• 中国出版政府奖提名奖

    中国百强科技报刊

    湖北出版政府奖

    中国高校百佳科技期刊

    中国最美期刊

    留言板

    尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

    姓名
    邮箱
    手机号码
    标题
    留言内容
    验证码

    贵州超大型锰矿集区的多尺度三维地质建模

    张夏林 吴冲龙 周琦 翁正平 袁良军 朱福康 李章林 张志庭 杨炳南 赵亚涛

    张夏林, 吴冲龙, 周琦, 翁正平, 袁良军, 朱福康, 李章林, 张志庭, 杨炳南, 赵亚涛, 2020. 贵州超大型锰矿集区的多尺度三维地质建模. 地球科学, 45(2): 634-644. doi: 10.3799/dqkx.2018.384
    引用本文: 张夏林, 吴冲龙, 周琦, 翁正平, 袁良军, 朱福康, 李章林, 张志庭, 杨炳南, 赵亚涛, 2020. 贵州超大型锰矿集区的多尺度三维地质建模. 地球科学, 45(2): 634-644. doi: 10.3799/dqkx.2018.384
    Zhang Xialin, Wu Chonglong, Zhou Qi, Weng Zhengping, Yuan Liangjun, Zhu Fukang, Li Zhanglin, Zhang Zhiting, Yang Bingnan, Zhao Yatao, 2020. Multi-Scale 3D Modeling and Visualization of Super Large Manganese Ore Gathering Area in Guizhou China. Earth Science, 45(2): 634-644. doi: 10.3799/dqkx.2018.384
    Citation: Zhang Xialin, Wu Chonglong, Zhou Qi, Weng Zhengping, Yuan Liangjun, Zhu Fukang, Li Zhanglin, Zhang Zhiting, Yang Bingnan, Zhao Yatao, 2020. Multi-Scale 3D Modeling and Visualization of Super Large Manganese Ore Gathering Area in Guizhou China. Earth Science, 45(2): 634-644. doi: 10.3799/dqkx.2018.384

    贵州超大型锰矿集区的多尺度三维地质建模

    doi: 10.3799/dqkx.2018.384
    基金项目: 

    贵州省科技计划项目《锰矿勘查与开发大数据管理与智能处理系统研发应用》 黔科合支撑[2017]2951

    贵州省锰矿资源预测评价科技创新人才团队 黔科合平台[2018]5618

    详细信息
      作者简介:

      张夏林(1975—), 男, 教授, 从事地学三维信息系统研究工作

    • 中图分类号: P617

    Multi-Scale 3D Modeling and Visualization of Super Large Manganese Ore Gathering Area in Guizhou China

    • 摘要: 黔湘渝毗邻区"大塘坡式"锰矿床具有世界上独特的成矿环境和机制,借助三维地质建模及可视化方式,可以直观而形象地进行研判.在系统分析和处理贵州松桃县超大型锰矿田及区域相关资料的基础上,利用QuantyMine三维矿业软件,分别构建了黔渝湘毗邻区的南华纪早期武陵次级裂谷盆地原型、古天然气渗漏沉积型锰矿田、松桃县大塘坡典型锰矿床等3个不同尺度的三维地质模型,科学地表达了该超大型锰矿独特成矿环境,揭示了成矿机理和赋存状况,为该类型的矿床研究和成矿预测提供了新的手段.

       

    • 图  1  黔渝湘毗邻地区南华纪早期南华裂谷武陵次级裂谷的构造古地理图

      Fig.  1.  Structural and tectonic paleogeographic sketch of the Early Nanhua Period Wuling secondary rift basin in the Guizhou-Hunan-Chongqing border area, South China

      图  2  黔渝湘毗邻地区南华古裂谷武陵次级裂谷横向(NW向)地质平衡剖面图示意

      Fig.  2.  Geological balanced section of the Early Nanhua Period Wuling secondary rift basin in the Guizhou-Hunan-Chongqing border area, South China

