结构对吸附气赋存的控制作用.天然气地球科学, 27(3):494-502. http://d.old.wanfangdata.com.cn/Periodical/trqdqkx201603011 [38] 万金彬, 何羽飞, 刘淼, 等, 2015.页岩含气量测定及计算方法研究.测井技术, 39(6):756-761. http://d.old.wanfangdata.com.cn/Periodical/cjjs201506017 [39] 王飞宇, 关晶, 冯伟平, 等, 2013.过成熟海相页岩孔隙度演化特征和游离气量.石油勘探与开发, 40(6):764-768. http://d.old.wanfangdata.com.cn/Periodical/syktykf201306019 [40] 王飞宇, 贺志勇, 孟晓辉, 等, 2011.页岩气赋存形式和初始原地气量(OGIP)预测技术.天然气地球科学, 22(3):501-510. http://d.old.wanfangdata.com.cn/Periodical/trqdqkx201103018 [41] 王红岩, 刘玉章, 董大忠, 等, 2013.中国南方海相页岩气高效开发的科学问题.石油勘探与开发, 40(5):574-579. http://d.old.wanfangdata.com.cn/Periodical/syktykf201305009 [42] 王进, 2017.涪陵焦石坝地区五峰组-龙马溪组页岩气成因分析.江汉石油科技, 27(3):1-4. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=QKC20172018010300055522 [43] 谢庆明, 程礼军, 刘俊峰, 等, 2014.渝东南黔江地区龙马溪组页岩气储层测井解释评价研究.地球物理学进展, 29(3):1312-1318. http://www.cnki.com.cn/Article/CJFDTOTAL-DQWJ201403043.htm [44] 徐壮, 石万忠, 翟刚毅, 等, 2017.扬子地区下寒武统与下志留统黑色页岩孔隙度与有机碳关系差异性及原因.地球科学, 42(7):1223-1234. https://doi.org/10.3799/dqkx.2017.099 [45] 张金川, 聂海宽, 徐波, 等, 2008.四川盆地页岩气成藏地质条件.天然气工业, 28(2):151-156. doi: 10.3787/j.issn.1000-0976.2008.02.045