      图  3  黔渝湘毗邻区南华纪早期武陵次级裂谷原型结构的三维地质模型

      Fig.  3.  3D geological model of the Early Nanhua Period Wuling secondary rift basin in the Guizhou-Hunan-Chongqing border area, South China

      图  4  航磁上显示的北西向与北东向深部构造情况

      Fig.  4.  NW and NE deep structures revealed by aeromagnetic survey

      图  5  黔东北锰矿集区高地-道坨矿田平面图

      Fig.  5.  Geological map of the Gaodi-Taotuo ore field in the eastern Guizhou manganese mine area

      图  6  道坨矿床典型地质分析剖面图示意

      Fig.  6.  Typical geological section map of Gaodi-Taotuo deposit

      图  7  高地-道坨锰矿田矿床(上)及南华系围岩(下)的三维地质模型

      Fig.  7.  3D geological model of Gaodi-Taotuo ore field (Up) and it's wall rock (Down)

      图  8  矿区平面布置图以及建模范围(红色线框圈定范围,据贵州省103地质队资料)

      Fig.  8.  Layout plan of the deposit and modeling area

      图  9  矿区实测勘探线剖面图(据贵州省103地质队)

      Fig.  9.  Geologic section of the deposit

      图  10  黔东北地区道坨超大型锰矿床的三维地质模型

      Fig.  10.  3D geological model of theDaotuo deposit

    • [1] He, Z. W., Wu, C. L., Tian, Y. P., et al., 2008. Three-Dimensional Reconstruction of Geological Solids Based on Section Topology Reasoning. GeoSpatial Information Science, 11(3): 201-208. https://doi.org/10.1007/s11806–008–0082–2
      [2] He, Z.W., Wu, C.L., Liu, G., et al., 2012. Cognition and Dynamic Modeling Architecture of Geological Space, Geological Science and Technology Information, 31(6):46-51(in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-DZKQ201206009.htm
      [3] Mao, X.P., Wu, C.L., Yuan, Y.B., 1998. Physical Balanced Cross Sections for Geological Structure. Earth Sciences, 23(2):167-170(in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-DQKX802.012.htm
      [4] Perrin, M., Zhu, B. T., Rainaud, J. F., et al., 2005. Knowledge–Driven Applications for Geological Modeling. Journal of Petroleum Science and Engineering, 47(1/2): 89-104. https://doi.org/10.1016/j.petrol.2004.11.010
      [5] Tang, B.Y., Wu, C.L., Li, X.C., 2017. A Fine 3D Geological Modeling Method Based on TIN–CPG Hybrid Spatial Data Model, Rock and Soil Mechanics, 38(4):218-1225 (in Chinese with English abstract).
      [6] Weng, Z.P., He, Z.W., Mao, X.P., et al., 2012. Development and Applications of Three–Dimensional Dynamic and Visualization Geological Modeling System. Geological Science and Technology Information, 31(6):59-66 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-DZKQ201206011.htm
      [7] Wu, C.L., He, Z.W., Weng, Z.P., et al., 2011. Property, Classification and key Technologies of Three–Dimensional Geological Data Visualization. Geol. Bull. China, 30: 642-649(in Chinese with English abstract).
      [8] Zhang, X.L., Fang, S.M., Wang, X.Q., et al., 2000. Application of Data Warehouse Technology on the Land and Resource Information System. Computer Engineering, 27(9):139-142(in Chinese with English abstract). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=jsjgc200109054
      [9] Zhang, X.L., Wu, C.L., Weng, Z.P., et al., 2010. Research and Application of the Digital Mine Software Quanty Mine. Earth Sciences, 35:303-310(in Chinese with English abstract).
      [10] Zhang, Z. T., Wu, C. L., Mao, X. P., et al., 2013. Method and Technique of 3–D Dynamic Structural Evolution Modelling of Fault Basin. International Journal of Oil, Gas and Coal Technology, 6(1/2): 40. https://doi.org/10.1504/ijogct.2013.050775
      [11] Zhou, Q., Du, Y.S., Qin, Y., et al., 2013. Ancient Natural Gas Seepage Sedimentary–Type Manganese Metallogenic System and Ore–Forming model: A Case study of Datangpo Type Manganese Deposits Formed in Rift Basin of Nanhua Period Along Guizhou–Hunan–Chongqing. Mineral Deposits, 32(3):457-466. (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTOTAL-KCDZ201303001.htm
      [12] Zhou, Q., Du, Y.S., Yuan, L.J., et al., 2016. The Structure of the Wuling Rift Basin and its Control on the Manganese Deposit During the Nanhuan Period in the Guizhou–Hunan–Chongqing Border area, South China. Earth Sciences, 41(2):177-188 (in Chinese with English abstract).
      [13] Zhou, Q., Du, Y.S., Yuan, L.J., et al., 2016. Dominant Improvements & Potentiality Prediction of Geological Prospecting in the National Package Exploration Area at Songtao County, the City of Tongren, Guizhou Province. Geology of Guizhou, 33(4):237-244 (in Chinese with English abstract).
      [14] 何珍文, 吴冲龙, 刘刚, 等, 2012.地质空间认知与多维动态建模结构研究.地质科技情报, 31(6):46-51. http://www.cnki.com.cn/Article/CJFDTotal-DZKQ201206009.htm
      [15] 毛小平, 吴冲龙, 袁艳斌, 1998.地质构造的物理平衡剖面法.地球科学, 23(2).167-170. doi: 10.3321/j.issn:1000-2383.1998.02.013
      [16] 唐丙寅, 吴冲龙, 李新川, 2017.一种基于TIN-CPG混合空间数据模型的精细三维地质模型构建方法.岩土力学, 38(4):1218-1225. http://d.old.wanfangdata.com.cn/Periodical/ytlx201704037
      [17] 翁正平, 何珍文, 毛小平, 等, 2012.三维可视化动态地质建模系统研发与应用.地质科技情报, 31(6):59-66. http://www.cnki.com.cn/Article/CJFDTotal-DZKQ201206011.htm
      [18] 吴冲龙, 何珍文, 翁正平, 等, 2011.地质数据三维可视化的属性, 分类和关键技术.地质通报, 30(5):642-649. doi: 10.3969/j.issn.1671-2552.2011.05.003
      [19] 周琦, 杜远生, 覃英, 2013.古天然气渗漏沉积型锰矿床成矿系统与成矿模式——以黔湘渝毗邻区南华纪"大塘坡式"锰矿为例.矿床地质, 32(3):457-466. doi: 10.3969/j.issn.0258-7106.2013.03.001
      [20] 周琦, 杜远生, 袁良军, 等, 2016.贵州铜仁松桃锰矿国家整装勘查区地质找矿主要进展及潜力预测.贵州地质, 33(4):237-244. doi: 10.3969/j.issn.1000-5943.2016.04.001
      [21] 周琦, 杜远生, 袁良军, 等, 2016.黔湘渝毗邻区南华纪武陵裂谷盆地结构及其对锰矿的控制作用.地球科学, 41(2):177-188. doi: 10.3799/dqkx.2016.014
      [22] 张夏林, 方世明, 汪新庆, 等, 2000.数据仓库技术在国土资源信息系统中的应用探讨.计算机工程, 27(9):139-142. http://d.old.wanfangdata.com.cn/Periodical/jsjgc200109054
      [23] 张夏林, 吴冲龙, 翁正平, 等, 2010.数字矿山软件(Quanty Mine)若干关键技术的研发和应用.地球科学, 35(2): 303-310. doi: 10.3799/dqkx.2010.031
    • 加载中
    图(10)
    计量
    • 文章访问数:  3227
    • HTML全文浏览量:  1184
    • PDF下载量:  114
    • 被引次数: 0
    出版历程
    • 收稿日期:  2018-12-24
    • 刊出日期:  2020-02-15

    目录

      /

      返回文章
      返回